Metodología de entrenamiento de modelos de mezclas gaussianas empleando criterios de gran margen para la detección de patologías en bioseñales

En el presente trabajo se implementa una metodología para el reconocimiento de patrones basada en los modelos de mezclas de gaussianas (GMM) empleando como criterio de entrenamiento la maximización del margen o Gran Margen (LM). LM presenta similitudes con las máquinas de soporte vectorial (SVM), am...

Full description

Autores:
Carvajal González, Johanna Paola
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/7196
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/7196
http://bdigital.unal.edu.co/3527/
Palabra clave:
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Mezclas de Gaussianas, Distribución normal multivariada, Señales electrocardiográficas, Señales fonocardiográficas, Procesamiento de señales, Reconocimiento de modelos, Electrónica en cardiología
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En el presente trabajo se implementa una metodología para el reconocimiento de patrones basada en los modelos de mezclas de gaussianas (GMM) empleando como criterio de entrenamiento la maximización del margen o Gran Margen (LM). LM presenta similitudes con las máquinas de soporte vectorial (SVM), ambos tienen una función de pérdida que incluye un término de regularización que impone un margen de separación grande entre las clases, además son entrenados por una optimización convexa que se enfoca en las muestras cerca de los límites de decisión. La principal diferencia entre LM-GMM y SVM , es que este último emplea hiperplanos para modelar las clases, lo que implica el uso de un kernel que podría ser una tarea bastante compleja, mientras que LM-GMM modela las clases a través de elipsoides, logrando tener más facilidades en la etapa de entrenamiento. La función de costo no es diferenciable, por lo que el método de optimización empleado es el método del subgradiente proyectado, el cual es un algoritmo desarrollado para minimizar funciones convexas no diferenciables. El tamaño del paso de este algoritmo, a diferencia de otros métodos descendentes, no depende de algún dato calculado durante el algoritmo o algún punto actual o dirección de la búsqueda, sino que es determinado antes de la ejecución del algoritmo. El reconocimiento de patrones se realiza sobre dos bases de datos diferentes para la identificación de los estados de normalidad o patología: (i ) identificación de apnea obstructiva del sueño sobre señales ECG y (ii ) detección de soplos sobre señales PCG. La caracterización dinámica de las bases de datos se realiza a través de representaciones tiempo-frecuencia. Con el fin de reducir características variantes en el tiempo a características puntuales se utiliza la técnica de mínimos cuadrados parciales. Se realiza un análisis comparativo con diferentes valores de mezclas, donde se determina que su valor no puede ser muy alto, ya que la tasa de acierto disminuye conforme la cantidad de mezclas aumenta. Para todas las bases de datos y sus diferentes componentes gaussianas, el algoritmo del subgradiente logra convergencia. Los resultados obtenidos clasificando con LM-GMM sobre las bases de datos de ECG y PCG muestran mejoras significativas sobre el método GMM tradicional.