Conditional Duration Model and Unobserved Market Heterogeneity of Traders. An Infinite Mixture of Non–Exponentials

This paper extends the conditional duration model proposed by De Luca and Zuccolotto (2003), proposing an infinite mixture of distributions based on non–exponentials which accounts for the unobserved market heterogeneity of traders. The model we propose takes into account the fact that reaction time...

Full description

Autores:
Gómez Déniz, Emilio
Perez-Rodriguez, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66511
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66511
http://bdigital.unal.edu.co/67539/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Autoregressive conditional duration model
Exponential dis- tribution
Gamma distribution
Heterogeneity
Reciprocal inverse Gaussian distribution
Modelo de duración autorregresivo condicional
Distribución exponencial
Distribución Gamma,
Heterogeneidad
Distribución recíproca inversa gaussiana
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This paper extends the conditional duration model proposed by De Luca and Zuccolotto (2003), proposing an infinite mixture of distributions based on non–exponentials which accounts for the unobserved market heterogeneity of traders. The model we propose takes into account the fact that reaction times follow a gamma distribution and that the intensity parameter follows the reciprocal of an inverse Gaussian distribution. This extension allows us to capture not only various density shapes of durations, but also non–monotonic shapes of hazard functions. The model also allows us to test the unobserved heterogeneity of traders. This mixture model is easy to fit and characterises the behaviour of the conditional durations reasonably well.