Embedded cmc hypersurfaces on hyperbolic spaces
In this paper we will prove that for every integer $n and gt;1$, there exists a real number $H_0-2\pi$, then, $H$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $(n+1)$-dimensional space $H^{n+1}$.
- Autores:
-
Perdomo, Oscar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39450
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39450
http://bdigital.unal.edu.co/29547/
- Palabra clave:
- Principal curvatures
Hyperbolic spaces
Constant mean curvature
CMC
Embeddings
58A10
53C42
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this paper we will prove that for every integer $n and gt;1$, there exists a real number $H_0-2\pi$, then, $H$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $(n+1)$-dimensional space $H^{n+1}$. |
---|