Red neuronal artificial en respuesta a predicciones de parámetros de transferencia de masa (pérdida de humedad y ganancia de sólidos) durante la deshidratación osmótica de frutas
Los modelos para predecir las cinéticas de pérdida de agua (ML) y ganancia de sólidos (SG) empleando redes neuronales artificiales (ANN) han demostrado tener mejor comportamiento que los demás modelos desarrollados debido a que correlacionan empíricamente gran cantidad de las variables con ML y SG....
- Autores:
-
Ochoa Martínez, Claudia Isabel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/58476
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/58476
http://bdigital.unal.edu.co/55259/
- Palabra clave:
- 57 Ciencias de la vida; Biología / Life sciences; biology
58 Plantas / Plants
Agroindustria
Ingeniería de alimentos
química de alimentos
ciencia de alimentos
ciencias naturales
Agroindustry
Food engineering
food chemistry
food science
natural sciences
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Los modelos para predecir las cinéticas de pérdida de agua (ML) y ganancia de sólidos (SG) empleando redes neuronales artificiales (ANN) han demostrado tener mejor comportamiento que los demás modelos desarrollados debido a que correlacionan empíricamente gran cantidad de las variables con ML y SG. La principal ventaja de estos modelos es que son predictivos en vez de correlativos, además pueden implementarse fácilmente en una hoja de datos, y son muy útiles y prácticos para el diseño y control del proceso. El objetivo de este trabajo es emplear un modelo desarrollado con ANN para predecir resultados en procesos de deshidratación osmótica. Se hicieron predicciones de comportamiento con diferentes condiciones de proceso y se validaron con resultados experimentales presentados en la literatura. Se obtuvieron buenas predicciones de ML (MRE 19%) y un comportamiento variable para SG (MRE 62%). |
---|