Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos
El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser d...
- Autores:
-
Carmona Flórez, Gloria Patricia
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/54325
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/54325
http://bdigital.unal.edu.co/49221/
- Palabra clave:
- 51 Matemáticas / Mathematics
Mínimos Cuadrados Ordinarios
Regresión Gini
Modelos de Regresión Robustos
Eficiencia
Robustez
Datos atípicos
Gini Regression
Ordinary Least Square
Robustness Regression
Efficiency
Atypical
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4e5513e19b12480933b9dc161ef994cf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/54325 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
title |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
spellingShingle |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos 51 Matemáticas / Mathematics Mínimos Cuadrados Ordinarios Regresión Gini Modelos de Regresión Robustos Eficiencia Robustez Datos atípicos Gini Regression Ordinary Least Square Robustness Regression Efficiency Atypical |
title_short |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
title_full |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
title_fullStr |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
title_full_unstemmed |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
title_sort |
Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos |
dc.creator.fl_str_mv |
Carmona Flórez, Gloria Patricia |
dc.contributor.author.spa.fl_str_mv |
Carmona Flórez, Gloria Patricia |
dc.contributor.spa.fl_str_mv |
Correa Morales, Juan Carlos |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Mínimos Cuadrados Ordinarios Regresión Gini Modelos de Regresión Robustos Eficiencia Robustez Datos atípicos Gini Regression Ordinary Least Square Robustness Regression Efficiency Atypical |
dc.subject.proposal.spa.fl_str_mv |
Mínimos Cuadrados Ordinarios Regresión Gini Modelos de Regresión Robustos Eficiencia Robustez Datos atípicos Gini Regression Ordinary Least Square Robustness Regression Efficiency Atypical |
description |
El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM. El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-06-16 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T20:06:50Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T20:06:50Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/54325 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/49221/ |
url |
https://repositorio.unal.edu.co/handle/unal/54325 http://bdigital.unal.edu.co/49221/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Estadística Escuela de Estadística |
dc.relation.references.spa.fl_str_mv |
Carmona Flórez, Gloria Patricia (2015) Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/54325/1/39214641.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/54325/2/39214641.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
a5c54f43aee9f079f9d46c9e4c0255d9 34dd0ee7c148419c8676242dce36385e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089543893123072 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Morales, Juan CarlosCarmona Flórez, Gloria Patricia4c3c7a54-0041-4091-9b51-77297113ccf13002019-06-29T20:06:50Z2019-06-29T20:06:50Z2015-06-16https://repositorio.unal.edu.co/handle/unal/54325http://bdigital.unal.edu.co/49221/El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM. El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de EstadísticaEscuela de EstadísticaCarmona Flórez, Gloria Patricia (2015) Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsMínimos Cuadrados OrdinariosRegresión GiniModelos de Regresión RobustosEficienciaRobustezDatos atípicosGini RegressionOrdinary Least SquareRobustness RegressionEfficiencyAtypicalComparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL39214641.2015.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf691953https://repositorio.unal.edu.co/bitstream/unal/54325/1/39214641.2015.pdfa5c54f43aee9f079f9d46c9e4c0255d9MD51THUMBNAIL39214641.2015.pdf.jpg39214641.2015.pdf.jpgGenerated Thumbnailimage/jpeg4494https://repositorio.unal.edu.co/bitstream/unal/54325/2/39214641.2015.pdf.jpg34dd0ee7c148419c8676242dce36385eMD52unal/54325oai:repositorio.unal.edu.co:unal/543252023-03-21 11:23:02.624Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |