Modelo de detección de fraude basado en el descubrimiento simbólico de reglas de clasificación extraídas de una red neuronal

El presente proyecto presenta un modelo de detección de fraude empleando técnicas de minería de datos tales como redes neuronales y extracción simbólica de reglas de clasificación a partir de la red neuronal entrenada. La propuesta de este modelo surge del interés de diseñar y desarrollar una herram...

Full description

Autores:
Santamaría Ruíz, Wilfredy
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/6851
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/6851
http://bdigital.unal.edu.co/3086/
Palabra clave:
0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Detección de fraude
Técnicas de minería de datos
Redes neuronales
Descubrimiento simbólico de reglas
Expertos
Fraud detection
Data mining techniques
Neural network
Extracting symbolic rules
Experts business
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:El presente proyecto presenta un modelo de detección de fraude empleando técnicas de minería de datos tales como redes neuronales y extracción simbólica de reglas de clasificación a partir de la red neuronal entrenada. La propuesta de este modelo surge del interés de diseñar y desarrollar una herramienta de detección de fraude, con el fin de ayudar a los expertos del negocio a examinar y verificar más fácilmente los resultados obtenidos para apoyar la toma de decisiones. Se eligen las técnicas relacionadas anteriormente, dado su buen desempeño de clasificación y robustez al ruido. El modelo propuesto se probó sobre un conjunto de datos de una organización colombiana para el envío y pago de remesas, con el fin de identificar patrones ligados a la detección de fraude. De igual forma los resultados de las técnicas utilizadas en el modelo, se compararon con otras técnicas de minera como los árboles de decisión, para ello un prototipo de software se desarrollo para probar el modelo, el cual fue integrado a la herramienta de RapidMiner, que puede ser usado como una herramienta de software académico. / Abstract. This project presents a fraud detection model using data mining techniques such as neural networks and extracting symbolic rules from training artificial neural networks. The proposal of this model arises from the interest of designing and developing a fraud detection tool, in order to help business experts to more easily examine and verify the results for decision making. Related techniques are chosen above, given its good performance of classification and robustness to noise. The proposed model was tested on a set of data from a Colombian organization for sending and remittance payments, in order to identify patterns associated with fraud detection. Similarly the results of the techniques used in the model were compared with other mining techniques such as decision trees, for that purpose a software prototype was developed to test the model, which was integrated into RapidMiner tool that can be used as a tool for academic software.