Diagnóstico de fallas con redes neuronales. parte ii: reconocimiento de flujos
En el presente trabajo el sistema de diagnóstico presentado en la parte I es modificado para supervisar procesos que evolucionan en forma compleja ante la presencia de fallas. Al igual que en la Parte I, se considera que cuando una falla afecta a un proceso, cada variable evoluciona siguiendo una tr...
- Autores:
-
Tarifa, Enrique Eduardo
Martínez, Sergio Luis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2007
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/28843
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/28843
http://bdigital.unal.edu.co/18891/
- Palabra clave:
- fault diagnosis
artificial neural network
flow recognition
optimisation
noise tolerance
diagnóstico de fallas
redes neuronales
reconocimiento de flujos
optimización
tolerancia al ruido
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | En el presente trabajo el sistema de diagnóstico presentado en la parte I es modificado para supervisar procesos que evolucionan en forma compleja ante la presencia de fallas. Al igual que en la Parte I, se considera que cuando una falla afecta a un proceso, cada variable evoluciona siguiendo una trayectoria. Sin embargo, esta vez dicha trayectoria no es única, sino que pertenece a un conjunto de infinitas trayectorias posibles denominado flujo. Cada falla tiene asociado un flujo particular para cada variable. Entonces, en un proceso afectado por una falla, el problema del diagnóstico de fallas se traduce a reconocer, para todas las variables, a cuál flujo pertenece la trayectoria que está siendo observada. Al identificar los flujos se habrá identificado la falla que los provoca. Modelado el diagnóstico de fallas como un problema de reconocimiento de flujos, se realizó un desarrollo teórico que culminó con la definición tanto de la estructura como del método de entrenamiento de las redes neuronales empleadas por el nuevo sistema de diagnóstico. En las pruebas hechas, el nuevo sistema de diagnóstico presentó muy buen comportamiento, siendo el diagnóstico exacto, de alta resolución y estable frente al ruido. Finalmente, la teoría desarrollada también indica cómo deben ser escaladas las redes para supervisar procesos de mayor complejidad. |
---|