Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso

ilustraciones, fotografías, graficas, tablas

Autores:
Galindo Jiménez, Rodrigo Alfonso
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81510
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81510
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
INDUSTRIA DE REFRIGERIOS
EVALUACION SENSORIAL DE ALIMENTOS
Snack food industry
Food - Sensory evaluation
Evaluación Sensorial
análisis multivariante
desarrollo de nuevos productos
investigación de mercados
Perfil Sensorial
Extruido de maíz
Aditivos alimentarios
Sensory evaluation
Extruded corn
Multivariate analysis
Savoring
Product development
Market research
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_62937c7aae00611e77cfc6ae50a5e965
oai_identifier_str oai:repositorio.unal.edu.co:unal/81510
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
dc.title.translated.eng.fl_str_mv Application of the Check All That Apply and Optimal Sensory Profile methods in the development of a corn extrudate with cheese flavor
title Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
spellingShingle Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
660 - Ingeniería química::664 - Tecnología de alimentos
INDUSTRIA DE REFRIGERIOS
EVALUACION SENSORIAL DE ALIMENTOS
Snack food industry
Food - Sensory evaluation
Evaluación Sensorial
análisis multivariante
desarrollo de nuevos productos
investigación de mercados
Perfil Sensorial
Extruido de maíz
Aditivos alimentarios
Sensory evaluation
Extruded corn
Multivariate analysis
Savoring
Product development
Market research
title_short Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
title_full Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
title_fullStr Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
title_full_unstemmed Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
title_sort Aplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a queso
dc.creator.fl_str_mv Galindo Jiménez, Rodrigo Alfonso
dc.contributor.advisor.none.fl_str_mv Zuluaga Domínguez, Carlos Mario
dc.contributor.author.none.fl_str_mv Galindo Jiménez, Rodrigo Alfonso
dc.contributor.researchgroup.spa.fl_str_mv Ayni - Grupo de Investigación en Procesos Agroindustriales
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
topic 660 - Ingeniería química::664 - Tecnología de alimentos
INDUSTRIA DE REFRIGERIOS
EVALUACION SENSORIAL DE ALIMENTOS
Snack food industry
Food - Sensory evaluation
Evaluación Sensorial
análisis multivariante
desarrollo de nuevos productos
investigación de mercados
Perfil Sensorial
Extruido de maíz
Aditivos alimentarios
Sensory evaluation
Extruded corn
Multivariate analysis
Savoring
Product development
Market research
dc.subject.lemb.spa.fl_str_mv INDUSTRIA DE REFRIGERIOS
EVALUACION SENSORIAL DE ALIMENTOS
dc.subject.lemb.eng.fl_str_mv Snack food industry
Food - Sensory evaluation
dc.subject.proposal.spa.fl_str_mv Evaluación Sensorial
análisis multivariante
desarrollo de nuevos productos
investigación de mercados
Perfil Sensorial
Extruido de maíz
Aditivos alimentarios
dc.subject.proposal.eng.fl_str_mv Sensory evaluation
Extruded corn
Multivariate analysis
Savoring
Product development
Market research
description ilustraciones, fotografías, graficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-06T17:52:03Z
dc.date.available.none.fl_str_mv 2022-06-06T17:52:03Z
dc.date.issued.none.fl_str_mv 2022-04
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81510
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81510
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aguiar, L. A. de, Rodrigues, D. B., Queiroz, V. A. V., Melo, L., & Pineli, L. de L. de O. (2020). Comparison of two rapid descriptive sensory techniques for profiling and screening of drivers of liking of sorghum breads. Food Research International, 131(September 2019), 108999. https://doi.org/10.1016/j.foodres.2020.108999
Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2015). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Https://Doi.Org/10.1080/10408398.2013.779568, 56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568
Alberto, R., & Turcios, S. (2015). t-Student. Usos y abusos. http://www.medigraphic.com/revmexcardiol
ANALISIS SENSORIAL. IDENTIFICACION Y SELECCION DE DESCRIPTORES PARA ESTABLECER UN PERFIL SENSORIAL POR UNA APROXIMACION MULTIDIMENSIONAL., (1996).
ANÁLISIS SENSORIAL. METODOLOGÍA. DIRECTRICES PARA MONITOREAR EL DESEMPEÑO DE UN PANEL SENSORIAL CUANTITATIVO. (2015). INCONTEC.
Ares, G., Barreiro, C., Deliza, R., Giménez, A., & Gámbaro, A. (2010). Application of a check-all-that-apply question to the development of chocolate milk desserts. Journal of Sensory Studies, 25(SUPPL. 1), 67–86. https://doi.org/10.1111/j.1745-459X.2010.00290.x
Ares, G., & Jaeger, S. R. (2015). Check-all-that-apply (CATA) questions with consumers in practice: Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (pp. 227–245). Elsevier Inc. https://doi.org/10.1533/9781782422587.2.227
Bi, J. (2012). A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. Journal of Sensory Studies, 27(2), 87–101. https://doi.org/10.1111/j.1745-459X.2012.00370.x
Bredie, W. L. P., Mottram, D. S., & Guy, R. C. E. (1998). Aroma Volatiles Generated during Extrusion Cooking of Maize Flour. Journal of Agricultural and Food Chemistry, 46(4), 1479–1487. https://doi.org/10.1021/jf9708857
Bruzzone, F., Vidal, L., Antúnez, L., Giménez, A., Deliza, R., & Ares, G. (2015). Comparison of intensity scales and CATA questions in new product development: Sensory characterisation and directions for product reformulation of milk desserts. Food Quality and Preference, 44, 183–193. https://doi.org/10.1016/j.foodqual.2015.04.017
Chang, C., & Lin, J. (2017). Comparison between collet and cooking extrusions on physicochemical properties of whole grain barley. Journal of Food Process Engineering, 40(3), e12480. https://doi.org/10.1111/JFPE.12480
Corvalán, C., Correa, T., Reyes, M., & Paraje, G. (2021). Impacto de la Ley chilena de etiquetado en el sector productivo alimentario. In Impacto de la Ley chilena de etiquetado en el sector productivo alimentario. FAO e INTA. https://doi.org/10.4060/cb3298es
Cultivo de Maíz (1st ed.). (1998). Centro para el Desarrollo Agropecuario y Forestal.
David, V. (2017). Structure as Gradients of Objects/Variables. Data Treatment in Environmental Sciences, 57–94. https://doi.org/10.1016/B978-1-78548-239-7.50004-8
Dehlholm, C. (2015a). Free multiple sorting as a sensory profiling technique. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.2.187
Dehlholm, C. (2015b). Free multiple sorting as a sensory profiling technique. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (pp. 187–196). Elsevier Inc. https://doi.org/10.1533/9781782422587.2.187
Dehlholm, C., Brockhoff, P. B., Meinert, L., Aaslyng, M. D., & Bredie, W. L. P. (2012). Rapid descriptive sensory methods - Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference, 26(2), 267–277. https://doi.org/10.1016/j.foodqual.2012.02.012
Delarue, J. (2015a). Flash Profile, its evolution and uses in sensory and consumer science. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.2.121
Delarue, J. (2015b). The use of rapid sensory methods in R&D and research: An introduction. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (Issue 2012). Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.1.3
Edmund W. Lusas, L. W. R. (2001). Snack Foods Processing (Vol. 1). CRC Press.
Escofier, B., & Pagès, J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics & Data Analysis, 18(1), 121–140. https://doi.org/10.1016/0167-9473(94)90135-X
Everitt, Brian., & Howell, D. C. (2005). Encyclopedia of statistics in behavioral science. John Wiley & Sons.
Godin, S. (2009). Purple cow : transform your business by being remarkable. https://www.panamericana.com.co/purple-cow-transform-your-business-by-being-remarkable-615749/p
Granado. Paliwal. (2000). EL MAÍZ EN LOS TRÓPICOS: Mejoramiento y producción. In Fao (p. 10). http://www.fao.org/3/X7650S/x7650s02.htm#P0_0
Grygorczyk, A., Lesschaeve, I., Corredig, M., & Duizer, L. (2013). Extraction of consumer texture preferences for yogurt: Comparison of the preferred attribute elicitation method to conventional profiling. Food Quality and Preference, 27(2), 215–222. https://doi.org/10.1016/j.foodqual.2012.02.017
Guiné, F., & Correia, P. M. D. R. (2013). Emerging Technologies for Food Quality and Food Safety Evaluation. In Physicochemical Aspects of Food Engineering and Processing. http://www.ucd.ie/sun/
Hanify, D. E. (2001). Snack Seasonings Application.
Hess, J. M., Jonnalagadda, S. S., & Slavin, J. L. (2016). What Is a Snack, Why Do We Snack, and How Can We Choose Better Snacks? A Review of the Definitions of Snacking, Motivations to Snack, Contributions to Dietary Intake, and Recommendations for Improvement. Advances in Nutrition, 7(3), 466–475. https://doi.org/10.3945/AN.115.009571
GTC 232:2020 Análisis sensorial. metodología. guía general para el establecimiento de un perfil sensorial, (2020) (testimony of ICONTEC).
Kermit, M., & Lengard, V. (2005). Assessing the performance of a sensory panel–panellist monitoring and tracking. Journal of Chemometrics, 19(3), 154–161. https://doi.org/10.1002/CEM.918
Lawless, H. T., & Heymann, H. (2010a). Data Relationships and Multivariate Applications. 433–449. https://doi.org/10.1007/978-1-4419-6488-5_18
Lawless, H. T., & Heymann, H. (2010b). Descriptive Analysis (pp. 227–257). https://doi.org/10.1007/978-1-4419-6488-5_10
Lawless, H. T., & Heymann, H. (2010c). Principles of Good Practice. 57–77. https://doi.org/10.1007/978-1-4419-6488-5_3
Lawless, H. T., & Heymann, H. (2010d). Scaling. In Sensory Evaluation of Food (Vol. 0, Issue i, pp. 149–177). Springer New York. https://doi.org/10.1007/978-1-4419-6488-5_7
Lawless, H. T., & Heymann, H. (2010e). Strategic Research. 451–471. https://doi.org/10.1007/978-1-4419-6488-5_19
le Dien, S., & Pagès, J. (2003). Hierarchical Multiple Factor Analysis: application to the comparison of sensory profiles. Food Quality and Preference, 14(5–6), 397–403. https://doi.org/10.1016/S0950-3293(03)00027-2
Lê, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software., 25(1), 1–18. http://factominer.free.fr/index.html
Lê, S., & Worch, T. (2014). Analyzing sensory data with R. In Analyzing Sensory Data with R. https://doi.org/10.1201/b17502
Lê, Sébastien, Husson, F. (2008). SensoMineR: a package for sensory data analysis. Journal of Sensory Studies. 23 (1) (pp. 14–25). http://sensominer.free.fr/
Lê Sébastien, & Worch Thierry. (2015). When panelists rate products according to a single list of attributes. In Analyzing Sensory Data with R (pp. 5–32). CRC Press.
Liu, J., Bredie, W. L. P., Sherman, E., Harbertson, J. F., & Heymann, H. (2018). Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile. Food Research International, 106(January), 892–900. https://doi.org/10.1016/j.foodres.2018.01.062
López, R. (2015). El secreto de la innovación exitosa – Nielsen. https://www.nielsen.com/co/es/insights/article/2015/secreto-innovacion-exitosa/
López, R. (2017). Innovación disruptiva como motor de crecimiento – Nielsen. https://www.nielsen.com/co/es/insights/article/2017/innovacion-disruptiva-como-motor-de-crecimiento/
Mello, L. S. S., Almeida, E. L., & Melo, L. (2019). Discrimination of sensory attributes by trained assessors and consumers in semi-sweet hard dough biscuits and their drivers of liking and disliking. Food Research International, 122, 599–609. https://doi.org/10.1016/j.foodres.2019.01.031
Menis-Henrique, M. E. C., Janzantti, N. S., Monteiro, M., & Conti-Silva, A. C. (2020). Physical and sensory characteristics of cheese-flavored expanded snacks obtained using butyric acid and cysteine as aroma precursors: Effects of extrusion temperature and sunflower oil content. LWT, 122, 109001. https://doi.org/10.1016/J.LWT.2019.109001
Meyners, M., & Castura, J. (2014). Check-All-That-Apply Questions. Novel Techniques in Sensory Characterization and Consumer Profiling, September, 271–306. https://doi.org/10.1201/b16853-12
Meyners, M., Castura, J. C., & Carr, B. T. (2013). Existing and new approaches for the analysis of CATA data. Food Quality and Preference, 30(2), 309–319. https://doi.org/10.1016/j.foodqual.2013.06.010
Minim, Valéria & Simiqueli, Andréa & Moraes, Liliane & Gomide, Aline & Minim, Luis. (2012). Optimized Descriptive Profile: A rapid methodology for sensory description. Food Quality and Preference, 24(1), 190–200. https://doi.org/10.1016/j.foodqual.2011.10.014
Murray, J. M., Delahunty, C. M., & Baxter, I. A. (2001). Descriptive sensory analysis: Past, present and future. In Food Research International (Vol. 34, Issue 6, pp. 461–471). Elsevier Ltd. https://doi.org/10.1016/S0963-9969(01)00070-9
O’Sullivan, M. G. (2017a). A Handbook for Sensory and Consumer-Driven New Product Development. In A Handbook for Sensory and Consumer-Driven New Product Development. Elsevier. https://doi.org/10.1016/c2014-0-03843-9
O’Sullivan, M. G. (2017b). Rapid Sensory Profiling Methods. In A Handbook for Sensory and Consumer-Driven New Product Development (pp. 59–82). Elsevier. https://doi.org/10.1016/b978-0-08-100352-7.00004-x
O’Sullivan, M. G. (2017c). Sensory and Consumer-Led Innovative Product Development – From Inception to the Shelf (Current and Future Methodologies). In A Handbook for Sensory and Consumer-Driven New Product Development (pp. 197–222). Elsevier. https://doi.org/10.1016/b978-0-08-100352-7.00010-5
Paredes López, O., Guevara Lara, F., & Bello Pérez, L. A. (n.d.). La nixtamalización y el valor nutritivo del maíz. Ciencias, 92(092). Retrieved January 4, 2022, from http://www.revistas.unam.mx/index.php/cns/article/view/14831
Riaz, M. N. (2006). Handbook of Food Science, Technology, and Engineering (Yiu H. Hui, Ed.; Vol. 4). Taylor & Francis. https://books.google.com.co/books?id=rTjysvUxB8wC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Riaz, M. N. (2019). Food Extruders. In Handbook of Farm, Dairy and Food Machinery Engineering (pp. 483–497). https://doi.org/10.1016/b978-0-12-814803-7.00019-1
RPubs - Games-Howell Nonparametric Post-Hoc Test. (n.d.). Retrieved January 9, 2022, from https://rpubs.com/aaronsc32/games-howell-test
Saldivar, S. O. S. (2015). Snack Foods: Types and Composition. In Encyclopedia of Food and Health (pp. 13–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00633-4
Sébastien, L., & Thierry, W. (2015). When products are rated according to a single list of atributes. In Analyzing Sensory Data with R (pp. 35–67). CRC Press.
Silva, R. de C. dos S. N. da, Minim, V. P. R., Silva, A. N. da, Peternelli, L. A., & Minim, L. A. Ô. (2014). Optimized Descriptive Profile: How many judges are necessary? Food Quality and Preference, 36, 3–11. https://doi.org/10.1016/j.foodqual.2014.02.011
Smith, K., & Peterson, D. G. (2020). Identification of aroma differences in refined and whole grain extruded maize puffs. Molecules, 25(9), 1–9. https://doi.org/10.3390/molecules25092261
Spinelli, S., & Jaeger, S. R. (2019). What do we know about the sensory drivers of emotions in foods and beverages? Current Opinion in Food Science, 27, 82–89. https://doi.org/10.1016/J.COFS.2019.06.007
Stone, H., Bleibaum, R., & Thomas, H. A. (2012). Chapter 5 - Discrimination Testing. Sensory Evaluation Practices, 167–231. https://doi.org/10.1007/978-1-4419-6488-5
T-test con R. (n.d.). Retrieved January 7, 2022, from https://www.cienciadedatos.net/documentos/12_t-test
W. N. Venables and B. D. Ripley. (2002). Modern Applied Statistics with S (Fourth). Springe. https://www.stats.ox.ac.uk/pub/MASS4/
Wrigley, C., Batey, I., & Miskelly, D. (2017). Grain Quality: The Future is With the Consumer, the Scientist and the Technologist. Cereal Grains: Assessing and Managing Quality: Second Edition, 695–725. https://doi.org/10.1016/B978-0-08-100719-8.00025-5
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 117 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisher.department.spa.fl_str_mv Instituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81510/3/1022366267.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81510/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81510/5/1022366267.2022.pdf.jpg
bitstream.checksum.fl_str_mv cc8b73b35471cf16ababea8e9cf9d52d
8153f7789df02f0a4c9e079953658ab2
52b5a8736450737d39f5eec31d3e475f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089868993626112
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Galindo Jiménez, Rodrigo Alfonsoba641184f73b5a273cccb71053554d94Ayni - Grupo de Investigación en Procesos Agroindustriales2022-06-06T17:52:03Z2022-06-06T17:52:03Z2022-04https://repositorio.unal.edu.co/handle/unal/81510Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, tablasSe evaluó la capacidad de las metodologías Perfil Sensorial Óptimo (ODP) y Check All That Apply (C.A.T.A.), para ser usadas por Comestibles Ricos S.A. para desarrollar productos, usando cinco extruidos de maíz tipo collet, horneados y sazonados por aspersión en dos etapas. Para C.A.T.A. se evaluó agrado general, textura, sabor, emociones y producto ideal, donde el producto ganador se asoció a emociones negativas, pero aun así recibió buenas calificaciones. ODP demostró ser una metodología rápida que diferencia las muestras, a costa de pérdida de consenso y buen uso de la escala. La muestra ganadora fue el producto actual, superando a la competencia y las propuestas de mejora, debido a la ausencia de atributos negativos como terroso y rancio. Se demuestra que las metodologías cumplen el objetivo y pueden mejorar si se modifica el orden de las pruebas. El estudio permite la implementación de nuevas metodologías para el entendimiento del consumidor. (Texto tomado de la fuente)The performance of Optimized Descriptive Profile (ODP) and Check All That Apply (C.A.T.A.) methodologies to develop products were evaluated by Comestibles Ricos S.A., using five corn collet extrudates, baked and in two stages savoring. For C.A.T.A. Overall liking, texture, flavor, emotions, and ideal product were evaluated. Although negative emotions were evoked after tasting the best product received good scores. ODP proved to be a fast methodology that differentiates the samples, but with poor agreement and scale use. The better sample was the current product, overcome the competition and product enhancements, due to the absence of negative characteristics as earthy and rancid. It is shown that the methodologies accomplish the objective, and if the tests order is changed the performance could be improved. The study allows the implementation of new methodologies for understanding the consumerEmpresa Comestibles Ricos S.A.No se publican los datos pero si el consultante lo desea puede solicitarlos rgalindo@unal.edu.do, enviar correo con importancia altaMaestríaMagíster en Ciencia y Tecnología de Alimentos117 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosINDUSTRIA DE REFRIGERIOSEVALUACION SENSORIAL DE ALIMENTOSSnack food industryFood - Sensory evaluationEvaluación Sensorialanálisis multivariantedesarrollo de nuevos productosinvestigación de mercadosPerfil SensorialExtruido de maízAditivos alimentariosSensory evaluationExtruded cornMultivariate analysisSavoringProduct developmentMarket researchAplicación de los métodos Check All That Apply y Perfil Sensorial Óptimo en el desarrollo de un extruido de maíz con sabor a quesoApplication of the Check All That Apply and Optimal Sensory Profile methods in the development of a corn extrudate with cheese flavorTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAguiar, L. A. de, Rodrigues, D. B., Queiroz, V. A. V., Melo, L., & Pineli, L. de L. de O. (2020). Comparison of two rapid descriptive sensory techniques for profiling and screening of drivers of liking of sorghum breads. Food Research International, 131(September 2019), 108999. https://doi.org/10.1016/j.foodres.2020.108999Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2015). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Https://Doi.Org/10.1080/10408398.2013.779568, 56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568Alberto, R., & Turcios, S. (2015). t-Student. Usos y abusos. http://www.medigraphic.com/revmexcardiolANALISIS SENSORIAL. IDENTIFICACION Y SELECCION DE DESCRIPTORES PARA ESTABLECER UN PERFIL SENSORIAL POR UNA APROXIMACION MULTIDIMENSIONAL., (1996).ANÁLISIS SENSORIAL. METODOLOGÍA. DIRECTRICES PARA MONITOREAR EL DESEMPEÑO DE UN PANEL SENSORIAL CUANTITATIVO. (2015). INCONTEC.Ares, G., Barreiro, C., Deliza, R., Giménez, A., & Gámbaro, A. (2010). Application of a check-all-that-apply question to the development of chocolate milk desserts. Journal of Sensory Studies, 25(SUPPL. 1), 67–86. https://doi.org/10.1111/j.1745-459X.2010.00290.xAres, G., & Jaeger, S. R. (2015). Check-all-that-apply (CATA) questions with consumers in practice: Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (pp. 227–245). Elsevier Inc. https://doi.org/10.1533/9781782422587.2.227Bi, J. (2012). A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. Journal of Sensory Studies, 27(2), 87–101. https://doi.org/10.1111/j.1745-459X.2012.00370.xBredie, W. L. P., Mottram, D. S., & Guy, R. C. E. (1998). Aroma Volatiles Generated during Extrusion Cooking of Maize Flour. Journal of Agricultural and Food Chemistry, 46(4), 1479–1487. https://doi.org/10.1021/jf9708857Bruzzone, F., Vidal, L., Antúnez, L., Giménez, A., Deliza, R., & Ares, G. (2015). Comparison of intensity scales and CATA questions in new product development: Sensory characterisation and directions for product reformulation of milk desserts. Food Quality and Preference, 44, 183–193. https://doi.org/10.1016/j.foodqual.2015.04.017Chang, C., & Lin, J. (2017). Comparison between collet and cooking extrusions on physicochemical properties of whole grain barley. Journal of Food Process Engineering, 40(3), e12480. https://doi.org/10.1111/JFPE.12480Corvalán, C., Correa, T., Reyes, M., & Paraje, G. (2021). Impacto de la Ley chilena de etiquetado en el sector productivo alimentario. In Impacto de la Ley chilena de etiquetado en el sector productivo alimentario. FAO e INTA. https://doi.org/10.4060/cb3298esCultivo de Maíz (1st ed.). (1998). Centro para el Desarrollo Agropecuario y Forestal.David, V. (2017). Structure as Gradients of Objects/Variables. Data Treatment in Environmental Sciences, 57–94. https://doi.org/10.1016/B978-1-78548-239-7.50004-8Dehlholm, C. (2015a). Free multiple sorting as a sensory profiling technique. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.2.187Dehlholm, C. (2015b). Free multiple sorting as a sensory profiling technique. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (pp. 187–196). Elsevier Inc. https://doi.org/10.1533/9781782422587.2.187Dehlholm, C., Brockhoff, P. B., Meinert, L., Aaslyng, M. D., & Bredie, W. L. P. (2012). Rapid descriptive sensory methods - Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference, 26(2), 267–277. https://doi.org/10.1016/j.foodqual.2012.02.012Delarue, J. (2015a). Flash Profile, its evolution and uses in sensory and consumer science. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.2.121Delarue, J. (2015b). The use of rapid sensory methods in R&D and research: An introduction. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research (Issue 2012). Woodhead Publishing Limited. https://doi.org/10.1533/9781782422587.1.3Edmund W. Lusas, L. W. R. (2001). Snack Foods Processing (Vol. 1). CRC Press.Escofier, B., & Pagès, J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics & Data Analysis, 18(1), 121–140. https://doi.org/10.1016/0167-9473(94)90135-XEveritt, Brian., & Howell, D. C. (2005). Encyclopedia of statistics in behavioral science. John Wiley & Sons.Godin, S. (2009). Purple cow : transform your business by being remarkable. https://www.panamericana.com.co/purple-cow-transform-your-business-by-being-remarkable-615749/pGranado. Paliwal. (2000). EL MAÍZ EN LOS TRÓPICOS: Mejoramiento y producción. In Fao (p. 10). http://www.fao.org/3/X7650S/x7650s02.htm#P0_0Grygorczyk, A., Lesschaeve, I., Corredig, M., & Duizer, L. (2013). Extraction of consumer texture preferences for yogurt: Comparison of the preferred attribute elicitation method to conventional profiling. Food Quality and Preference, 27(2), 215–222. https://doi.org/10.1016/j.foodqual.2012.02.017Guiné, F., & Correia, P. M. D. R. (2013). Emerging Technologies for Food Quality and Food Safety Evaluation. In Physicochemical Aspects of Food Engineering and Processing. http://www.ucd.ie/sun/Hanify, D. E. (2001). Snack Seasonings Application.Hess, J. M., Jonnalagadda, S. S., & Slavin, J. L. (2016). What Is a Snack, Why Do We Snack, and How Can We Choose Better Snacks? A Review of the Definitions of Snacking, Motivations to Snack, Contributions to Dietary Intake, and Recommendations for Improvement. Advances in Nutrition, 7(3), 466–475. https://doi.org/10.3945/AN.115.009571GTC 232:2020 Análisis sensorial. metodología. guía general para el establecimiento de un perfil sensorial, (2020) (testimony of ICONTEC).Kermit, M., & Lengard, V. (2005). Assessing the performance of a sensory panel–panellist monitoring and tracking. Journal of Chemometrics, 19(3), 154–161. https://doi.org/10.1002/CEM.918Lawless, H. T., & Heymann, H. (2010a). Data Relationships and Multivariate Applications. 433–449. https://doi.org/10.1007/978-1-4419-6488-5_18Lawless, H. T., & Heymann, H. (2010b). Descriptive Analysis (pp. 227–257). https://doi.org/10.1007/978-1-4419-6488-5_10Lawless, H. T., & Heymann, H. (2010c). Principles of Good Practice. 57–77. https://doi.org/10.1007/978-1-4419-6488-5_3Lawless, H. T., & Heymann, H. (2010d). Scaling. In Sensory Evaluation of Food (Vol. 0, Issue i, pp. 149–177). Springer New York. https://doi.org/10.1007/978-1-4419-6488-5_7Lawless, H. T., & Heymann, H. (2010e). Strategic Research. 451–471. https://doi.org/10.1007/978-1-4419-6488-5_19le Dien, S., & Pagès, J. (2003). Hierarchical Multiple Factor Analysis: application to the comparison of sensory profiles. Food Quality and Preference, 14(5–6), 397–403. https://doi.org/10.1016/S0950-3293(03)00027-2Lê, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software., 25(1), 1–18. http://factominer.free.fr/index.htmlLê, S., & Worch, T. (2014). Analyzing sensory data with R. In Analyzing Sensory Data with R. https://doi.org/10.1201/b17502Lê, Sébastien, Husson, F. (2008). SensoMineR: a package for sensory data analysis. Journal of Sensory Studies. 23 (1) (pp. 14–25). http://sensominer.free.fr/Lê Sébastien, & Worch Thierry. (2015). When panelists rate products according to a single list of attributes. In Analyzing Sensory Data with R (pp. 5–32). CRC Press.Liu, J., Bredie, W. L. P., Sherman, E., Harbertson, J. F., & Heymann, H. (2018). Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile. Food Research International, 106(January), 892–900. https://doi.org/10.1016/j.foodres.2018.01.062López, R. (2015). El secreto de la innovación exitosa – Nielsen. https://www.nielsen.com/co/es/insights/article/2015/secreto-innovacion-exitosa/López, R. (2017). Innovación disruptiva como motor de crecimiento – Nielsen. https://www.nielsen.com/co/es/insights/article/2017/innovacion-disruptiva-como-motor-de-crecimiento/Mello, L. S. S., Almeida, E. L., & Melo, L. (2019). Discrimination of sensory attributes by trained assessors and consumers in semi-sweet hard dough biscuits and their drivers of liking and disliking. Food Research International, 122, 599–609. https://doi.org/10.1016/j.foodres.2019.01.031Menis-Henrique, M. E. C., Janzantti, N. S., Monteiro, M., & Conti-Silva, A. C. (2020). Physical and sensory characteristics of cheese-flavored expanded snacks obtained using butyric acid and cysteine as aroma precursors: Effects of extrusion temperature and sunflower oil content. LWT, 122, 109001. https://doi.org/10.1016/J.LWT.2019.109001Meyners, M., & Castura, J. (2014). Check-All-That-Apply Questions. Novel Techniques in Sensory Characterization and Consumer Profiling, September, 271–306. https://doi.org/10.1201/b16853-12Meyners, M., Castura, J. C., & Carr, B. T. (2013). Existing and new approaches for the analysis of CATA data. Food Quality and Preference, 30(2), 309–319. https://doi.org/10.1016/j.foodqual.2013.06.010Minim, Valéria & Simiqueli, Andréa & Moraes, Liliane & Gomide, Aline & Minim, Luis. (2012). Optimized Descriptive Profile: A rapid methodology for sensory description. Food Quality and Preference, 24(1), 190–200. https://doi.org/10.1016/j.foodqual.2011.10.014Murray, J. M., Delahunty, C. M., & Baxter, I. A. (2001). Descriptive sensory analysis: Past, present and future. In Food Research International (Vol. 34, Issue 6, pp. 461–471). Elsevier Ltd. https://doi.org/10.1016/S0963-9969(01)00070-9O’Sullivan, M. G. (2017a). A Handbook for Sensory and Consumer-Driven New Product Development. In A Handbook for Sensory and Consumer-Driven New Product Development. Elsevier. https://doi.org/10.1016/c2014-0-03843-9O’Sullivan, M. G. (2017b). Rapid Sensory Profiling Methods. In A Handbook for Sensory and Consumer-Driven New Product Development (pp. 59–82). Elsevier. https://doi.org/10.1016/b978-0-08-100352-7.00004-xO’Sullivan, M. G. (2017c). Sensory and Consumer-Led Innovative Product Development – From Inception to the Shelf (Current and Future Methodologies). In A Handbook for Sensory and Consumer-Driven New Product Development (pp. 197–222). Elsevier. https://doi.org/10.1016/b978-0-08-100352-7.00010-5Paredes López, O., Guevara Lara, F., & Bello Pérez, L. A. (n.d.). La nixtamalización y el valor nutritivo del maíz. Ciencias, 92(092). Retrieved January 4, 2022, from http://www.revistas.unam.mx/index.php/cns/article/view/14831Riaz, M. N. (2006). Handbook of Food Science, Technology, and Engineering (Yiu H. Hui, Ed.; Vol. 4). Taylor & Francis. https://books.google.com.co/books?id=rTjysvUxB8wC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=falseRiaz, M. N. (2019). Food Extruders. In Handbook of Farm, Dairy and Food Machinery Engineering (pp. 483–497). https://doi.org/10.1016/b978-0-12-814803-7.00019-1RPubs - Games-Howell Nonparametric Post-Hoc Test. (n.d.). Retrieved January 9, 2022, from https://rpubs.com/aaronsc32/games-howell-testSaldivar, S. O. S. (2015). Snack Foods: Types and Composition. In Encyclopedia of Food and Health (pp. 13–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00633-4Sébastien, L., & Thierry, W. (2015). When products are rated according to a single list of atributes. In Analyzing Sensory Data with R (pp. 35–67). CRC Press.Silva, R. de C. dos S. N. da, Minim, V. P. R., Silva, A. N. da, Peternelli, L. A., & Minim, L. A. Ô. (2014). Optimized Descriptive Profile: How many judges are necessary? Food Quality and Preference, 36, 3–11. https://doi.org/10.1016/j.foodqual.2014.02.011Smith, K., & Peterson, D. G. (2020). Identification of aroma differences in refined and whole grain extruded maize puffs. Molecules, 25(9), 1–9. https://doi.org/10.3390/molecules25092261Spinelli, S., & Jaeger, S. R. (2019). What do we know about the sensory drivers of emotions in foods and beverages? Current Opinion in Food Science, 27, 82–89. https://doi.org/10.1016/J.COFS.2019.06.007Stone, H., Bleibaum, R., & Thomas, H. A. (2012). Chapter 5 - Discrimination Testing. Sensory Evaluation Practices, 167–231. https://doi.org/10.1007/978-1-4419-6488-5T-test con R. (n.d.). Retrieved January 7, 2022, from https://www.cienciadedatos.net/documentos/12_t-testW. N. Venables and B. D. Ripley. (2002). Modern Applied Statistics with S (Fourth). Springe. https://www.stats.ox.ac.uk/pub/MASS4/Wrigley, C., Batey, I., & Miskelly, D. (2017). Grain Quality: The Future is With the Consumer, the Scientist and the Technologist. Cereal Grains: Assessing and Managing Quality: Second Edition, 695–725. https://doi.org/10.1016/B978-0-08-100719-8.00025-5Comestibles Ricos S.A.BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesORIGINAL1022366267.2022.pdf1022366267.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf2581586https://repositorio.unal.edu.co/bitstream/unal/81510/3/1022366267.2022.pdfcc8b73b35471cf16ababea8e9cf9d52dMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81510/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1022366267.2022.pdf.jpg1022366267.2022.pdf.jpgGenerated Thumbnailimage/jpeg5048https://repositorio.unal.edu.co/bitstream/unal/81510/5/1022366267.2022.pdf.jpg52b5a8736450737d39f5eec31d3e475fMD55unal/81510oai:repositorio.unal.edu.co:unal/815102023-08-04 23:04:45.728Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK