Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria
ilustraciones, fotografías, graficas, tablas
- Autores:
-
Ballesta Santana, Sandra Milena
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82201
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
COLORANTES
Coloring matter
Carotenoides
Ahuyama
Extracción verde
Ultrasonido
Estabilidad
Carotenoids
Pumpkin
Squash
Green extraction
Ultrasound
Stability
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_544d534a79f3e8ee366e9e33a51d5400 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82201 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
dc.title.translated.eng.fl_str_mv |
Green extraction of carotenoids from pumpkin (Cucurbita moschata Duch) using vegetable oil for its addition as a natural colorant in a food matrix |
title |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
spellingShingle |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria 660 - Ingeniería química::664 - Tecnología de alimentos COLORANTES Coloring matter Carotenoides Ahuyama Extracción verde Ultrasonido Estabilidad Carotenoids Pumpkin Squash Green extraction Ultrasound Stability |
title_short |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
title_full |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
title_fullStr |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
title_full_unstemmed |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
title_sort |
Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria |
dc.creator.fl_str_mv |
Ballesta Santana, Sandra Milena |
dc.contributor.advisor.none.fl_str_mv |
Fuenmayor Bobadilla, Carlos Alberto Díaz Moreno, Amanda Consuelo |
dc.contributor.author.none.fl_str_mv |
Ballesta Santana, Sandra Milena |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioalimentos Aseguramiento de la Calidad de Alimentos y Desarrollo de Nuevos Productos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos COLORANTES Coloring matter Carotenoides Ahuyama Extracción verde Ultrasonido Estabilidad Carotenoids Pumpkin Squash Green extraction Ultrasound Stability |
dc.subject.lemb.spa.fl_str_mv |
COLORANTES |
dc.subject.lemb.eng.fl_str_mv |
Coloring matter |
dc.subject.proposal.spa.fl_str_mv |
Carotenoides Ahuyama Extracción verde Ultrasonido Estabilidad |
dc.subject.proposal.eng.fl_str_mv |
Carotenoids Pumpkin Squash Green extraction Ultrasound Stability |
description |
ilustraciones, fotografías, graficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-30T18:45:01Z |
dc.date.available.none.fl_str_mv |
2022-08-30T18:45:01Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82201 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82201 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Agronet. (2018). Reporte: Área, Producción y Rendimiento Nacional por Cultivo: Ahuyama. https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1 Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., y di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458–2463. https://doi.org/10.1111/ijfs.12602 American Oil Chemists’ Society. (2017). Official Methods and Recommended Practices of the AOCS (7th ed.). Annisa, A., Suryono, S., Suseno, J., y Kurniawati, R. (2018). Ultrasound-assisted extraction optimization of phenolic compounds from Psidium guajava L. using artificial neural network-genetic algorithm Related content The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava). Journal of Physics: Conference Series, 1025. https://doi.org/10.1088/1742-6596/1025/1/012020 AOAC. (2012). Official Method of Analysis: Association of Analytical Chemists (G. Latimer, Ed.; 19th ed.). AOAC International. Assous, M. T. M., Saad, E. M. S., & Dyab, A. S. (2014). Enhancement of quality attributes of canned pumpkin and pineapple. Annals of Agricultural Sciences, 59(1), 9–15. https://doi.org/10.1016/J.AOAS.2014.06.002 Azizah, A. H., Wee, K. C., Azizah, O., y Azizah, M. (2009). Effect of boiling and stir frying on total phenolics, carotenoids and radical scavening of pumpkin Cucurbita moschata. International Food Research Journal, 16, 45–51. Baiano, A., y del Nobile, M. A. (2015). Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053–2068. https://doi.org/10.1080/10408398.2013.812059 Barreiro, J., y Sandoval, A. (2002). Operaciones de conservación de alimentos por bajas temperaturas (Equinoccio, Ed.). https://www.researchgate.net/publication/299461004_Operaciones_de_Conservacion_de_Alimentos_por_Bajas_Temperaturas Bechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., y Boy, E. (2015). Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil. Journal of Food Composition and Analysis, 44, 36–44. https://doi.org/10.1016/j.jfca.2015.06.002 Becker, D. (2016). Color Measurement. In Color trends and selection for product design: every color sells a story (1st ed.). Plastics Design Library. Bergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L., y Marchetti, N. (2018). HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “delica” (Cucurbita máxima) and “violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules, 23(11). https://doi.org/10.3390/molecules23112791 Boon, C. S., McClements, D. J., Weiss, J., y Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–532. https://doi.org/10.1080/10408390802565889 Carocho, M., Morales, P., y Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. In Trends in Food Science and Technology (Vol. 45, Issue 2, pp. 284–295). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2015.06.007 Cásseres, E. (1981). Producción de hortalizas (IICA, Ed.; 3rd ed.). Catalán, L. F. (2016). Extracción y caracterización de β-caroteno obtenido de la cáscara de banano (Musa paradisiaca L.) evaluando el rendimiento de tres diferentes solventes de distinta polaridad para su utilización como colorante natural a escala laboratorio. Universidad de San Carlos de Guatemala. Chemat, F., Fabiano-Tixier, A. S., Vian, M. A., Allaf, T., y Vorobiev, E. (2015). Solvent-free extraction of food and natural products. In TrAC - Trends in Analytical Chemistry (Vol. 71, pp. 157–168). Elsevier B.V. https://doi.org/10.1016/j.trac.2015.02.021 Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., y Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. In Ultrasonics Sonochemistry (Vol. 34, pp. 540–560). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2016.06.035 Chemat, F., Vian, M. A., y Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615 Chuyen, H. v., Nguyen, M. H., Roach, P. D., Golding, J. B., y Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), 189–196. https://doi.org/10.1002/fsn3.546 Corbu, A. R., Rotaru, A., y Nour, V. (2019). Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. Journal of Thermal Analysis and Calorimetry, 142(2), 735–747. https://doi.org/10.1007/s10973-019-08875-5 de Carvalho, L. M. J., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C. L., Vieira, A. C. R. A., y Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040 Delgado-Vargas, F., Jiménez, A. R., Paredes-López, O., y Francis, F. J. (2012). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289. https://doi.org/10.1080/10408690091189257 Demiray, E., Tulek, Y., y Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT - Food Science and Technology, 50(1), 172–176. https://doi.org/10.1016/j.lwt.2012.06.001 Departamento Nacional de Planeación. (2016, April). Pérdida y desperdicio de alimentos en Colombia - Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdf FDA. (2010). Overview of Food Ingredients, Additives y Colors | FDA. https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors Freedman, B. (2021). Gourd Family (Cucurbitaceae). The Gale Encyclopedia of Science. https://www.encyclopedia.com/science-and-technology/biographies/genetics-and-genetic-engineering-biographies/cucurbitaceae Gajic, I. M. S., Savic, I. M., Gajic, D. G., y Dosic, A. (2021). Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules, 11(2), 1–14. https://doi.org/10.3390/biom11020225 García-Pacheco, Y. E., Prieto-Tapias, M. J., y Fuenmayor, C. A. (2016). Cinética, modelación y pérdidas de carotenoides para el secado de ahuyama (Cucurbita moschata) en cubos. Agronomía Colombiana, 32, S57-S576. https://doi.org/10.15446/agron.colomb.v34n1supl.58382 Gerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E., y Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241(5), 683–695. Ghosh, S., Sarkar, T., Das, A., Chakraborty, R., (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT – Food science and technology. V: 153 (1-12). doi.org/10.1016/j.lwt.2021.112527 González Cárdenas, I. A. (2010). Caracterización química del color de diferentes variedades de guayaba (Psidium guajava L.) colombiana. Tesis, 84. Goula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009 Goula, A. M., Ververi, M., Adamopoulou, A., y Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022 Gouveia de Souza, A., Oliveira Santos, J. C., Conceição, M. M., Dantas Silva, M. C., y Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21(02), 265–273. Grant, A., y Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. In Journal of Food Protection (Vol. 80, Issue 4, pp. 540–544). International Association for Food Protection. https://doi.org/10.4315/0362-028X.JFP-16-146 Guiné, R. P. F., Pinho, S., y Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita máxima). Food and Bioproducts Processing, 89(4), 422–428. https://doi.org/10.1016/j.fbp.2010.09.001 Häckl, K., y Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie, 21(6), 572–580. https://doi.org/10.1016/j.crci.2018.03.010 Halim, H. H., y Thoo, Y. Y. (2018). Effect of ultrasound treatment on oxidative stability of sunflower oil and palm oil. In Article in International Food Research Journal. http://www.ifrj.upm.edu.my Handayani, A. D., Sutrisno, Indraswati, N., y Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresource Technology, 99(10), 4414–4419. https://doi.org/10.1016/j.biortech.2007.08.028 Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., y Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029 Hooshmand, H., Shabanpour, B., Moosavi-Nasab, M., y Golmakani, M. T. (2017). Optimization of carotenoids extraction from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using organic solvents and vegetable oils. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13171 ICBF. (2005). Encuesta Nacional de la Situación Nutricional en Colombia. Itle, R. A., y Kabelka, E. A. (2009). Correlation Between Lab Color Space Values and Carotenoid Content in Pumpkins and Squash (Cucurbita spp.). HortScience, 44(3), 633–637. Jacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., y Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039 Jones, S. T., Aryana, K. J., y Losso, J. N. (2005). Storage stability of lutein during ripening of cheddar cheese. Journal of Dairy Science, 88(5), 1661–1670. doi.org/10.3168/jds.S0022-0302(05)72838-1 Kaur, P., Elsayed, A., Subramanin, J., Singh, A. (2021). Encapsulation of carotenoids with sucrose by co-crystallization: Physicochemical properties, characterization and thermal stability of pigments. LWT – Food science and technology. 140, 110810, 1-10 https://doi.org/10.1016/j.lwt.2020.110810 Kim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., y Oh, Y. K. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. In Bioresource Technology (Vol. 199, pp. 300–310). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2015.08.107 Kim, S., Park, J.-B., y Hwang, I.-K. (2002). Quality Attributes of Various Varieties of Korean Red Pepper Powders (Capsicum annuum L.) and Color Stability During Sunlight Exposure. 67. Konica Minolta. (2014). Entendiendo El Espacio de Color CIE L*A*B* - Konica Minolta Sensing. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/ Kourouma, V., Mu, T.-H., Zhang, M., y Sun, H.-N. (2019). Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT, 104, 134–141. https://doi.org/10.1016/J.LWT.2019.01.011 Kristianto, Y., Wignyanto, W., Argo, B. D., y Santoso, I. (2021). Antioxidant increase by response surface optimization and bayesian neural network modelling of pumpkin (Cucurbita moschata duch) freezing. Food Research, 5(3), 73–82. https://doi.org/10.26656/fr.2017.5(3).598 Leong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., y Ling, T. C. (2018). Natural red pigments from plants and their health benefits: A review. In Food Reviews International (Vol. 34, Issue 5, pp. 463–482). Taylor and Francis Inc. https://doi.org/10.1080/87559129.2017.1326935 Li, J., Liu, J., Sun, X., y Liu, Y. (2018). The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT, 96, 51–57. https://doi.org/doi.org/10.1016/j.lwt.2018.05.003. Li, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., y Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005 Markets and markets. (2020). Natural Food Colors & Flavors Market Trends, Growth, Industry Analysis - Forecasts to 2025 | Covid-19 Impact Analysis. https://www.marketsandmarkets.com/Market-Reports/natural-colors-flavors-market-676.html?utm_medium=Email&utm_source=HSFB-NA-%20Natural-Food-Colors-%26-Flavors-Market-6-Nov-20 Martins, N., Roriz, C. L., Morales, P., Barros, L., y Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15. https://doi.org/10.1016/J.TIFS.2016.03.009 Mendes, L., Petito, N., Gonçalves Costa, V., Falcão, D. Q., y de Lima Araújo, K. G. (2014). Inclusion complexes of red bell pepper pigments with b-cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. https://doi.org/10.1016/j.foodchem.2012.09.065 Mezzomo, N., y Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 1–16. https://doi.org/10.1155/2016/3164312 Mezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., y Ferreira, S. R. S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta, 85(3), 1383–1391. https://doi.org/10.1016/j.talanta.2011.06.018 Mínguez, M., Pérez, A., y Hornero, D. (2005). Pigmentos carotenoides en frutas y vegetales; mucho más que simples “colorantes” naturales. Minsalud. (2015). Estrategia nacional para la prevención y control de las deficiencias de micronutrientes en Colombia 2014 – 2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficiencia-micronutrientes.pdf Montesano, D., Rocchetti, G., Cossignani, L., Senizza, B., Pollini, L., Lucini, L., y Blasi, F. (2019). Untargeted metabolomics to evaluate the stability of extra-virgin olive oil with added Lycium barbarum carotenoids during storage. Foods, 8(6). https://doi.org/10.3390/foods8060179 Mutsokoti, L., Panozzo, A., Tongonya, J., Kebede, B. T., van Loey, A., y Hendrickx, M. (2017). Carotenoid stability and lipid oxidation during storage of low-fat carrot and tomato based systems. LWT - Food Science and Technology, 80, 470–478. https://doi.org/10.1016/j.lwt.2017.03.021 Nagarajan, J., Nagasundara, R., Eshwaraiah, M., Galanakis, C., y Prasad, N. (2017). Carotenoids. In Antioxidants in Higher Plants. Elsevier Inc. https://doi.org/10.1201/9781315149899 Norshazila, S., Koy, C., Rashidi, O., Ho, L., Azrina, I., Nurul, Z. R., y Zarinah, Z. (2017). The Effect of Time, Temperature and Solid to Solvent Ratio on Pumpkin Carotenoids Extracted Using Food Grade Solvents. Sains Malaysiana, 46(2), 231–237. https://doi.org/10.17576/jsm-2017-4602-07 Nour, V., Corbu, A. R., Rotaru, P., Karageorgou, I., y Lalas, S. (2018). Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas y Aceites, 69(1). https://doi.org/10.3989/gya.0994171 Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N., y Abdan, K. (2016). Modelling effective moisture diffusivity of pumpkin (Cucurbita moschata) slices under convective hot air drying condition. International Journal of Food Engineering, 12(5), 481–489. https://doi.org/10.1515/ijfe-2015-0382 Ordoñez-Santos, L. E., Martínez-Girón, J., y Rodríguez-Rodríguez, D. X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA (Colombia), 86(209), 91–96. https://doi.org/10.15446/dyna.v85n207.74840 Ordóñez-Santos, L. E., Pinzón-Zarate, L. X., y González-Salcedo, L. O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560–566. https://doi.org/10.1016/j.ultsonch.2015.04.010 Ortiz Grisales, S. (2012). Fruto y semilla de Cucurbita moschata fuente de carotenoides y aceite con valor agregado (Vol. 30, Issue 2). Pagels, F., Salvaterra, D., Amaro, H. M., Lopes, G., Sousa-Pinto, I., Vasconcelos, V., y Guedes, A. C. (2020). Bioactive potential of Cyanobium sp. pigment-rich extracts. Journal of Applied Phycology, 32(5), 3031–3040. https://doi.org/10.1007/s10811-020-02213-1 Pandurangaiah, S., y Rao, S. D. (2020). Carotenoid Content in Cherry Tomatoes Correlated to the Color Space Values L*, a*, b*: A Non-destructive Method of Estimation. In J. Hortl. Sci (Vol. 15, Issue 1). Patsilinakos, A., Ragno, R., Carradori, S., Petralito, S., y Cesa, S. (2018). Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chemistry, 268(May), 49–56. https://doi.org/10.1016/j.foodchem.2018.06.013 Paznocht, L., Kotíková, Z., Orsák, M., Lachman, J., y Martinek, P. (2019). Carotenoid changes of colored-grain wheat flours during bun-making. Food Chemistry, 277, 725–734. https://doi.org/10.1016/j.foodchem.2018.11.019 Perrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., y Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58–65. https://doi.org/10.1016/j.ultsonch.2017.04.003 Pignitter, M., & Somoza, V. (2012). Critical Evaluation of Methods for the Measurement of Oxidative Rancidity in Vegetable Oils. Journal of Food and Drug Analysis, 20(3), 772–777. https://doi.org/10.6227/jfda.2012200305 Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Ultrasound-assisted extraction. RSC Green Chemistry, 89–112. https://doi.org/10.1039/9781849737579-00089 Portillo‐López, R., Morales‐Contreras, B. E., Lozano‐Guzmán, E., Basilio‐Heredia, J., Muy‐Rangel, M. D., Ochoa‐Martínez, L. A., Rosas‐Flores, W., y Morales‐Castro, J. (2021). Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. Journal of Food Science, 86(7), 3122–3136. https://doi.org/10.1111/1750-3841.15815 Priori, D., Valduga, E., Branco, J., Mistura, C., Vizzotto, M., Valgas, R., y Barbieri, R. (2017). Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in Southern Brazil. Food Science and Technology, 37(1), 33–40. https://doi.org/10.1590/1678-457x.05016 Provesi, J. G., y Amante, E. R. (2015). Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food (pp. 71–80). Elsevier Inc. https://doi.org/10.1016/B978-0-12-404699-3.00009-3 Provesi, J. G., Dias, C. O., y Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027 Quijano, N. (2020). Evaluación de espectroscopía FTIR-ATR, colorimetría triestímulo y análisis de imagen como herramientas para la determinación de carotenoides en ahuyama. Universidad Nacional de Colombia. Quintana, S. E., Marsiglia, R. M., Machacon, D., Torregroza, E., y Garcia-Zapateiro, L. A. (2018). Chemical composition and physicochemical properties of squash (Cucurbita moschata) cultivated in Bolivar department (Colombia). Contemporary Engineering Sciences, 11(21), 1003–1012. https://doi.org/10.12988/CES.2018.8384 Rahimi, S., y Mikani, M. (2019). Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchemical Journal, 146, 1033–1042. https://doi.org/10.1016/j.microc.2019.02.039 Rammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., y Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128–134. https://doi.org/10.1016/j.foodchem.2018.10.066 Razi, B., Bahij, R., Fretté, X., y Christensen, K. (2015). Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. Journal of Food Engineering, 155, 22–28. https://doi.org/10.1016/j.jfoodeng.2015.01.009 Research Nester. (2015, August). Natural Food Colors Market Size & Share | Industry Report, 2023. https://www.researchnester.com/reports/natural-food-colors-market/232 Rodriguez-Amaya, D. (2019). “Natural food pigments and colorants.” In Current Opinion in Food Science (Vol. 7). https://doi.org/10.1016/J.COFS.2015.08.004 Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. In Current Opinion in Food Science (Vol. 7, pp. 20–26). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.08.004 Rodriguez-Amaya, D. B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2017. https://doi.org/10.1016/j.foodres.2018.05.028 Rodriguez-Amaya, Delia. (1999). Carotenoides y Preparación de Alimentos: La Retención de los Carotenoides Provitamina A en Alimentos Preparados, Procesados y Almacenados. Universidade Estadual de Capinas, 99. https://doi.org/10.3390/su8060570 Rodriguez, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., y Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93. https://doi.org/10.1016/j.plipres.2018.04.004 Roohani, R., Einafshar, S., y Ghavidel, R. (2016). Effect of time and ultrasonic amplitude on extraction carotenoid compounds from saffron stamen 1 Introduction1 . In Agricultural Engineering International: CIGR Journal (Vol. 18, Issue 4). http://www.cigrjournal.org Rutkowska, M., Namieśnik, J., y Konieczka, P. (2017). Ultrasound-Assisted Extraction. In The Application of Green Solvents in Separation Processes (pp. 301–324). Elsevier Inc. https://doi.org/10.1016/B978-0-12-805297-6.00010-3 Sahar, A., Rahman, U. U., Aadil, R. M., y Ishaq, A. (2018). Stabilization of Carotenoids in Foods. In Encyclopedia of Food Chemistry (Vol. 2). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21670-3 Saini, R., y Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/dx.doi.org/10.1016/j.foodchem2017.07.099 Salazar-González, C., Díaz-Moreno, C., y Fuenmayor, C. A. (2019). Green extraction of carotenoids from bee pollen using sunflower oil: Evaluation of time and matrix-solvent ratio. Chemical Engineering Transactions, 75, 541–546. https://doi.org/10.3303/CET1975091 Sánchez-Muniz, F. J., Bastida, S., & Benedí, J. (2016). Sunflower Oil. In Encyclopedia of Food and Health (pp. 217–226). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00674-7 Saxena, A., Maity, T., Raju, P. S., y Bawa, A. S. (2012). Degradation Kinetics of Colour and Total Carotenoids in Jackfruit (Artocarpus heterophyllus) Bulb Slices During Hot Air Drying. Food and Bioprocess Technology, 5(2), 672–679. https://doi.org/10.1007/s11947-010-0409-2 Seremet, L., Botez, E., Nistor, O. V., Andronoiu, D. G., y Mocanu, G. D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125 Sharma, M., y Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4). https://doi.org/10.3390/foods10040787 Sigurdson, G. T., Tang, P., y Giusti, M. M. (2017). Natural Colorants: Food Colorants from Natural Sources. In Annual Review of Food Science and Technology (Vol. 8, pp. 261–280). Annual Reviews Inc. https://doi.org/10.1146/annurev-food-030216-025923 Simal, S., A. Femenia, M.C. Garau y C. Rosselló. 2005. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J. Food Eng. 66, 323-328. Doi: 10.1016/j.jfoodeng.2004.03.025 Singh, A., Ahmad, S., y Ahmad, A. (2015). Green extraction methods and environmental applications of carotenoids-a review. RSC Advances, 5(77), 62358–62393. https://doi.org/10.1039/c5ra10243j Sogi, D., Siddiq, M., Dolan, M., (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. (LWT – Food science and technology. 62(1), 564 – 568. Song, J., Wang, X., Li, D., Liu, C., Yang, Q., y Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256. https://doi.org/10.1007/s13197-018-3258-z Song, J., Yang, Q., Huang, W., Xiao, Y., Li, D., y Liu, C. (2018). Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing, 107, 104–112. https://doi.org/10.1016/J.FBP.2017.10.008 Stephenson, R. C., Ross, R. P., y Stanton, C. (2021). Carotenoids in milk and the potential for dairy based functional foods. In Foods (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/foods10061263 Stinco, C. M., Rodríguez-Pulido, F., Escudero-Gilete, M. L., Gordillo, B., Vicario, I. M., Meléndez-Martínez, A., (2013). Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Research International. 50, 111-120. https://dx.doi.org/10.1016/j.foodres.2012.10.011 Stoll, L., Rech, R., Flôres, S. H., Nachtigall, S. M. B., y de Oliveira Rios, A. (2019). Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food Chemistry, 281, 213–221. https://doi.org/10.1016/j.foodchem.2018.12.100 Strati, I. F., y Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food and Science Technology, 46, 23–29. https://doi.org/10.1111/j.1365-2621.2010.02496.x Strati, I. F., y Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products - A review. Food Research International, 65(PC), 311–321. https://doi.org/10.1016/j.foodres.2014.09.032 Sun, Y., Liu, D., Chen, J., Ye, X., y Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243–249. https://doi.org/10.1016/j.ultsonch.2010.05.014 TFO Canadá. (2012). Colombia: El Mercado Canadiense de Ingredientes para Cosméticos 2012. Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013 Trivedi, N., Baghel, R. S., Bothwell, J., Gupta, V., Reddy, C. R. K., Lali, A. M., y Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6. https://doi.org/10.1038/srep30728 Tuli, H. S., Chaudhary, P., Beniwal, V., y Sharma, A. K. (2015). Microbial pigments as natural color sources: current trends and future perspectives. In Journal of Food Science and Technology (Vol. 52, Issue 8, pp. 4669–4678). Springer India. https://doi.org/10.1007/s13197-014-1601-6 USDA. (2018). Food Composition Databases Show Foods -- Pumpkin, raw. https://ndb.nal.usda.gov/ndb/foods/show/11422 U.S.D.A. (2019). Pumpkin, raw. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients Vallejo Cabrera, F., y Estrada Salazar, E. (2004). Producción de hortalizas de clima cálido (Universidad Nacional de Colombia, Ed.). Vásquez, M. (2015). Estimación de las coordenadas CIEL*a*b* en concentrados de tomate utilizando imágenes digitales. Velásquez Reyes, G. A., y Carrillo Cetina, J. P. (2016). Evaluación del efecto de las aplicaciones edáficas de diferentes niveles de nitrógeno sobre los componentes de rendimiento e incidencia de algunos problemas fitosanitarios en ahuyama valluna (Cucúrbita máxima). Vinatoru, M., Mason, T. J., y Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. In TrAC - Trends in Analytical Chemistry (Vol. 97, pp. 159–178). Elsevier B.V. https://doi.org/10.1016/j.trac.2017.09.002 Xu, W. J., Zhai, J. W., Cui, Q., Liu, J. Z., Luo, M., Fu, Y. J., y Zu, Y. G. (2016). Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Separation and Purification Technology, 166, 73–82. https://doi.org/10.1016/j.seppur.2016.04.003 Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A. S., y Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. In Molecules (Vol. 22, Issue 9). MDPI AG. https://doi.org/10.3390/molecules22091474 Zaccari, F., Cabrera, M. C., y Saadoun, A. (2017). Variation in glucose, α- And β-carotene and lutein content during storage time in winter squash type Butternut. Acta Horticulturae, 1151, 273–277. https://doi.org/10.17660/ActaHortic.2017.1151.42 Zalbidea Muñoz, M. A. (2017). Nociones básicas sobre materiales colorantes. Universidad Politécnica de Valencia, España. Disponible en: https://riunet.upv.es/bitstream/handle /10251/82159/Zalbidea%20- %20Nociones% 20b%C3%A1sicas%20sobre%20mat eriales%20colorantes.pdf?sequen ce=1. Bechoff, A. (2010). Investigating carotenoid loss after drying and storage of orange-fleshed sweet potato. University of Greenwich. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 115 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.department.spa.fl_str_mv |
Instituto de Ciencia y Tecnología de Alimentos (ICTA) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82201/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82201/2/1014216343.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82201/3/1014216343.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 c3faa3fc1832a6937d44834453f6627d 1eeec837f03a29e9ad54cf61a23f5ec3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089810526076928 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fuenmayor Bobadilla, Carlos Alberto7266e9bd646e9de27996f24d1fcca625Díaz Moreno, Amanda Consuelo3c57c41d8c04e27f27c677681040f60bBallesta Santana, Sandra Milena7315e2ccfbbeee19a044c5c848f64f26BioalimentosAseguramiento de la Calidad de Alimentos y Desarrollo de Nuevos Productos2022-08-30T18:45:01Z2022-08-30T18:45:01Z2022https://repositorio.unal.edu.co/handle/unal/82201Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, tablasLa apariencia en los alimentos es un atributo importante y decisivo en el consumidor, por lo cual la industria emplea los colorantes a fin de otorgar características atractivas, durables y homogéneas. Actualmente en el mercado predomina el uso de colorantes de origen sintético debido a su bajo costo, durabilidad y firmeza en su pigmentación, sin embargo, diversos estudios han mostrado el impacto negativo que tiene el consumo de estos al estar relacionados con efectos tóxicos, alergénicos y hasta cancerígenos. En este sentido, se han estudiado los colorantes naturales buscando las ventajas de los colorantes artificiales y que adicionalmente tengan un aporte a la salud. Los carotenoides son pigmentos liposolubles, naturales, de coloración amarillo-naranja presentes en matrices alimentarias como la ahuyama, reconocidos por su poder antioxidante y porque algunos tienen actividad provitamina A. En este trabajo se estudiaron diferentes tecnologías para extraer los carotenoides de la ahuyama, una hortaliza cultivada en Colombia y de importante aporte nutricional. Se realizó una caracterización fisicoquímica de la ahuyama a fin de evaluar su estado de madurez comercial, teniendo en cuenta que esta tiene un efecto importante sobre el contenido de carotenoides totales (CCT). Posteriormente, se realizó un proceso de adecuación que consistió en una deshidratación por convección forzada y posterior molienda, esto con el fin facilitar el acceso a los carotenoides de la matriz. Con la harina de ahuyama obtenida y empleando aceite de girasol como solvente, se estudiaron técnicas de extracción convencional con agitación continua (CNV) y asistida con ultrasonido (US), en las que se evaluó el CCT, color y estabilidad oxidativa. Se encontró que los mejores resultados en la metodología de extracción tanto para el CCT (1244 mg β-carotenoeq/kg extracto) como para el color medido en el espacio CIELAB se obtuvieron con CNV, en un tiempo de extracción de 24 horas y una relación matriz-mezcla del 60%. Este extracto fue evaluado en almacenamiento durante 28 días, tiempo en el cual se evidenció que la disminución máxima del CCT fue del 18%, que el índice de peróxidos (IP) se mantuvo inferior a 10 mEq de oxígeno activo/kg y que el Índice de p-anisidina (IpA) no mostró variación significativa. Se realizó la inclusión del extracto de carotenoides en un yogurt evaluando su color durante 28 días, evidenciando que se logró una coloración muy similar a la de un yogurt con adición de colorante artificial, con un aporte nutricional añadido. (Texto tomado de la fuente)Appearance in food is an important and decisive attribute for the consumer, which is why the industry uses colorants to provide attractive, durable and homogeneous characteristics. Currently, the use of dyes of synthetic origin predominates in the market due to their low cost, durability and firmness in their pigmentation, however, various studies have shown the negative impact of its consumption as these are related to toxic, allergenic and even carcinogenic. In this sense, natural colorants have been studied looking for the faculties of artificial colorants and that these additionally have a contribution to health. Carotenoids are fat-soluble, natural, yellow-orange pigments present in food matrices such as squash, recognized for their antioxidant power and because some have provitamin A activity. In this work, different technologies were studied to extract carotenoids from squash, a vegetable cultivated in Colombia and of important nutritional contribution. A physicochemical characterization of the squash was carried out in order to evaluate its state of commercial maturity, taking into account that this is related to the content of total carotenoids (CCT). Subsequently, an adaptation process was carried out that consisted of dehydration by forced convection and subsequent grinding, in order to facilitate access to the carotenoids of the matrix. With the pumpkin flour obtained and using sunflower oil as solvent, conventional extraction techniques with continuous agitation (CNV) and assisted with ultrasound (US) were studied, in which the content of total carotenoids (CCT), color and oxidative stability were evaluated. It was found that the best results in the extraction methodology for both CCT (1244 mg β-carotenoeq/kg extract) and for the color measured in the CIELAB space were obtained with CNV, in an extraction time of 24 hours and a ratio 60% matrix-mix. This extract was evaluated in storage for 28 days, during which time it was shown that the maximum decrease in CCT was 18%, that the peroxide index (IP) remained below 10 mEq of active oxygen/kg and that the Index of p-anisidine (IpA) did not show significant variation. The inclusion of the carotenoid extract in a yogurt was carried out, evaluating its color for 28 days, showing that a coloration very similar to that of a yogurt with the addition of artificial coloring was achieved, with an added nutritional contribution.MaestríaMagíster en Ciencia y Tecnología de AlimentosProcesamiento de alimentosxix, 115 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosInstituto de Ciencia y Tecnología de Alimentos (ICTA)Facultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosCOLORANTESColoring matterCarotenoidesAhuyamaExtracción verdeUltrasonidoEstabilidadCarotenoidsPumpkinSquashGreen extractionUltrasoundStabilityExtracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentariaGreen extraction of carotenoids from pumpkin (Cucurbita moschata Duch) using vegetable oil for its addition as a natural colorant in a food matrixTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAgronet. (2018). Reporte: Área, Producción y Rendimiento Nacional por Cultivo: Ahuyama. https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., y di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458–2463. https://doi.org/10.1111/ijfs.12602American Oil Chemists’ Society. (2017). Official Methods and Recommended Practices of the AOCS (7th ed.).Annisa, A., Suryono, S., Suseno, J., y Kurniawati, R. (2018). Ultrasound-assisted extraction optimization of phenolic compounds from Psidium guajava L. using artificial neural network-genetic algorithm Related content The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava). Journal of Physics: Conference Series, 1025. https://doi.org/10.1088/1742-6596/1025/1/012020AOAC. (2012). Official Method of Analysis: Association of Analytical Chemists (G. Latimer, Ed.; 19th ed.). AOAC International.Assous, M. T. M., Saad, E. M. S., & Dyab, A. S. (2014). Enhancement of quality attributes of canned pumpkin and pineapple. Annals of Agricultural Sciences, 59(1), 9–15. https://doi.org/10.1016/J.AOAS.2014.06.002Azizah, A. H., Wee, K. C., Azizah, O., y Azizah, M. (2009). Effect of boiling and stir frying on total phenolics, carotenoids and radical scavening of pumpkin Cucurbita moschata. International Food Research Journal, 16, 45–51.Baiano, A., y del Nobile, M. A. (2015). Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053–2068. https://doi.org/10.1080/10408398.2013.812059Barreiro, J., y Sandoval, A. (2002). Operaciones de conservación de alimentos por bajas temperaturas (Equinoccio, Ed.). https://www.researchgate.net/publication/299461004_Operaciones_de_Conservacion_de_Alimentos_por_Bajas_TemperaturasBechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., y Boy, E. (2015). Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil. Journal of Food Composition and Analysis, 44, 36–44. https://doi.org/10.1016/j.jfca.2015.06.002Becker, D. (2016). Color Measurement. In Color trends and selection for product design: every color sells a story (1st ed.). Plastics Design Library.Bergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L., y Marchetti, N. (2018). HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “delica” (Cucurbita máxima) and “violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules, 23(11). https://doi.org/10.3390/molecules23112791Boon, C. S., McClements, D. J., Weiss, J., y Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–532. https://doi.org/10.1080/10408390802565889Carocho, M., Morales, P., y Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. In Trends in Food Science and Technology (Vol. 45, Issue 2, pp. 284–295). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2015.06.007Cásseres, E. (1981). Producción de hortalizas (IICA, Ed.; 3rd ed.).Catalán, L. F. (2016). Extracción y caracterización de β-caroteno obtenido de la cáscara de banano (Musa paradisiaca L.) evaluando el rendimiento de tres diferentes solventes de distinta polaridad para su utilización como colorante natural a escala laboratorio. Universidad de San Carlos de Guatemala.Chemat, F., Fabiano-Tixier, A. S., Vian, M. A., Allaf, T., y Vorobiev, E. (2015). Solvent-free extraction of food and natural products. In TrAC - Trends in Analytical Chemistry (Vol. 71, pp. 157–168). Elsevier B.V. https://doi.org/10.1016/j.trac.2015.02.021Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., y Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. In Ultrasonics Sonochemistry (Vol. 34, pp. 540–560). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2016.06.035Chemat, F., Vian, M. A., y Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615Chuyen, H. v., Nguyen, M. H., Roach, P. D., Golding, J. B., y Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), 189–196. https://doi.org/10.1002/fsn3.546Corbu, A. R., Rotaru, A., y Nour, V. (2019). Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. Journal of Thermal Analysis and Calorimetry, 142(2), 735–747. https://doi.org/10.1007/s10973-019-08875-5de Carvalho, L. M. J., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C. L., Vieira, A. C. R. A., y Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040Delgado-Vargas, F., Jiménez, A. R., Paredes-López, O., y Francis, F. J. (2012). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289. https://doi.org/10.1080/10408690091189257Demiray, E., Tulek, Y., y Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT - Food Science and Technology, 50(1), 172–176. https://doi.org/10.1016/j.lwt.2012.06.001Departamento Nacional de Planeación. (2016, April). Pérdida y desperdicio de alimentos en Colombia - Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdfFDA. (2010). Overview of Food Ingredients, Additives y Colors | FDA. https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colorsFreedman, B. (2021). Gourd Family (Cucurbitaceae). The Gale Encyclopedia of Science. https://www.encyclopedia.com/science-and-technology/biographies/genetics-and-genetic-engineering-biographies/cucurbitaceaeGajic, I. M. S., Savic, I. M., Gajic, D. G., y Dosic, A. (2021). Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules, 11(2), 1–14. https://doi.org/10.3390/biom11020225García-Pacheco, Y. E., Prieto-Tapias, M. J., y Fuenmayor, C. A. (2016). Cinética, modelación y pérdidas de carotenoides para el secado de ahuyama (Cucurbita moschata) en cubos. Agronomía Colombiana, 32, S57-S576. https://doi.org/10.15446/agron.colomb.v34n1supl.58382Gerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E., y Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241(5), 683–695.Ghosh, S., Sarkar, T., Das, A., Chakraborty, R., (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT – Food science and technology. V: 153 (1-12). doi.org/10.1016/j.lwt.2021.112527González Cárdenas, I. A. (2010). Caracterización química del color de diferentes variedades de guayaba (Psidium guajava L.) colombiana. Tesis, 84.Goula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009Goula, A. M., Ververi, M., Adamopoulou, A., y Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022Gouveia de Souza, A., Oliveira Santos, J. C., Conceição, M. M., Dantas Silva, M. C., y Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21(02), 265–273.Grant, A., y Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. In Journal of Food Protection (Vol. 80, Issue 4, pp. 540–544). International Association for Food Protection. https://doi.org/10.4315/0362-028X.JFP-16-146Guiné, R. P. F., Pinho, S., y Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita máxima). Food and Bioproducts Processing, 89(4), 422–428. https://doi.org/10.1016/j.fbp.2010.09.001Häckl, K., y Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie, 21(6), 572–580. https://doi.org/10.1016/j.crci.2018.03.010Halim, H. H., y Thoo, Y. Y. (2018). Effect of ultrasound treatment on oxidative stability of sunflower oil and palm oil. In Article in International Food Research Journal. http://www.ifrj.upm.edu.myHandayani, A. D., Sutrisno, Indraswati, N., y Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresource Technology, 99(10), 4414–4419. https://doi.org/10.1016/j.biortech.2007.08.028Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., y Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029Hooshmand, H., Shabanpour, B., Moosavi-Nasab, M., y Golmakani, M. T. (2017). Optimization of carotenoids extraction from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using organic solvents and vegetable oils. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13171ICBF. (2005). Encuesta Nacional de la Situación Nutricional en Colombia.Itle, R. A., y Kabelka, E. A. (2009). Correlation Between Lab Color Space Values and Carotenoid Content in Pumpkins and Squash (Cucurbita spp.). HortScience, 44(3), 633–637.Jacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., y Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039Jones, S. T., Aryana, K. J., y Losso, J. N. (2005). Storage stability of lutein during ripening of cheddar cheese. Journal of Dairy Science, 88(5), 1661–1670. doi.org/10.3168/jds.S0022-0302(05)72838-1Kaur, P., Elsayed, A., Subramanin, J., Singh, A. (2021). Encapsulation of carotenoids with sucrose by co-crystallization: Physicochemical properties, characterization and thermal stability of pigments. LWT – Food science and technology. 140, 110810, 1-10 https://doi.org/10.1016/j.lwt.2020.110810Kim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., y Oh, Y. K. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. In Bioresource Technology (Vol. 199, pp. 300–310). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2015.08.107Kim, S., Park, J.-B., y Hwang, I.-K. (2002). Quality Attributes of Various Varieties of Korean Red Pepper Powders (Capsicum annuum L.) and Color Stability During Sunlight Exposure. 67.Konica Minolta. (2014). Entendiendo El Espacio de Color CIE L*A*B* - Konica Minolta Sensing. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/Kourouma, V., Mu, T.-H., Zhang, M., y Sun, H.-N. (2019). Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT, 104, 134–141. https://doi.org/10.1016/J.LWT.2019.01.011Kristianto, Y., Wignyanto, W., Argo, B. D., y Santoso, I. (2021). Antioxidant increase by response surface optimization and bayesian neural network modelling of pumpkin (Cucurbita moschata duch) freezing. Food Research, 5(3), 73–82. https://doi.org/10.26656/fr.2017.5(3).598Leong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., y Ling, T. C. (2018). Natural red pigments from plants and their health benefits: A review. In Food Reviews International (Vol. 34, Issue 5, pp. 463–482). Taylor and Francis Inc. https://doi.org/10.1080/87559129.2017.1326935Li, J., Liu, J., Sun, X., y Liu, Y. (2018). The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT, 96, 51–57. https://doi.org/doi.org/10.1016/j.lwt.2018.05.003.Li, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., y Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005Markets and markets. (2020). Natural Food Colors & Flavors Market Trends, Growth, Industry Analysis - Forecasts to 2025 | Covid-19 Impact Analysis. https://www.marketsandmarkets.com/Market-Reports/natural-colors-flavors-market-676.html?utm_medium=Email&utm_source=HSFB-NA-%20Natural-Food-Colors-%26-Flavors-Market-6-Nov-20Martins, N., Roriz, C. L., Morales, P., Barros, L., y Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15. https://doi.org/10.1016/J.TIFS.2016.03.009Mendes, L., Petito, N., Gonçalves Costa, V., Falcão, D. Q., y de Lima Araújo, K. G. (2014). Inclusion complexes of red bell pepper pigments with b-cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. https://doi.org/10.1016/j.foodchem.2012.09.065Mezzomo, N., y Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 1–16. https://doi.org/10.1155/2016/3164312Mezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., y Ferreira, S. R. S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta, 85(3), 1383–1391. https://doi.org/10.1016/j.talanta.2011.06.018Mínguez, M., Pérez, A., y Hornero, D. (2005). Pigmentos carotenoides en frutas y vegetales; mucho más que simples “colorantes” naturales.Minsalud. (2015). Estrategia nacional para la prevención y control de las deficiencias de micronutrientes en Colombia 2014 – 2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficiencia-micronutrientes.pdfMontesano, D., Rocchetti, G., Cossignani, L., Senizza, B., Pollini, L., Lucini, L., y Blasi, F. (2019). Untargeted metabolomics to evaluate the stability of extra-virgin olive oil with added Lycium barbarum carotenoids during storage. Foods, 8(6). https://doi.org/10.3390/foods8060179Mutsokoti, L., Panozzo, A., Tongonya, J., Kebede, B. T., van Loey, A., y Hendrickx, M. (2017). Carotenoid stability and lipid oxidation during storage of low-fat carrot and tomato based systems. LWT - Food Science and Technology, 80, 470–478. https://doi.org/10.1016/j.lwt.2017.03.021Nagarajan, J., Nagasundara, R., Eshwaraiah, M., Galanakis, C., y Prasad, N. (2017). Carotenoids. In Antioxidants in Higher Plants. Elsevier Inc. https://doi.org/10.1201/9781315149899Norshazila, S., Koy, C., Rashidi, O., Ho, L., Azrina, I., Nurul, Z. R., y Zarinah, Z. (2017). The Effect of Time, Temperature and Solid to Solvent Ratio on Pumpkin Carotenoids Extracted Using Food Grade Solvents. Sains Malaysiana, 46(2), 231–237. https://doi.org/10.17576/jsm-2017-4602-07Nour, V., Corbu, A. R., Rotaru, P., Karageorgou, I., y Lalas, S. (2018). Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas y Aceites, 69(1). https://doi.org/10.3989/gya.0994171Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N., y Abdan, K. (2016). Modelling effective moisture diffusivity of pumpkin (Cucurbita moschata) slices under convective hot air drying condition. International Journal of Food Engineering, 12(5), 481–489. https://doi.org/10.1515/ijfe-2015-0382Ordoñez-Santos, L. E., Martínez-Girón, J., y Rodríguez-Rodríguez, D. X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA (Colombia), 86(209), 91–96. https://doi.org/10.15446/dyna.v85n207.74840Ordóñez-Santos, L. E., Pinzón-Zarate, L. X., y González-Salcedo, L. O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560–566. https://doi.org/10.1016/j.ultsonch.2015.04.010Ortiz Grisales, S. (2012). Fruto y semilla de Cucurbita moschata fuente de carotenoides y aceite con valor agregado (Vol. 30, Issue 2).Pagels, F., Salvaterra, D., Amaro, H. M., Lopes, G., Sousa-Pinto, I., Vasconcelos, V., y Guedes, A. C. (2020). Bioactive potential of Cyanobium sp. pigment-rich extracts. Journal of Applied Phycology, 32(5), 3031–3040. https://doi.org/10.1007/s10811-020-02213-1Pandurangaiah, S., y Rao, S. D. (2020). Carotenoid Content in Cherry Tomatoes Correlated to the Color Space Values L*, a*, b*: A Non-destructive Method of Estimation. In J. Hortl. Sci (Vol. 15, Issue 1).Patsilinakos, A., Ragno, R., Carradori, S., Petralito, S., y Cesa, S. (2018). Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chemistry, 268(May), 49–56. https://doi.org/10.1016/j.foodchem.2018.06.013Paznocht, L., Kotíková, Z., Orsák, M., Lachman, J., y Martinek, P. (2019). Carotenoid changes of colored-grain wheat flours during bun-making. Food Chemistry, 277, 725–734. https://doi.org/10.1016/j.foodchem.2018.11.019Perrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., y Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58–65. https://doi.org/10.1016/j.ultsonch.2017.04.003Pignitter, M., & Somoza, V. (2012). Critical Evaluation of Methods for the Measurement of Oxidative Rancidity in Vegetable Oils. Journal of Food and Drug Analysis, 20(3), 772–777. https://doi.org/10.6227/jfda.2012200305Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Ultrasound-assisted extraction. RSC Green Chemistry, 89–112. https://doi.org/10.1039/9781849737579-00089Portillo‐López, R., Morales‐Contreras, B. E., Lozano‐Guzmán, E., Basilio‐Heredia, J., Muy‐Rangel, M. D., Ochoa‐Martínez, L. A., Rosas‐Flores, W., y Morales‐Castro, J. (2021). Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. Journal of Food Science, 86(7), 3122–3136. https://doi.org/10.1111/1750-3841.15815Priori, D., Valduga, E., Branco, J., Mistura, C., Vizzotto, M., Valgas, R., y Barbieri, R. (2017). Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in Southern Brazil. Food Science and Technology, 37(1), 33–40. https://doi.org/10.1590/1678-457x.05016Provesi, J. G., y Amante, E. R. (2015). Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food (pp. 71–80). Elsevier Inc. https://doi.org/10.1016/B978-0-12-404699-3.00009-3Provesi, J. G., Dias, C. O., y Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027Quijano, N. (2020). Evaluación de espectroscopía FTIR-ATR, colorimetría triestímulo y análisis de imagen como herramientas para la determinación de carotenoides en ahuyama. Universidad Nacional de Colombia.Quintana, S. E., Marsiglia, R. M., Machacon, D., Torregroza, E., y Garcia-Zapateiro, L. A. (2018). Chemical composition and physicochemical properties of squash (Cucurbita moschata) cultivated in Bolivar department (Colombia). Contemporary Engineering Sciences, 11(21), 1003–1012. https://doi.org/10.12988/CES.2018.8384Rahimi, S., y Mikani, M. (2019). Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchemical Journal, 146, 1033–1042. https://doi.org/10.1016/j.microc.2019.02.039Rammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., y Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128–134. https://doi.org/10.1016/j.foodchem.2018.10.066Razi, B., Bahij, R., Fretté, X., y Christensen, K. (2015). Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. Journal of Food Engineering, 155, 22–28. https://doi.org/10.1016/j.jfoodeng.2015.01.009Research Nester. (2015, August). Natural Food Colors Market Size & Share | Industry Report, 2023. https://www.researchnester.com/reports/natural-food-colors-market/232Rodriguez-Amaya, D. (2019). “Natural food pigments and colorants.” In Current Opinion in Food Science (Vol. 7). https://doi.org/10.1016/J.COFS.2015.08.004Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. In Current Opinion in Food Science (Vol. 7, pp. 20–26). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.08.004Rodriguez-Amaya, D. B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2017. https://doi.org/10.1016/j.foodres.2018.05.028Rodriguez-Amaya, Delia. (1999). Carotenoides y Preparación de Alimentos: La Retención de los Carotenoides Provitamina A en Alimentos Preparados, Procesados y Almacenados. Universidade Estadual de Capinas, 99. https://doi.org/10.3390/su8060570Rodriguez, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., y Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93. https://doi.org/10.1016/j.plipres.2018.04.004Roohani, R., Einafshar, S., y Ghavidel, R. (2016). Effect of time and ultrasonic amplitude on extraction carotenoid compounds from saffron stamen 1 Introduction1 . In Agricultural Engineering International: CIGR Journal (Vol. 18, Issue 4). http://www.cigrjournal.orgRutkowska, M., Namieśnik, J., y Konieczka, P. (2017). Ultrasound-Assisted Extraction. In The Application of Green Solvents in Separation Processes (pp. 301–324). Elsevier Inc. https://doi.org/10.1016/B978-0-12-805297-6.00010-3Sahar, A., Rahman, U. U., Aadil, R. M., y Ishaq, A. (2018). Stabilization of Carotenoids in Foods. In Encyclopedia of Food Chemistry (Vol. 2). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21670-3Saini, R., y Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/dx.doi.org/10.1016/j.foodchem2017.07.099Salazar-González, C., Díaz-Moreno, C., y Fuenmayor, C. A. (2019). Green extraction of carotenoids from bee pollen using sunflower oil: Evaluation of time and matrix-solvent ratio. Chemical Engineering Transactions, 75, 541–546. https://doi.org/10.3303/CET1975091Sánchez-Muniz, F. J., Bastida, S., & Benedí, J. (2016). Sunflower Oil. In Encyclopedia of Food and Health (pp. 217–226). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00674-7Saxena, A., Maity, T., Raju, P. S., y Bawa, A. S. (2012). Degradation Kinetics of Colour and Total Carotenoids in Jackfruit (Artocarpus heterophyllus) Bulb Slices During Hot Air Drying. Food and Bioprocess Technology, 5(2), 672–679. https://doi.org/10.1007/s11947-010-0409-2Seremet, L., Botez, E., Nistor, O. V., Andronoiu, D. G., y Mocanu, G. D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125Sharma, M., y Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4). https://doi.org/10.3390/foods10040787Sigurdson, G. T., Tang, P., y Giusti, M. M. (2017). Natural Colorants: Food Colorants from Natural Sources. In Annual Review of Food Science and Technology (Vol. 8, pp. 261–280). Annual Reviews Inc. https://doi.org/10.1146/annurev-food-030216-025923Simal, S., A. Femenia, M.C. Garau y C. Rosselló. 2005. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J. Food Eng. 66, 323-328. Doi: 10.1016/j.jfoodeng.2004.03.025Singh, A., Ahmad, S., y Ahmad, A. (2015). Green extraction methods and environmental applications of carotenoids-a review. RSC Advances, 5(77), 62358–62393. https://doi.org/10.1039/c5ra10243jSogi, D., Siddiq, M., Dolan, M., (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. (LWT – Food science and technology. 62(1), 564 – 568.Song, J., Wang, X., Li, D., Liu, C., Yang, Q., y Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256. https://doi.org/10.1007/s13197-018-3258-zSong, J., Yang, Q., Huang, W., Xiao, Y., Li, D., y Liu, C. (2018). Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing, 107, 104–112. https://doi.org/10.1016/J.FBP.2017.10.008Stephenson, R. C., Ross, R. P., y Stanton, C. (2021). Carotenoids in milk and the potential for dairy based functional foods. In Foods (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/foods10061263Stinco, C. M., Rodríguez-Pulido, F., Escudero-Gilete, M. L., Gordillo, B., Vicario, I. M., Meléndez-Martínez, A., (2013). Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Research International. 50, 111-120. https://dx.doi.org/10.1016/j.foodres.2012.10.011Stoll, L., Rech, R., Flôres, S. H., Nachtigall, S. M. B., y de Oliveira Rios, A. (2019). Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food Chemistry, 281, 213–221. https://doi.org/10.1016/j.foodchem.2018.12.100Strati, I. F., y Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food and Science Technology, 46, 23–29. https://doi.org/10.1111/j.1365-2621.2010.02496.xStrati, I. F., y Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products - A review. Food Research International, 65(PC), 311–321. https://doi.org/10.1016/j.foodres.2014.09.032Sun, Y., Liu, D., Chen, J., Ye, X., y Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243–249. https://doi.org/10.1016/j.ultsonch.2010.05.014TFO Canadá. (2012). Colombia: El Mercado Canadiense de Ingredientes para Cosméticos 2012.Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013Trivedi, N., Baghel, R. S., Bothwell, J., Gupta, V., Reddy, C. R. K., Lali, A. M., y Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6. https://doi.org/10.1038/srep30728Tuli, H. S., Chaudhary, P., Beniwal, V., y Sharma, A. K. (2015). Microbial pigments as natural color sources: current trends and future perspectives. In Journal of Food Science and Technology (Vol. 52, Issue 8, pp. 4669–4678). Springer India. https://doi.org/10.1007/s13197-014-1601-6USDA. (2018). Food Composition Databases Show Foods -- Pumpkin, raw. https://ndb.nal.usda.gov/ndb/foods/show/11422U.S.D.A. (2019). Pumpkin, raw. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrientsVallejo Cabrera, F., y Estrada Salazar, E. (2004). Producción de hortalizas de clima cálido (Universidad Nacional de Colombia, Ed.).Vásquez, M. (2015). Estimación de las coordenadas CIEL*a*b* en concentrados de tomate utilizando imágenes digitales.Velásquez Reyes, G. A., y Carrillo Cetina, J. P. (2016). Evaluación del efecto de las aplicaciones edáficas de diferentes niveles de nitrógeno sobre los componentes de rendimiento e incidencia de algunos problemas fitosanitarios en ahuyama valluna (Cucúrbita máxima).Vinatoru, M., Mason, T. J., y Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. In TrAC - Trends in Analytical Chemistry (Vol. 97, pp. 159–178). Elsevier B.V. https://doi.org/10.1016/j.trac.2017.09.002Xu, W. J., Zhai, J. W., Cui, Q., Liu, J. Z., Luo, M., Fu, Y. J., y Zu, Y. G. (2016). Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Separation and Purification Technology, 166, 73–82. https://doi.org/10.1016/j.seppur.2016.04.003Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A. S., y Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. In Molecules (Vol. 22, Issue 9). MDPI AG. https://doi.org/10.3390/molecules22091474Zaccari, F., Cabrera, M. C., y Saadoun, A. (2017). Variation in glucose, α- And β-carotene and lutein content during storage time in winter squash type Butternut. Acta Horticulturae, 1151, 273–277. https://doi.org/10.17660/ActaHortic.2017.1151.42Zalbidea Muñoz, M. A. (2017). Nociones básicas sobre materiales colorantes. Universidad Politécnica de Valencia, España. Disponible en: https://riunet.upv.es/bitstream/handle /10251/82159/Zalbidea%20- %20Nociones% 20b%C3%A1sicas%20sobre%20mat eriales%20colorantes.pdf?sequen ce=1.Bechoff, A. (2010). Investigating carotenoid loss after drying and storage of orange-fleshed sweet potato. University of Greenwich.Ministerio de Ciencia, tecnología e InnovaciónFondo nacional de financiamiento para la ciencia, la tecnología y la innovación Francisco José de CaldasAdministradoresInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82201/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1014216343.2022.pdf1014216343.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf1921925https://repositorio.unal.edu.co/bitstream/unal/82201/2/1014216343.2022.pdfc3faa3fc1832a6937d44834453f6627dMD52THUMBNAIL1014216343.2022.pdf.jpg1014216343.2022.pdf.jpgGenerated Thumbnailimage/jpeg5483https://repositorio.unal.edu.co/bitstream/unal/82201/3/1014216343.2022.pdf.jpg1eeec837f03a29e9ad54cf61a23f5ec3MD53unal/82201oai:repositorio.unal.edu.co:unal/822012024-08-11 01:00:54.925Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |