Morphometric data fusion for early detection of alzheimer’s disease

Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measur...

Full description

Autores:
Giraldo Franco, Diana Lorena
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/54346
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/54346
http://bdigital.unal.edu.co/49248/
Palabra clave:
6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Alzheimer’s Disease
MRI
Morphometry
NMF
Pattern Recognition
KullbackLeibler Divergence
Earth Mover’s Distance
Enfermedad de Alzheimer
IRM,
Morfometría
NMF
Reconocimiento de Patrones
Divergencia de Kullback-Leibler
EMD
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_32b5acf4237ab1dac61eb096c46d88b3
oai_identifier_str oai:repositorio.unal.edu.co:unal/54346
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Morphometric data fusion for early detection of alzheimer’s disease
title Morphometric data fusion for early detection of alzheimer’s disease
spellingShingle Morphometric data fusion for early detection of alzheimer’s disease
6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Alzheimer’s Disease
MRI
Morphometry
NMF
Pattern Recognition
KullbackLeibler Divergence
Earth Mover’s Distance
Enfermedad de Alzheimer
IRM,
Morfometría
NMF
Reconocimiento de Patrones
Divergencia de Kullback-Leibler
EMD
title_short Morphometric data fusion for early detection of alzheimer’s disease
title_full Morphometric data fusion for early detection of alzheimer’s disease
title_fullStr Morphometric data fusion for early detection of alzheimer’s disease
title_full_unstemmed Morphometric data fusion for early detection of alzheimer’s disease
title_sort Morphometric data fusion for early detection of alzheimer’s disease
dc.creator.fl_str_mv Giraldo Franco, Diana Lorena
dc.contributor.author.spa.fl_str_mv Giraldo Franco, Diana Lorena
dc.contributor.spa.fl_str_mv Romero Castro, Eduardo
dc.subject.ddc.spa.fl_str_mv 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
topic 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Alzheimer’s Disease
MRI
Morphometry
NMF
Pattern Recognition
KullbackLeibler Divergence
Earth Mover’s Distance
Enfermedad de Alzheimer
IRM,
Morfometría
NMF
Reconocimiento de Patrones
Divergencia de Kullback-Leibler
EMD
dc.subject.proposal.spa.fl_str_mv Alzheimer’s Disease
MRI
Morphometry
NMF
Pattern Recognition
KullbackLeibler Divergence
Earth Mover’s Distance
Enfermedad de Alzheimer
IRM,
Morfometría
NMF
Reconocimiento de Patrones
Divergencia de Kullback-Leibler
EMD
description Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measures are used to calculate volume-models distances in the regions of interest. The discerning power of these distances is tested by using them as features for a Support Vector Machine classifier. This work shows the usefulness of both measures as metrics in medical image applications when they are used in binary classification tasks. Our methodology was tested with two experimental groups extracted from a public brain MR dataset (OASIS), the classification between healthy subjects and patients with mild AD reveals an equal error rate (EER) measure which is better than previous approaches tested on the same dataset (0.1 in the former and 0.2 in the latter). When detecting very mild AD, our results (near to 75% of sensitivity and specificity) are comparable to the results with those approaches.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-06
dc.date.accessioned.spa.fl_str_mv 2019-06-29T20:10:55Z
dc.date.available.spa.fl_str_mv 2019-06-29T20:10:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/54346
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/49248/
url https://repositorio.unal.edu.co/handle/unal/54346
http://bdigital.unal.edu.co/49248/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Imágenes Diagnósticas
Departamento de Imágenes Diagnósticas
dc.relation.references.spa.fl_str_mv Giraldo Franco, Diana Lorena (2015) Morphometric data fusion for early detection of alzheimer’s disease. Maestría thesis, Universidad Nacional de Colombia.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/54346/1/1032394718.2015.pdf
https://repositorio.unal.edu.co/bitstream/unal/54346/2/1032394718.2015.pdf.jpg
bitstream.checksum.fl_str_mv bb82f2b6abc395f1445a55b4b22167be
305dcf884b683f38c9eaee1f69de955a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089706897408000
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoGiraldo Franco, Diana Lorenae79e584d-5c36-4bef-ac54-f9d0185706eb3002019-06-29T20:10:55Z2019-06-29T20:10:55Z2015-06https://repositorio.unal.edu.co/handle/unal/54346http://bdigital.unal.edu.co/49248/Abstract. We present a morphometry method which uses brain models generated using Nonnegative Matrix Factorization (NMF) characterized by signatures calculated from perceptual features such as intensities, edges and orientations, of some regions obtained by comparing the models. Two different measures are used to calculate volume-models distances in the regions of interest. The discerning power of these distances is tested by using them as features for a Support Vector Machine classifier. This work shows the usefulness of both measures as metrics in medical image applications when they are used in binary classification tasks. Our methodology was tested with two experimental groups extracted from a public brain MR dataset (OASIS), the classification between healthy subjects and patients with mild AD reveals an equal error rate (EER) measure which is better than previous approaches tested on the same dataset (0.1 in the former and 0.2 in the latter). When detecting very mild AD, our results (near to 75% of sensitivity and specificity) are comparable to the results with those approaches.Presentamos un m´etodo de morfometr´ı que usa modelos de cerebro que se generan usando factorizaci´on de matrices no-negativas (NMF por su nombre en ingl´es) y se caracterizan por firmas calculadas de rasgos perceptules como las intensidades, bordes y orientaciones de algunas regiones del cerebro obtenidas de la comparaci´on entre modelos. Dos medidas, la divergencia de Kullback-Leibler y la “Earth Mover’s Distance”, son usadas para calcular la distancia entre vol´umenes y modelos en las regiones de inter´es. Probamos el poder discriminante de estas distancias us´andolas para construir los vectores de caracter´ısticas para una m´aquina de soporte vectorial. Este trabajo muestra la utilidad de ambas medidas en tareas de clasificaci´on binaria. Nuestra metodolog´ıa fue probada con dos grupos experimentales extra´ıdos de la base de datos OASIS, la clasificaci´on entre sujetos sanos y pacientes con Alzheimer leve revela un EER que mejora los resultados obtenidos por trabajos publicados previamente con los mismos grupos experimentales. Cuando se trata de detectar Alzheimer muy leve, los resultados (cercanos a 75% de sensibilidad y especificidad) son comparables con los resultados obtenidos en dichas publicaciones.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Imágenes DiagnósticasDepartamento de Imágenes DiagnósticasGiraldo Franco, Diana Lorena (2015) Morphometric data fusion for early detection of alzheimer’s disease. Maestría thesis, Universidad Nacional de Colombia.6 Tecnología (ciencias aplicadas) / Technology61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringAlzheimer’s DiseaseMRIMorphometryNMFPattern RecognitionKullbackLeibler DivergenceEarth Mover’s DistanceEnfermedad de AlzheimerIRM,MorfometríaNMFReconocimiento de PatronesDivergencia de Kullback-LeiblerEMDMorphometric data fusion for early detection of alzheimer’s diseaseTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1032394718.2015.pdfapplication/pdf2529863https://repositorio.unal.edu.co/bitstream/unal/54346/1/1032394718.2015.pdfbb82f2b6abc395f1445a55b4b22167beMD51THUMBNAIL1032394718.2015.pdf.jpg1032394718.2015.pdf.jpgGenerated Thumbnailimage/jpeg4128https://repositorio.unal.edu.co/bitstream/unal/54346/2/1032394718.2015.pdf.jpg305dcf884b683f38c9eaee1f69de955aMD52unal/54346oai:repositorio.unal.edu.co:unal/543462024-03-12 23:08:07.204Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co