Intelligent Control Architecture For Motion Learning in Robotics Applications
Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this...
- Autores:
-
Beltrán Pardo, Jaime Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21929
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21929
http://bdigital.unal.edu.co/12935/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Robot
Platform
Hardware
Architecture
Control
Artificial intelligence
Learning
Fuzzy
Genetic algorithm
Neural network
Plataforma
Arquitectura
Inteligencia artificial
Aprendizaje
Difuso
Red neural
Algoritmo genetico
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_612ef2a890f4f9962e5aca81123b4a81 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21929 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
title |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
spellingShingle |
Intelligent Control Architecture For Motion Learning in Robotics Applications 0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Robot Platform Hardware Architecture Control Artificial intelligence Learning Fuzzy Genetic algorithm Neural network Plataforma Arquitectura Inteligencia artificial Aprendizaje Difuso Red neural Algoritmo genetico |
title_short |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
title_full |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
title_fullStr |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
title_full_unstemmed |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
title_sort |
Intelligent Control Architecture For Motion Learning in Robotics Applications |
dc.creator.fl_str_mv |
Beltrán Pardo, Jaime Eduardo |
dc.contributor.author.spa.fl_str_mv |
Beltrán Pardo, Jaime Eduardo |
dc.contributor.spa.fl_str_mv |
Gómez Perdomo, Jonatan |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Robot Platform Hardware Architecture Control Artificial intelligence Learning Fuzzy Genetic algorithm Neural network Plataforma Arquitectura Inteligencia artificial Aprendizaje Difuso Red neural Algoritmo genetico |
dc.subject.proposal.spa.fl_str_mv |
Robot Platform Hardware Architecture Control Artificial intelligence Learning Fuzzy Genetic algorithm Neural network Plataforma Arquitectura Inteligencia artificial Aprendizaje Difuso Red neural Algoritmo genetico |
description |
Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this purpose, a simulation environment and a set of simulated robots were created in order to test the control architecture. The robots were constructed with a simple geometry using links and joints. A fuzzy controller was designed to control the motors position. The control architecture design was based on subsumption and some AI methods that allowed the simulated robot to find and learn a set of motions based on targets. These methods were a genetic algorithm (GA) and a set of artificial neural networks (ANN). The GA was used to find the adequate robot movements for an specific target, while the ANNs were used to learn and perform such movements eficiently. The advantage of this approach was that, no knowledge of the environment or robot model is needed. The robot learns how to move its own body in order to achieve a determined task. In addition, the learned motions can be used to achieve complex movement execution in a further research. A set of experiments were performed in the simulator in order to show the performance of the control architecture in every one of its stages. The results showed that the proposed architecture was able to learn and perform basic movements of a robot independently of the environment or the robot defined structure. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T19:56:22Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T19:56:22Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21929 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/12935/ |
url |
https://repositorio.unal.edu.co/handle/unal/21929 http://bdigital.unal.edu.co/12935/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Beltrán Pardo, Jaime Eduardo (2013) Intelligent Control Architecture For Motion Learning in Robotics Applications. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21929/1/300102.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/21929/2/300102.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
749e7609d671665ffbde27b46ad70d42 ac9de1f690e85b2305a9fbf3c3eb0acd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090186655531008 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Perdomo, JonatanBeltrán Pardo, Jaime Eduardo373bafac-aacf-4045-8aa0-f4bef55367773002019-06-25T19:56:22Z2019-06-25T19:56:22Z2013https://repositorio.unal.edu.co/handle/unal/21929http://bdigital.unal.edu.co/12935/Abstract: The investigation of this Thesis was focused on how motion abilities can be learned by a robot. The main goal was to design and test a control architecture capable of learning how to properly move different simulated robots, through the use of Arti�cial Intelligence (AI) methods. With this purpose, a simulation environment and a set of simulated robots were created in order to test the control architecture. The robots were constructed with a simple geometry using links and joints. A fuzzy controller was designed to control the motors position. The control architecture design was based on subsumption and some AI methods that allowed the simulated robot to find and learn a set of motions based on targets. These methods were a genetic algorithm (GA) and a set of artificial neural networks (ANN). The GA was used to find the adequate robot movements for an specific target, while the ANNs were used to learn and perform such movements eficiently. The advantage of this approach was that, no knowledge of the environment or robot model is needed. The robot learns how to move its own body in order to achieve a determined task. In addition, the learned motions can be used to achieve complex movement execution in a further research. A set of experiments were performed in the simulator in order to show the performance of the control architecture in every one of its stages. The results showed that the proposed architecture was able to learn and perform basic movements of a robot independently of the environment or the robot defined structure.En esta Tesis, se investiga cómo las habilidades de movimiento en un robot, pueden ser aprendidas de forma automática. El objetivo principal fue dise~nar y probar una arquitectura de control capaz de aprender a mover adecuadamente diferentes robots simulados, mediante el uso de métodos de Inteligencia Artificial (IA). Con este propósito, se dise~no un entorno de simulación y un conjunto de robots simulados con el fin de probar la arquitectura de control. Los robots fueron construidos con una geometría muy simple utilizando enlaces y uniones (actuadores), y un controlador difuso fue dise~nado para controlar la posición de los actuadores. El dise~no de la arquitectura de control se basa en el concepto de subsunción (subsumption) y algunos métodos de IA que permiten al robot simulado determinar y aprender una serie de movimientos basados en objetivos. Los métodos usados son un algoritmo genético (GA) y un conjunto de redes neuronales artificiales (ANN). El GA se utiliza para encontrar los movimientos adecuados que el robot debe realizar para alcanzar un objetico específico, mientras que las redes neuronales se utilizan para aprender y realizar estos movimientos de forma eficiente. La ventaja de este enfoque es que, no es necesario conocer el entorno o tener un modelo del robot, sino que el robot aprende cómo mover su propio cuerpo en un ambiente definido con el fin de lograr una tarea determinada. Además, en una posterior investigación, es posible utilizar los movimientos aprendidos para realizar movimientos o tareas más complejas con los robots. Un conjunto de experimentos se llevaron a cabo en el simulador para mostrar el desempe~no de la arquitectura de control en cada una de sus etapas. Los resultados muestran que la arquitectura propuesta es capaz de aprender y realizar los movimientos del robot independientemente del medio ambiente o la estructura definida del robot.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasBeltrán Pardo, Jaime Eduardo (2013) Intelligent Control Architecture For Motion Learning in Robotics Applications. Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works62 Ingeniería y operaciones afines / EngineeringRobotPlatformHardwareArchitectureControlArtificial intelligenceLearningFuzzyGenetic algorithmNeural networkPlataformaArquitecturaInteligencia artificialAprendizajeDifusoRed neuralAlgoritmo geneticoIntelligent Control Architecture For Motion Learning in Robotics ApplicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL300102.2013.pdfapplication/pdf1949288https://repositorio.unal.edu.co/bitstream/unal/21929/1/300102.2013.pdf749e7609d671665ffbde27b46ad70d42MD51THUMBNAIL300102.2013.pdf.jpg300102.2013.pdf.jpgGenerated Thumbnailimage/jpeg4356https://repositorio.unal.edu.co/bitstream/unal/21929/2/300102.2013.pdf.jpgac9de1f690e85b2305a9fbf3c3eb0acdMD52unal/21929oai:repositorio.unal.edu.co:unal/219292022-11-02 18:55:24.801Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |