On Reliability in a Multicomponent Stress-Strength Model with Power Lindley Distribution

In this paper  we study the reliability of a multicomponent stress-strength model assuming that the components follow power Lindley model.  The maximum likelihood estimate of the reliability parameter and its asymptotic confidence interval are obtained. Applying the parametric Bootstrap technique, i...

Full description

Autores:
Pak, Abbas
Gupta, Arjun Kumar
Khoolenjani, Nayereh Bagheri
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66488
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66488
http://bdigital.unal.edu.co/67516/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Inferencia bayesiana
intervalo de conanza Bootstrap
estimaci ón de máxima verosimilitud
modelo de resistencia al estrés
Bayesian inference
Bootstrap condence interval
Maximum likelihood estimation
Stress-strength model
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper  we study the reliability of a multicomponent stress-strength model assuming that the components follow power Lindley model.  The maximum likelihood estimate of the reliability parameter and its asymptotic confidence interval are obtained. Applying the parametric Bootstrap technique, interval estimation of the reliability is presented.  Also, the Bayes estimate and highest posterior density credible interval of the reliability parameter are derived using suitable priors on the parameters. Because there is no closed form for the Bayes estimate, we use the Markov Chain Monte Carlo method to obtain approximate Bayes  estimate of the reliability. To evaluate the performances of different procedures,  simulation studies are conducted and an example of real data sets is provided.