Intelligent Control Architecture For Motion Learning in Robotics Applications

Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this...

Full description

Autores:
Beltrán Pardo, Jaime Eduardo
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/21929
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/21929
http://bdigital.unal.edu.co/12935/
Palabra clave:
0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Robot
Platform
Hardware
Architecture
Control
Artificial intelligence
Learning
Fuzzy
Genetic algorithm
Neural network
Plataforma
Arquitectura
Inteligencia artificial
Aprendizaje
Difuso
Red neural
Algoritmo genetico
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_612ef2a890f4f9962e5aca81123b4a81
oai_identifier_str oai:repositorio.unal.edu.co:unal/21929
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Intelligent Control Architecture For Motion Learning in Robotics Applications
title Intelligent Control Architecture For Motion Learning in Robotics Applications
spellingShingle Intelligent Control Architecture For Motion Learning in Robotics Applications
0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Robot
Platform
Hardware
Architecture
Control
Artificial intelligence
Learning
Fuzzy
Genetic algorithm
Neural network
Plataforma
Arquitectura
Inteligencia artificial
Aprendizaje
Difuso
Red neural
Algoritmo genetico
title_short Intelligent Control Architecture For Motion Learning in Robotics Applications
title_full Intelligent Control Architecture For Motion Learning in Robotics Applications
title_fullStr Intelligent Control Architecture For Motion Learning in Robotics Applications
title_full_unstemmed Intelligent Control Architecture For Motion Learning in Robotics Applications
title_sort Intelligent Control Architecture For Motion Learning in Robotics Applications
dc.creator.fl_str_mv Beltrán Pardo, Jaime Eduardo
dc.contributor.author.spa.fl_str_mv Beltrán Pardo, Jaime Eduardo
dc.contributor.spa.fl_str_mv Gómez Perdomo, Jonatan
dc.subject.ddc.spa.fl_str_mv 0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
topic 0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Robot
Platform
Hardware
Architecture
Control
Artificial intelligence
Learning
Fuzzy
Genetic algorithm
Neural network
Plataforma
Arquitectura
Inteligencia artificial
Aprendizaje
Difuso
Red neural
Algoritmo genetico
dc.subject.proposal.spa.fl_str_mv Robot
Platform
Hardware
Architecture
Control
Artificial intelligence
Learning
Fuzzy
Genetic algorithm
Neural network
Plataforma
Arquitectura
Inteligencia artificial
Aprendizaje
Difuso
Red neural
Algoritmo genetico
description Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this purpose, a simulation environment and a set of simulated robots were created in order to test the control architecture. The robots were constructed with a simple geometry using links and joints. A fuzzy controller was designed to control the motors position. The control architecture design was based on subsumption and some AI methods that allowed the simulated robot to find and learn a set of motions based on targets. These methods were a genetic algorithm (GA) and a set of artificial neural networks (ANN). The GA was used to find the adequate robot movements for an specific target, while the ANNs were used to learn and perform such movements eficiently. The advantage of this approach was that, no knowledge of the environment or robot model is needed. The robot learns how to move its own body in order to achieve a determined task. In addition, the learned motions can be used to achieve complex movement execution in a further research. A set of experiments were performed in the simulator in order to show the performance of the control architecture in every one of its stages. The results showed that the proposed architecture was able to learn and perform basic movements of a robot independently of the environment or the robot defined structure.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-25T19:56:22Z
dc.date.available.spa.fl_str_mv 2019-06-25T19:56:22Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/21929
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/12935/
url https://repositorio.unal.edu.co/handle/unal/21929
http://bdigital.unal.edu.co/12935/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas
Ingeniería de Sistemas
dc.relation.references.spa.fl_str_mv Beltrán Pardo, Jaime Eduardo (2013) Intelligent Control Architecture For Motion Learning in Robotics Applications. Maestría thesis, Universidad Nacional de Colombia.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/21929/1/300102.2013.pdf
https://repositorio.unal.edu.co/bitstream/unal/21929/2/300102.2013.pdf.jpg
bitstream.checksum.fl_str_mv 749e7609d671665ffbde27b46ad70d42
ac9de1f690e85b2305a9fbf3c3eb0acd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090186655531008
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Perdomo, JonatanBeltrán Pardo, Jaime Eduardo373bafac-aacf-4045-8aa0-f4bef55367773002019-06-25T19:56:22Z2019-06-25T19:56:22Z2013https://repositorio.unal.edu.co/handle/unal/21929http://bdigital.unal.edu.co/12935/Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this purpose, a simulation environment and a set of simulated robots were created in order to test the control architecture. The robots were constructed with a simple geometry using links and joints. A fuzzy controller was designed to control the motors position. The control architecture design was based on subsumption and some AI methods that allowed the simulated robot to find and learn a set of motions based on targets. These methods were a genetic algorithm (GA) and a set of artificial neural networks (ANN). The GA was used to find the adequate robot movements for an specific target, while the ANNs were used to learn and perform such movements eficiently. The advantage of this approach was that, no knowledge of the environment or robot model is needed. The robot learns how to move its own body in order to achieve a determined task. In addition, the learned motions can be used to achieve complex movement execution in a further research. A set of experiments were performed in the simulator in order to show the performance of the control architecture in every one of its stages. The results showed that the proposed architecture was able to learn and perform basic movements of a robot independently of the environment or the robot defined structure.En esta Tesis, se investiga cómo las habilidades de movimiento en un robot, pueden ser aprendidas de forma automática. El objetivo principal fue dise~nar y probar una arquitectura de control capaz de aprender a mover adecuadamente diferentes robots simulados, mediante el uso de métodos de Inteligencia Artificial (IA). Con este propósito, se dise~no un entorno de simulación y un conjunto de robots simulados con el fin de probar la arquitectura de control. Los robots fueron construidos con una geometría muy simple utilizando enlaces y uniones (actuadores), y un controlador difuso fue dise~nado para controlar la posición de los actuadores. El dise~no de la arquitectura de control se basa en el concepto de subsunción (subsumption) y algunos métodos de IA que permiten al robot simulado determinar y aprender una serie de movimientos basados en objetivos. Los métodos usados son un algoritmo genético (GA) y un conjunto de redes neuronales artificiales (ANN). El GA se utiliza para encontrar los movimientos adecuados que el robot debe realizar para alcanzar un objetico específico, mientras que las redes neuronales se utilizan para aprender y realizar estos movimientos de forma eficiente. La ventaja de este enfoque es que, no es necesario conocer el entorno o tener un modelo del robot, sino que el robot aprende cómo mover su propio cuerpo en un ambiente definido con el fin de lograr una tarea determinada. Además, en una posterior investigación, es posible utilizar los movimientos aprendidos para realizar movimientos o tareas más complejas con los robots. Un conjunto de experimentos se llevaron a cabo en el simulador para mostrar el desempe~no de la arquitectura de control en cada una de sus etapas. Los resultados muestran que la arquitectura propuesta es capaz de aprender y realizar los movimientos del robot independientemente del medio ambiente o la estructura definida del robot.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasBeltrán Pardo, Jaime Eduardo (2013) Intelligent Control Architecture For Motion Learning in Robotics Applications. Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works62 Ingeniería y operaciones afines / EngineeringRobotPlatformHardwareArchitectureControlArtificial intelligenceLearningFuzzyGenetic algorithmNeural networkPlataformaArquitecturaInteligencia artificialAprendizajeDifusoRed neuralAlgoritmo geneticoIntelligent Control Architecture For Motion Learning in Robotics ApplicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL300102.2013.pdfapplication/pdf1949288https://repositorio.unal.edu.co/bitstream/unal/21929/1/300102.2013.pdf749e7609d671665ffbde27b46ad70d42MD51THUMBNAIL300102.2013.pdf.jpg300102.2013.pdf.jpgGenerated Thumbnailimage/jpeg4356https://repositorio.unal.edu.co/bitstream/unal/21929/2/300102.2013.pdf.jpgac9de1f690e85b2305a9fbf3c3eb0acdMD52unal/21929oai:repositorio.unal.edu.co:unal/219292022-11-02 18:55:24.801Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co