Morphometric data fusion for early detection of alzheimer’s disease
Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measur...
- Autores:
-
Giraldo Franco, Diana Lorena
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/54346
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/54346
http://bdigital.unal.edu.co/49248/
- Palabra clave:
- 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Alzheimer’s Disease
MRI
Morphometry
NMF
Pattern Recognition
KullbackLeibler Divergence
Earth Mover’s Distance
Enfermedad de Alzheimer
IRM,
Morfometría
NMF
Reconocimiento de Patrones
Divergencia de Kullback-Leibler
EMD
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_32b5acf4237ab1dac61eb096c46d88b3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/54346 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Morphometric data fusion for early detection of alzheimer’s disease |
title |
Morphometric data fusion for early detection of alzheimer’s disease |
spellingShingle |
Morphometric data fusion for early detection of alzheimer’s disease 6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Alzheimer’s Disease MRI Morphometry NMF Pattern Recognition KullbackLeibler Divergence Earth Mover’s Distance Enfermedad de Alzheimer IRM, Morfometría NMF Reconocimiento de Patrones Divergencia de Kullback-Leibler EMD |
title_short |
Morphometric data fusion for early detection of alzheimer’s disease |
title_full |
Morphometric data fusion for early detection of alzheimer’s disease |
title_fullStr |
Morphometric data fusion for early detection of alzheimer’s disease |
title_full_unstemmed |
Morphometric data fusion for early detection of alzheimer’s disease |
title_sort |
Morphometric data fusion for early detection of alzheimer’s disease |
dc.creator.fl_str_mv |
Giraldo Franco, Diana Lorena |
dc.contributor.author.spa.fl_str_mv |
Giraldo Franco, Diana Lorena |
dc.contributor.spa.fl_str_mv |
Romero Castro, Eduardo |
dc.subject.ddc.spa.fl_str_mv |
6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Alzheimer’s Disease MRI Morphometry NMF Pattern Recognition KullbackLeibler Divergence Earth Mover’s Distance Enfermedad de Alzheimer IRM, Morfometría NMF Reconocimiento de Patrones Divergencia de Kullback-Leibler EMD |
dc.subject.proposal.spa.fl_str_mv |
Alzheimer’s Disease MRI Morphometry NMF Pattern Recognition KullbackLeibler Divergence Earth Mover’s Distance Enfermedad de Alzheimer IRM, Morfometría NMF Reconocimiento de Patrones Divergencia de Kullback-Leibler EMD |
description |
Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measures are used to calculate volume-models distances in the regions of interest. The discerning power of these distances is tested by using them as features for a Support Vector Machine classifier. This work shows the usefulness of both measures as metrics in medical image applications when they are used in binary classification tasks. Our methodology was tested with two experimental groups extracted from a public brain MR dataset (OASIS), the classification between healthy subjects and patients with mild AD reveals an equal error rate (EER) measure which is better than previous approaches tested on the same dataset (0.1 in the former and 0.2 in the latter). When detecting very mild AD, our results (near to 75% of sensitivity and specificity) are comparable to the results with those approaches. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-06 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T20:10:55Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T20:10:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/54346 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/49248/ |
url |
https://repositorio.unal.edu.co/handle/unal/54346 http://bdigital.unal.edu.co/49248/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Imágenes Diagnósticas Departamento de Imágenes Diagnósticas |
dc.relation.references.spa.fl_str_mv |
Giraldo Franco, Diana Lorena (2015) Morphometric data fusion for early detection of alzheimer’s disease. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/54346/1/1032394718.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/54346/2/1032394718.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
bb82f2b6abc395f1445a55b4b22167be 305dcf884b683f38c9eaee1f69de955a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089706897408000 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoGiraldo Franco, Diana Lorenae79e584d-5c36-4bef-ac54-f9d0185706eb3002019-06-29T20:10:55Z2019-06-29T20:10:55Z2015-06https://repositorio.unal.edu.co/handle/unal/54346http://bdigital.unal.edu.co/49248/Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measures are used to calculate volume-models distances in the regions of interest. The discerning power of these distances is tested by using them as features for a Support Vector Machine classifier. This work shows the usefulness of both measures as metrics in medical image applications when they are used in binary classification tasks. Our methodology was tested with two experimental groups extracted from a public brain MR dataset (OASIS), the classification between healthy subjects and patients with mild AD reveals an equal error rate (EER) measure which is better than previous approaches tested on the same dataset (0.1 in the former and 0.2 in the latter). When detecting very mild AD, our results (near to 75% of sensitivity and specificity) are comparable to the results with those approaches.Presentamos un m´etodo de morfometr´ı que usa modelos de cerebro que se generan usando factorizaci´on de matrices no-negativas (NMF por su nombre en ingl´es) y se caracterizan por firmas calculadas de rasgos perceptules como las intensidades, bordes y orientaciones de algunas regiones del cerebro obtenidas de la comparaci´on entre modelos. Dos medidas, la divergencia de Kullback-Leibler y la “Earth Mover’s Distance”, son usadas para calcular la distancia entre vol´umenes y modelos en las regiones de inter´es. Probamos el poder discriminante de estas distancias us´andolas para construir los vectores de caracter´ısticas para una m´aquina de soporte vectorial. Este trabajo muestra la utilidad de ambas medidas en tareas de clasificaci´on binaria. Nuestra metodolog´ıa fue probada con dos grupos experimentales extra´ıdos de la base de datos OASIS, la clasificaci´on entre sujetos sanos y pacientes con Alzheimer leve revela un EER que mejora los resultados obtenidos por trabajos publicados previamente con los mismos grupos experimentales. Cuando se trata de detectar Alzheimer muy leve, los resultados (cercanos a 75% de sensibilidad y especificidad) son comparables con los resultados obtenidos en dichas publicaciones.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Imágenes DiagnósticasDepartamento de Imágenes DiagnósticasGiraldo Franco, Diana Lorena (2015) Morphometric data fusion for early detection of alzheimer’s disease. Maestría thesis, Universidad Nacional de Colombia.6 Tecnología (ciencias aplicadas) / Technology61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringAlzheimer’s DiseaseMRIMorphometryNMFPattern RecognitionKullbackLeibler DivergenceEarth Mover’s DistanceEnfermedad de AlzheimerIRM,MorfometríaNMFReconocimiento de PatronesDivergencia de Kullback-LeiblerEMDMorphometric data fusion for early detection of alzheimer’s diseaseTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1032394718.2015.pdfapplication/pdf2529863https://repositorio.unal.edu.co/bitstream/unal/54346/1/1032394718.2015.pdfbb82f2b6abc395f1445a55b4b22167beMD51THUMBNAIL1032394718.2015.pdf.jpg1032394718.2015.pdf.jpgGenerated Thumbnailimage/jpeg4128https://repositorio.unal.edu.co/bitstream/unal/54346/2/1032394718.2015.pdf.jpg305dcf884b683f38c9eaee1f69de955aMD52unal/54346oai:repositorio.unal.edu.co:unal/543462024-03-12 23:08:07.204Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |