Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas
ilustraciones, gráficas, tablas
- Autores:
-
Rangel Arciniegas, Diego Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80753
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Estadística
Statistics
Método de Montecarlo
Modelos matemáticos
Anualidades de vida dependientes de fondos
Modelos para estructura temporal de tasas
Nelson-Siegel
Modelo Vasicek
Procesos de difusión
Valores presentes de flujos de caja descontados con tasas variables
Método Monte Carlo
Valoración de pólizas contingentes dependientes de trayectorias
Filtros lineales
Fund-dependent life annuities
Models for interest rates term structure
Nelson-Siegel
Vasicek model
Diffusion processes
Present values of discounted cash flows with variable rates
Monte Carlo method
Valuation of contingent policies dependent on trajectories
Linear filters
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_51e135c8fab0797f3b515f3beae52991 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80753 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
dc.title.translated.eng.fl_str_mv |
Valuation of stochastic payment flows using Monte Carlo simulation with smoothing and models for the time structure of rates |
title |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
spellingShingle |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Estadística Statistics Método de Montecarlo Modelos matemáticos Anualidades de vida dependientes de fondos Modelos para estructura temporal de tasas Nelson-Siegel Modelo Vasicek Procesos de difusión Valores presentes de flujos de caja descontados con tasas variables Método Monte Carlo Valoración de pólizas contingentes dependientes de trayectorias Filtros lineales Fund-dependent life annuities Models for interest rates term structure Nelson-Siegel Vasicek model Diffusion processes Present values of discounted cash flows with variable rates Monte Carlo method Valuation of contingent policies dependent on trajectories Linear filters |
title_short |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
title_full |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
title_fullStr |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
title_full_unstemmed |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
title_sort |
Valoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasas |
dc.creator.fl_str_mv |
Rangel Arciniegas, Diego Fernando |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Gómez, Norman Diego |
dc.contributor.author.none.fl_str_mv |
Rangel Arciniegas, Diego Fernando |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Estadística Statistics Método de Montecarlo Modelos matemáticos Anualidades de vida dependientes de fondos Modelos para estructura temporal de tasas Nelson-Siegel Modelo Vasicek Procesos de difusión Valores presentes de flujos de caja descontados con tasas variables Método Monte Carlo Valoración de pólizas contingentes dependientes de trayectorias Filtros lineales Fund-dependent life annuities Models for interest rates term structure Nelson-Siegel Vasicek model Diffusion processes Present values of discounted cash flows with variable rates Monte Carlo method Valuation of contingent policies dependent on trajectories Linear filters |
dc.subject.lemb.none.fl_str_mv |
Estadística Statistics Método de Montecarlo Modelos matemáticos |
dc.subject.proposal.spa.fl_str_mv |
Anualidades de vida dependientes de fondos Modelos para estructura temporal de tasas Nelson-Siegel Modelo Vasicek Procesos de difusión Valores presentes de flujos de caja descontados con tasas variables Método Monte Carlo Valoración de pólizas contingentes dependientes de trayectorias Filtros lineales |
dc.subject.proposal.eng.fl_str_mv |
Fund-dependent life annuities Models for interest rates term structure Nelson-Siegel Vasicek model Diffusion processes Present values of discounted cash flows with variable rates Monte Carlo method Valuation of contingent policies dependent on trajectories Linear filters |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-03T15:47:31Z |
dc.date.available.none.fl_str_mv |
2021-12-03T15:47:31Z |
dc.date.issued.none.fl_str_mv |
2021-12-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80753 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80753 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aase, K. K. & Persson, S.-A. (1994), 'Pricing of unit-linked life insurance policies', Scandinavian Actuarial Journal 1994(1), 26-52. Alexandrov, T., Bianconcini, S., Dagum, E. B., Maass, P. & McElroy, T. S. (2012), 'Areview of some modern approaches to the problem of trend extraction', Econometric Reviews 31(6), 593-624. Bacinello, A. R., Millossovich, P., Olivieri, A. & Pitacco, E. (2011), `Variable annuities: Aunifying valuation approach', Insurance: Mathematics and Economics 49(3), 285-297. Berger, A. (1939), Mathematik der Lebensversicherung, Springer-Verlag Wien. Biffis, E. (2005), `Affine processes for dynamic mortality and actuarial valuations', Insurance: mathematics and economics 37(3), 443-468. Blake, D. (2006), Pension Finance, John Wiley and Sons., Chichester. Blake, D., Cairns, A., Coughlan, G., Dowd, K. & MacMinn, R. (2013), `The new life market', Journal of Risk and Insurance 80(3), 501-558. Blakey, P. (2006), `The false allure of equity indexed annuities', IEEE Microwave Magazine 7(2), 16-22. Boulier, J.-F., Huang, S.-J. & Taillard, G. (2001), `Optimal management under stochastic interest rates: the case of a protected de ned contribution pension fund', Insurance: Mathematics and Economics (28), 173-189. Brouste, A., Fukasawa, M., Hino, H., Iacus, S. M., Kamatani, K., Koike, Y., Masuda, H., Nomura, R., Ogihara, T., Shimuzu, Y., Uchida, M. & Yoshida, N. (2014), `The yuima project: A computational framework for simulation and inference of stochastic di erential equations', Journal of Statistical Software 57(4), 1-51. URL: http://www.jstatsoft.org/v57/i04/ Carriere, J. F. (2004), `Martingale Valuation of Cash Flows for Insurance and Interest Models', North-americal Actuarial Journal 8(3), 150-210. Chen, D.-f. & Xiang, G. (2003), `Time-risk discount valuation of life contracts', Acta Mathematicae Applicatae Sinica 19(4), 647-662. Chen, R.-R. (1996), Understanding and managing interest rate risks, Vol. 1, World Scientific. Choe, G. H. (2016), Stochastic analysis for finance with simulations, Springer International Publishing Switzerland. Cárdenas-Santamaría, M. (2015), Resolución 3099 de agosto 19 de 2015, Technical report, Ministerio de Hacienda y Crédito Público. De Schepper, A. & Goovaerts, M. (1992), `Some further results on annuities certain with random interest', Insurance: Mathematics and Economics 11(4), 283-290. Deprez, E. & Schaetzle, T. (1964), `Variable Annuities', 17th International Congress of Actuaries 3(1), 108-120. Dermoune, A., Djehiche, B. & Rahmania, N. (2008), `A consistent estimator of the smoothing parameter in the hodrick-prescott filter', Journal of the Japan Statistical Society 38(2), 225-241. Devolder, P. (2016), Finance stochastique, Editions de l'Université de Bruxelles. Dietz, H. M. (1992), `A stochastic interest model with an application to insurance', Insurance: Mathematics and Economics 11(4), 301-310. DiGiacinto, M., Salvatore, F., Gozzi, F. & Vigna, E. (2014), `Income drawdown option with minimum guarantee', European Journal of Operational Research 234(3), 610-624. Djehiche, B. & L ofdahl, B. (2014), `Risk aggregation and stochastic claims reserving in disability insurance', Insurance: Mathematics and Economics 59, 100-108. Djehiche, B. & L ofdahl, B. (2016), `Nonlinear reserving in life insurance: Aggregation and mean- eld approximation', Insurance: Mathematics and Economics 69, 1-13. Djehiche, B. & Nassar, H. (2013), `A functional hodrick prescott filter', arXiv preprint arXiv:1312.4936 . Duffie, D. (2010), Dynamic asset pricing theory, Princeton University Press. Duffie, D., Schroder, M., Skiadas, C. et al. (1996), `Recursive valuation of defaultable securities and the timing of resolution of uncertainty', Annals of Applied Probability 6(4), 1075-1090. Dufresne, D. (1990), `The distribution of a perpetuity, with applications to risk theory and pension funding', Scandinavian Actuarial Journal 1990(1), 39-79. Emms, P. & Haberman, S. (2008), `Income Drawdown Schemes for Defined-Contribution Pension Plan', The Journal of Risk and Insurance 75(3), 739-761. Feng, R. (2018), An introduction to computational risk management of equity-linked insurance, CRC Press, Boca Raton, FL, USA. Friedman, A. (1976), Stochastic Dfferential Equations and Applications, vol I, Academic Press, Inc. London. Gallieri, M. (2016), Lasso-MPC-Predictive Control with L1-Regularised Least Squares, Springer. Gatzert, N. & Schmeiser, H. (2013), New life insurance financial products, in `Handbook of insurance', Springer, pp. 1061-1095. Gibson, R., Lhabitant, F.-S. & Talay, D. (2010), `Modeling the term structure of interest rates: a review of the literature'. Giraldo, N. (2017), Actuaría de Contingencias de Vida, con R, Escuela de Estadística. Universidad Nacional de Colombia. URL: http://bdigital.unal.edu.co/74027 Goldie, C. M. & Gr ubel, R. (1996), `Perpetuities with thin tails', Advances in Applied Probability pp. 463-480. Guidoum, A. C. & Boukhetala, K. (2020), `Performing parallel monte carlo and moment equations methods for ito and stratonovich stochastic differential systems: R package Sim.DiffProc', Journal of Statistical Software 96(2), 1-82. Han, N.-W. & Hung, M.-W. (2015), `The investment management for a downsideprotected equity-linked annuity under interest rate risk', Finance Research Letters pp. 113-124. He, L. & Liang, Z. (2013), `Optimal dynamic asset allocation strategy for ela scheme of dc pension plan during the distribution phase', Insurance: Mathematics and Economics 52(2), 404-410. Hilli, P., Koivu, M. & Pennanen, T. (2011a), `Cash-ow based valuation of pension liabilities', European Actuarial Journal 1(2), 329-343. Hilli, P., Koivu, M. & Pennanen, T. (2011b), `Cash-flow based valuation of pension liabilities', European Actuarial Journal 1(2), 329. Huang, H., Milevsky, M. & Salisbury, T. (2009), `A different perspective on retirement income sustainability: The blueprint for a ruin contingent life annuity (RCLA)', Journal of Wealth Management (4), 89-96. Huang, H., Milevsky, M. & Salisbury, T. (2012), `Valuation and hedging of the ruincontingent life annuity (RCLA)', arXiv 1205.3686, 1-31. Iacus, S. M. (2016), sde: Simulation and Inference for Stochastic Differential Equations. R package version 2.0.15. URL: https://CRAN.R-project.org/package=sde Iacus, S. & Yoshida, N. (2018), `Simulation and inference for stochastic processes with yuima', A comprehensive R framework for SDEs and other stochastic processes. Use R Jedrzejewski, F. (2009), Modeles aleatoires et physique probabiliste, Springer Science & Business Media. Karatzas, I. & Shreve, S. E. (1991), Brownian Motion and Stochastic Calculus, Springer Verlag, New York. Kim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ``L1 trend filtering', SIAM review 51(2), 339{360. Korn, R., Korn, E. & Kroisandt, G. (2010), Monte Carlo methods and models in finance and insurance, CRC press. Kunitomo, N. & Takahashi, A. (2001), `The asymptotic expansion approach to the valuation of interest rate contingent claims', Mathematical Finance 11(1), 117-151. Lando, D. (1998), `On Cox processes and credit risky securities', Review of Derivatives research 2(2-3), 99-120. Lin, X. S. (2006), Introductory stochastic analysis for finance and insurance, Vol. 557, John Wiley & Sons. Martin, V., Hurn, S. & Harris, D. (2013), Econometric modelling with time series: specification, estimation and testing, Cambridge University Press. Medvedev, G. A. (2019), Yield Curves and Forward Curves for Diffusion Models of Short Rates, Springer. Milevsky, M. A. (1997), `The present value of a stochastic perpetuity and the gamma distribution', Insurance: Mathematics and Economics 20(3), 243-250. Mingari, G., Ritelli, D. & Spelta, D. (2006), `Actuarial values calculated using the incomplete gamma function', Statistica 66(1), 77-81. Moller, T. & Steffensen, M. (2007), Market-valuation methods in life and pension insurance, Cambridge University Press. Nelson, C. R. & Siegel, A. F. (1987), `Parsimonious modeling of yield curves', Journal of business pp. 473-489. Norberg, R. (2005), `Interest Guarantees in Banking', Applied Mathematical Finance 12(4), 351-370. Osorno-Gómez, J. (2012), Análisis de solvencia en anualidades de vida con tasas de interés aleatorias, Master's thesis, Escuela de Estadística, Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/handle/unal/10143. Papanicolaou, A. (2019), `Introduction to stochastic differential equations (sdes) for finance', arXiv 1504.05309. Parisi, F. (1998), `Tasas de interés nominal de corto plazo en Chile: Una comparación empírica de sus modelos', Cuadernos de Economía pp. 161-182. Persson, S.-A. (1993), `Valuation of a multistate life insurance contract with random benefits', Scandinavian Journal of Management 9, S73-S86. Persson, S.-A. & Aase, K. (1997), `Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products', The Journal of Risk and Insurance 64(4), 599-617. Pienaar, E. A. D. & Varughese, M. M. (2015), Di usionRgqd: An R Package for Performing Inference and Analysis on Time-Inhomogeneous Quadratic Diffusion Processes. R package version 0.1.3. URL: https://CRAN.R-project.org/package=DiffusionRgqd Privault, N. (2012), An elementary introduction to stochastic interest rate modeling,World Scientific. Proietti, T., Luati, A. et al. (2008), `Real time estimation in local polynomial regression, with application to trend-cycle analysis', The Annals of Applied Statistics 2(4), 1523-1553. Ramlau-Hansen, H. (1990), `Thiele's Differential Equation as a Tool in Product Development in Life Insurance', Scandinavian Actuarial Journal pp. 97-104. Remillard, B. (2013), SMFI5: R functions and data from Chapter 5 of 'Statistical Methods for Financial Engineering'. R package version 1.0. URL: https://CRAN.R-project.org/package=SMFI5 Svensson, L. E. O. (1994), Estimating and interpreting forward interest rates: Sweden 1992-1994, Technical report, Technical Reports 4871, National bureau of economic research. Topa, G. (1999), La valoración de inversiones a precios de mercado en Colombia, Universidad Externado de Colombia. Vasicek, O. (1977), `An equilibrium characterization of the term structure', Journal of financial economics 5(2), 177-188. Xia, Z. & Huihui, L. (2013), `Actuarial present values of annuities under stochastic interest rate', Int. Journal of Math. Analysis 7(59), 2923-2929. Yamada, H. & Jahra, F. T. (2018), `Explicit formulas for the smoother weights of the whittaker-henderson graduation of order 1', Communications in Statistics-Theory and Methods pp. 1-11. Yan, J.-A. (2018), Introduction to Stochastic Finance, Springer International Publishing Switzerland. Zoccolan, I. (2018), valuer: Pricing of Variable Annuities. R package version 1.1.2. URL: https://CRAN.R-project.org/package=valuer Asmussen, S. & Steffensen, M. (2020), Risk and Insurance, Springer. Balter, A. G. & Werker, B. J. (2020), `The effect of the assumed interest rate and smoothing on variable annuities', ASTIN Bulletin: The Journal of the IAA 50(1), 131-154. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 88 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Estadística |
dc.publisher.department.spa.fl_str_mv |
Escuela de estadística |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80753/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80753/2/71375862.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80753/3/71375862.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 c5dd04bcdc3b8982f2553e02967d3599 ca4fbc38a27e7c36fbb384c5f711c980 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089504936427520 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gómez, Norman Diego1fe8759b9fc1218bec22a4b4a06a0ff7Rangel Arciniegas, Diego Fernando57610cbdde986266058ff974eb62f8322021-12-03T15:47:31Z2021-12-03T15:47:31Z2021-12-01https://repositorio.unal.edu.co/handle/unal/80753Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLos métodos Monte Carlo son una alternativa utilizada para la valoración de productos financieros. Los productos financieros a los que se refiere este trabajo son las anualidades de las cuales hay varios tipos, que son las rentas vitalicias y los retiros programados y en ambas su expresión para el precio corresponde a una esperanza condicional que depende de dos procesos estocásticos en tiempo continuo: las tasas de interés variables denominadas spot y el rendimiento del fondo, asumidas ambas como proceso de difusión. Esta esperanza puede evaluarse mediante métodos Monte Carlo simulando los respectivos procesos, pero la forma especial del valor esperado permite valorarla también, con cierta restricción, mediante una ecuación diferencial parcial de tipo parabólico con condiciones iniciales y de frontera, conocida como ecuación Feynman-Kac. Esta restricción es que la tasa de interés sea determinística. (Texto tomado de la fuente)Monte Carlo methods are widely used as an alternative for valuation of financial products. The financial products to which this work refers are annuities of which there are several types, which are life annuity and programmed retirement and in both their expression for the price corresponds to a conditional expectation of an expression that depends on two stochastic processes in continuous time: the variable interest rates called spot rate and the fund's performance, both assumed as a di usion process. This expectation can be valued through Monte Carlo methods by simulating the respective processes, but the special form from the expected value also allows to value it, with certain restriction, by a partial di erential equation of parabolic-type with initial and boundary conditions, known as the Feynman-Kac equation. This restriction needs the interest rate to be deterministic.MaestríaMagíster en Ciencias - EstadísticaModelación EstocásticaÁrea Curricular Estadísticaxvi, 88 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - EstadísticaEscuela de estadísticaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasEstadísticaStatisticsMétodo de MontecarloModelos matemáticosAnualidades de vida dependientes de fondosModelos para estructura temporal de tasasNelson-SiegelModelo VasicekProcesos de difusiónValores presentes de flujos de caja descontados con tasas variablesMétodo Monte CarloValoración de pólizas contingentes dependientes de trayectoriasFiltros linealesFund-dependent life annuitiesModels for interest rates term structureNelson-SiegelVasicek modelDiffusion processesPresent values of discounted cash flows with variable ratesMonte Carlo methodValuation of contingent policies dependent on trajectoriesLinear filtersValoración de flujos de pagos estocásticos utilizando simulación Monte Carlo con suavizadores y modelos para la estructura temporal de tasasValuation of stochastic payment flows using Monte Carlo simulation with smoothing and models for the time structure of ratesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAase, K. K. & Persson, S.-A. (1994), 'Pricing of unit-linked life insurance policies', Scandinavian Actuarial Journal 1994(1), 26-52.Alexandrov, T., Bianconcini, S., Dagum, E. B., Maass, P. & McElroy, T. S. (2012), 'Areview of some modern approaches to the problem of trend extraction', Econometric Reviews 31(6), 593-624.Bacinello, A. R., Millossovich, P., Olivieri, A. & Pitacco, E. (2011), `Variable annuities: Aunifying valuation approach', Insurance: Mathematics and Economics 49(3), 285-297.Berger, A. (1939), Mathematik der Lebensversicherung, Springer-Verlag Wien.Biffis, E. (2005), `Affine processes for dynamic mortality and actuarial valuations', Insurance: mathematics and economics 37(3), 443-468.Blake, D. (2006), Pension Finance, John Wiley and Sons., Chichester.Blake, D., Cairns, A., Coughlan, G., Dowd, K. & MacMinn, R. (2013), `The new life market', Journal of Risk and Insurance 80(3), 501-558.Blakey, P. (2006), `The false allure of equity indexed annuities', IEEE Microwave Magazine 7(2), 16-22.Boulier, J.-F., Huang, S.-J. & Taillard, G. (2001), `Optimal management under stochastic interest rates: the case of a protected de ned contribution pension fund', Insurance: Mathematics and Economics (28), 173-189.Brouste, A., Fukasawa, M., Hino, H., Iacus, S. M., Kamatani, K., Koike, Y., Masuda, H., Nomura, R., Ogihara, T., Shimuzu, Y., Uchida, M. & Yoshida, N. (2014), `The yuima project: A computational framework for simulation and inference of stochastic di erential equations', Journal of Statistical Software 57(4), 1-51. URL: http://www.jstatsoft.org/v57/i04/Carriere, J. F. (2004), `Martingale Valuation of Cash Flows for Insurance and Interest Models', North-americal Actuarial Journal 8(3), 150-210.Chen, D.-f. & Xiang, G. (2003), `Time-risk discount valuation of life contracts', Acta Mathematicae Applicatae Sinica 19(4), 647-662.Chen, R.-R. (1996), Understanding and managing interest rate risks, Vol. 1, World Scientific.Choe, G. H. (2016), Stochastic analysis for finance with simulations, Springer International Publishing Switzerland.Cárdenas-Santamaría, M. (2015), Resolución 3099 de agosto 19 de 2015, Technical report, Ministerio de Hacienda y Crédito Público.De Schepper, A. & Goovaerts, M. (1992), `Some further results on annuities certain with random interest', Insurance: Mathematics and Economics 11(4), 283-290.Deprez, E. & Schaetzle, T. (1964), `Variable Annuities', 17th International Congress of Actuaries 3(1), 108-120.Dermoune, A., Djehiche, B. & Rahmania, N. (2008), `A consistent estimator of the smoothing parameter in the hodrick-prescott filter', Journal of the Japan Statistical Society 38(2), 225-241.Devolder, P. (2016), Finance stochastique, Editions de l'Université de Bruxelles.Dietz, H. M. (1992), `A stochastic interest model with an application to insurance', Insurance: Mathematics and Economics 11(4), 301-310.DiGiacinto, M., Salvatore, F., Gozzi, F. & Vigna, E. (2014), `Income drawdown option with minimum guarantee', European Journal of Operational Research 234(3), 610-624.Djehiche, B. & L ofdahl, B. (2014), `Risk aggregation and stochastic claims reserving in disability insurance', Insurance: Mathematics and Economics 59, 100-108.Djehiche, B. & L ofdahl, B. (2016), `Nonlinear reserving in life insurance: Aggregation and mean- eld approximation', Insurance: Mathematics and Economics 69, 1-13.Djehiche, B. & Nassar, H. (2013), `A functional hodrick prescott filter', arXiv preprint arXiv:1312.4936 .Duffie, D. (2010), Dynamic asset pricing theory, Princeton University Press.Duffie, D., Schroder, M., Skiadas, C. et al. (1996), `Recursive valuation of defaultable securities and the timing of resolution of uncertainty', Annals of Applied Probability 6(4), 1075-1090.Dufresne, D. (1990), `The distribution of a perpetuity, with applications to risk theory and pension funding', Scandinavian Actuarial Journal 1990(1), 39-79.Emms, P. & Haberman, S. (2008), `Income Drawdown Schemes for Defined-Contribution Pension Plan', The Journal of Risk and Insurance 75(3), 739-761.Feng, R. (2018), An introduction to computational risk management of equity-linked insurance, CRC Press, Boca Raton, FL, USA.Friedman, A. (1976), Stochastic Dfferential Equations and Applications, vol I, Academic Press, Inc. London.Gallieri, M. (2016), Lasso-MPC-Predictive Control with L1-Regularised Least Squares, Springer.Gatzert, N. & Schmeiser, H. (2013), New life insurance financial products, in `Handbook of insurance', Springer, pp. 1061-1095.Gibson, R., Lhabitant, F.-S. & Talay, D. (2010), `Modeling the term structure of interest rates: a review of the literature'.Giraldo, N. (2017), Actuaría de Contingencias de Vida, con R, Escuela de Estadística. Universidad Nacional de Colombia. URL: http://bdigital.unal.edu.co/74027Goldie, C. M. & Gr ubel, R. (1996), `Perpetuities with thin tails', Advances in Applied Probability pp. 463-480.Guidoum, A. C. & Boukhetala, K. (2020), `Performing parallel monte carlo and moment equations methods for ito and stratonovich stochastic differential systems: R package Sim.DiffProc', Journal of Statistical Software 96(2), 1-82.Han, N.-W. & Hung, M.-W. (2015), `The investment management for a downsideprotected equity-linked annuity under interest rate risk', Finance Research Letters pp. 113-124.He, L. & Liang, Z. (2013), `Optimal dynamic asset allocation strategy for ela scheme of dc pension plan during the distribution phase', Insurance: Mathematics and Economics 52(2), 404-410.Hilli, P., Koivu, M. & Pennanen, T. (2011a), `Cash-ow based valuation of pension liabilities', European Actuarial Journal 1(2), 329-343.Hilli, P., Koivu, M. & Pennanen, T. (2011b), `Cash-flow based valuation of pension liabilities', European Actuarial Journal 1(2), 329.Huang, H., Milevsky, M. & Salisbury, T. (2009), `A different perspective on retirement income sustainability: The blueprint for a ruin contingent life annuity (RCLA)', Journal of Wealth Management (4), 89-96.Huang, H., Milevsky, M. & Salisbury, T. (2012), `Valuation and hedging of the ruincontingent life annuity (RCLA)', arXiv 1205.3686, 1-31.Iacus, S. M. (2016), sde: Simulation and Inference for Stochastic Differential Equations. R package version 2.0.15. URL: https://CRAN.R-project.org/package=sdeIacus, S. & Yoshida, N. (2018), `Simulation and inference for stochastic processes with yuima', A comprehensive R framework for SDEs and other stochastic processes. Use RJedrzejewski, F. (2009), Modeles aleatoires et physique probabiliste, Springer Science & Business Media.Karatzas, I. & Shreve, S. E. (1991), Brownian Motion and Stochastic Calculus, Springer Verlag, New York.Kim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ``L1 trend filtering', SIAM review 51(2), 339{360.Korn, R., Korn, E. & Kroisandt, G. (2010), Monte Carlo methods and models in finance and insurance, CRC press.Kunitomo, N. & Takahashi, A. (2001), `The asymptotic expansion approach to the valuation of interest rate contingent claims', Mathematical Finance 11(1), 117-151.Lando, D. (1998), `On Cox processes and credit risky securities', Review of Derivatives research 2(2-3), 99-120.Lin, X. S. (2006), Introductory stochastic analysis for finance and insurance, Vol. 557, John Wiley & Sons.Martin, V., Hurn, S. & Harris, D. (2013), Econometric modelling with time series: specification, estimation and testing, Cambridge University Press.Medvedev, G. A. (2019), Yield Curves and Forward Curves for Diffusion Models of Short Rates, Springer.Milevsky, M. A. (1997), `The present value of a stochastic perpetuity and the gamma distribution', Insurance: Mathematics and Economics 20(3), 243-250.Mingari, G., Ritelli, D. & Spelta, D. (2006), `Actuarial values calculated using the incomplete gamma function', Statistica 66(1), 77-81.Moller, T. & Steffensen, M. (2007), Market-valuation methods in life and pension insurance, Cambridge University Press.Nelson, C. R. & Siegel, A. F. (1987), `Parsimonious modeling of yield curves', Journal of business pp. 473-489.Norberg, R. (2005), `Interest Guarantees in Banking', Applied Mathematical Finance 12(4), 351-370.Osorno-Gómez, J. (2012), Análisis de solvencia en anualidades de vida con tasas de interés aleatorias, Master's thesis, Escuela de Estadística, Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/handle/unal/10143.Papanicolaou, A. (2019), `Introduction to stochastic differential equations (sdes) for finance', arXiv 1504.05309.Parisi, F. (1998), `Tasas de interés nominal de corto plazo en Chile: Una comparación empírica de sus modelos', Cuadernos de Economía pp. 161-182.Persson, S.-A. (1993), `Valuation of a multistate life insurance contract with random benefits', Scandinavian Journal of Management 9, S73-S86.Persson, S.-A. & Aase, K. (1997), `Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products', The Journal of Risk and Insurance 64(4), 599-617.Pienaar, E. A. D. & Varughese, M. M. (2015), Di usionRgqd: An R Package for Performing Inference and Analysis on Time-Inhomogeneous Quadratic Diffusion Processes. R package version 0.1.3. URL: https://CRAN.R-project.org/package=DiffusionRgqdPrivault, N. (2012), An elementary introduction to stochastic interest rate modeling,World Scientific.Proietti, T., Luati, A. et al. (2008), `Real time estimation in local polynomial regression, with application to trend-cycle analysis', The Annals of Applied Statistics 2(4), 1523-1553.Ramlau-Hansen, H. (1990), `Thiele's Differential Equation as a Tool in Product Development in Life Insurance', Scandinavian Actuarial Journal pp. 97-104.Remillard, B. (2013), SMFI5: R functions and data from Chapter 5 of 'Statistical Methods for Financial Engineering'. R package version 1.0. URL: https://CRAN.R-project.org/package=SMFI5Svensson, L. E. O. (1994), Estimating and interpreting forward interest rates: Sweden 1992-1994, Technical report, Technical Reports 4871, National bureau of economic research.Topa, G. (1999), La valoración de inversiones a precios de mercado en Colombia, Universidad Externado de Colombia.Vasicek, O. (1977), `An equilibrium characterization of the term structure', Journal of financial economics 5(2), 177-188.Xia, Z. & Huihui, L. (2013), `Actuarial present values of annuities under stochastic interest rate', Int. Journal of Math. Analysis 7(59), 2923-2929.Yamada, H. & Jahra, F. T. (2018), `Explicit formulas for the smoother weights of the whittaker-henderson graduation of order 1', Communications in Statistics-Theory and Methods pp. 1-11.Yan, J.-A. (2018), Introduction to Stochastic Finance, Springer International Publishing Switzerland.Zoccolan, I. (2018), valuer: Pricing of Variable Annuities. R package version 1.1.2. URL: https://CRAN.R-project.org/package=valuerAsmussen, S. & Steffensen, M. (2020), Risk and Insurance, Springer.Balter, A. G. & Werker, B. J. (2020), `The effect of the assumed interest rate and smoothing on variable annuities', ASTIN Bulletin: The Journal of the IAA 50(1), 131-154.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80753/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL71375862.2021.pdf71375862.2021.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf2293157https://repositorio.unal.edu.co/bitstream/unal/80753/2/71375862.2021.pdfc5dd04bcdc3b8982f2553e02967d3599MD52THUMBNAIL71375862.2021.pdf.jpg71375862.2021.pdf.jpgGenerated Thumbnailimage/jpeg5152https://repositorio.unal.edu.co/bitstream/unal/80753/3/71375862.2021.pdf.jpgca4fbc38a27e7c36fbb384c5f711c980MD53unal/80753oai:repositorio.unal.edu.co:unal/807532023-07-31 23:03:56.764Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |