Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación

Ilustraciones, gráficas, tablas

Autores:
Tobar Delgado, Magaly Elizabeth
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83402
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83402
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
Extraction Methods
Ultrasound Assisted Extraction
Compuestos fenólicos
Phenolic compounds
Uchuva
Cape gooseberry
Physalis peruviana
Extraction
Cáliz
Calyx
Separación
Encapsulación
Encapsulation
Liposomes (organelles)
Liposomas (organulos)
Residuos agroalimentarios
Lecitina de soja
Capacidad antioxidante
Extracción
Rutina
Metodologías sostenibles
Encapsulación de antioxidantes
Sistemas coloidales
Nanotecnología
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2b40a69f082e7ea6a369d73333781689
oai_identifier_str oai:repositorio.unal.edu.co:unal/83402
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
dc.title.translated.eng.fl_str_mv Ultrasound-assisted extraction of phenolic compounds from golden berry calix(Physalis peruviana L.) and encapsulation in liposomal systems
title Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
spellingShingle Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
660 - Ingeniería química::664 - Tecnología de alimentos
Extraction Methods
Ultrasound Assisted Extraction
Compuestos fenólicos
Phenolic compounds
Uchuva
Cape gooseberry
Physalis peruviana
Extraction
Cáliz
Calyx
Separación
Encapsulación
Encapsulation
Liposomes (organelles)
Liposomas (organulos)
Residuos agroalimentarios
Lecitina de soja
Capacidad antioxidante
Extracción
Rutina
Metodologías sostenibles
Encapsulación de antioxidantes
Sistemas coloidales
Nanotecnología
title_short Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
title_full Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
title_fullStr Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
title_full_unstemmed Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
title_sort Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
dc.creator.fl_str_mv Tobar Delgado, Magaly Elizabeth
dc.contributor.advisor.none.fl_str_mv Serna Cock, Liliana
dc.contributor.author.none.fl_str_mv Tobar Delgado, Magaly Elizabeth
dc.contributor.educationalvalidator.none.fl_str_mv Torres Castañeda, Harlen
Yarce Castellanos, Cristhian Javier
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
topic 660 - Ingeniería química::664 - Tecnología de alimentos
Extraction Methods
Ultrasound Assisted Extraction
Compuestos fenólicos
Phenolic compounds
Uchuva
Cape gooseberry
Physalis peruviana
Extraction
Cáliz
Calyx
Separación
Encapsulación
Encapsulation
Liposomes (organelles)
Liposomas (organulos)
Residuos agroalimentarios
Lecitina de soja
Capacidad antioxidante
Extracción
Rutina
Metodologías sostenibles
Encapsulación de antioxidantes
Sistemas coloidales
Nanotecnología
dc.subject.other.none.fl_str_mv Extraction Methods
Ultrasound Assisted Extraction
dc.subject.agrovoc.none.fl_str_mv Compuestos fenólicos
Phenolic compounds
Uchuva
Cape gooseberry
Physalis peruviana
Extraction
Cáliz
Calyx
Separación
Encapsulación
Encapsulation
Liposomes (organelles)
Liposomas (organulos)
dc.subject.proposal.spa.fl_str_mv Residuos agroalimentarios
Lecitina de soja
Capacidad antioxidante
Extracción
Rutina
Metodologías sostenibles
Encapsulación de antioxidantes
Sistemas coloidales
Nanotecnología
description Ilustraciones, gráficas, tablas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-02-09T16:50:44Z
dc.date.available.none.fl_str_mv 2023-02-09T16:50:44Z
dc.date.issued.none.fl_str_mv 2023-01-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83402
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83402
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005
Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023
Bernardo, J., Videira, R. A., Valentão, P., Veiga, F., & Andrade, P. B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 133(July), 110749. https://doi.org/10.1016/j.fct.2019.110749
Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BBA - Reviews on Biomembranes, 906(3), 353–404. https://doi.org/10.1016/0304-4157(87)90017-7
Bryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.07.025
Abou Baker, D. H., & Mohammed, D. M. (2022). Polyphenolic rich fraction of Physalis peruviana calyces and its nano emulsion induce apoptosis by caspase 3 up-regulation and G2/M arrest in hepatocellular carcinoma. Food Bioscience, 50(PA), 102007. https://doi.org/10.1016/j.fbio.2022.102007
Ahmadi, E., & Amir Hossein Elhamirad, Nasrin Mollania, M. R. S. A. (2021). Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. Science of Food and Agriculture. https://doi.org/https://doi.org/10.1002/jsfa.11544
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(December 2020), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119(May 2018), 665–674. https://doi.org/10.1016/j.foodres.2018.10.044
Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology (Philadelphia), 53(14), 2192–2205. https://doi.org/10.1080/01496395.2018.1443137
Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005
Arruda, H. S., Neri-Numa, I. A., Kido, L. A., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75(August), 104203. https://doi.org/10.1016/j.jff.2020.104203
Atzberger, P. J. (2006). Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 351(4–5), 225–230. https://doi.org/10.1016/j.physleta.2005.10.107
Avendaño, W. A., Muñoz, H. F., Leal, L. J., Deaquiz, Y. A., & Castellanos, D. A. (2022). Physicochemical characterization of cape gooseberry (Physalis peruviana L.) fruits ecotype Colombia during preharvest development and growth. Journal of Food Science. https://doi.org/10.1111/1750-3841.16318
Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023
Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019a). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054
Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019b). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054
Bangham, A. D. (1961). Correlation between Surface Charge and Coagulant Action of Phospholipids. Nature.
Batzri, S., & Korn, E. D. (1973). Single bilayer liposomes prepared without sonication. BBA - Biomembranes, 298(4), 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2
Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018
ben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine and Pharmacotherapy, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001
Bravo, K., Sepulveda Ortega, S., Lara Guzman, O., Navas Arboleda, A., & Osorio, E. (2011). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape Gooseberry ( Physalis peruviana L .). https://doi.org/10.1002/jsfa.6866
Bueno, D. (2014). Liposomas, ¿la medicina del futuro? Naukas. https://naukas.com/2014/09/24/liposomas-la-medicina-del-futuro
Cardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66(April). https://doi.org/10.1016/j.jddst.2021.102797
Castañeda-Reyes, E. D., Perea-Flores, M. de J., Davila-Ortiz, G., Lee, Y., & de Mejia, E. G. (2020). Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. International Journal of Nanomedicine, 15, 7627–7650. https://doi.org/10.2147/IJN.S263516
Castro, J., Ocampo, Y., & Franco, L. (2015). Cape Gooseberry [Physalis peruviana L.] Los cálices mejoran la colitis inducida por ácido TNBS en ratas. Journal of Crohn’s and Colitis Advance Access.
Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001
Chebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094
Chen, L. X., Xia, G. Y., Liu, Q. Y., Xie, Y. Y., & Qiu, F. (2014). Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 54, 31–35. https://doi.org/10.1016/j.bse.2013.12.030
Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036
Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44(7), 2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003
Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106
Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005
Domínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248
Dong, B., An, L., Yang, X., Zhang, X., Zhang, J., Tuerhong, M., Jin, D. Q., Ohizumi, Y., Lee, D., Xu, J., & Guo, Y. (2019). Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 87(February), 585–593. https://doi.org/10.1016/j.bioorg.2019.03.051
Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35(February), 100547. https://doi.org/10.1016/j.fbio.2020.100547
El-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E. A., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224–232. https://doi.org/10.1016/j.chnaes.2021.04.006
Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245(October 2017), 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120
Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003
Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593(September 2020), 120125. https://doi.org/10.1016/j.ijpharm.2020.120125
Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022
Franco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica, 27(1), 110–115. https://doi.org/10.7705/biomedica.v27i1.237
Franco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192
Fujita, M., & Yamaguchi, Y. (2010). Mesoscale modeling for self-organization of colloidal systems. Current Opinion in Colloid and Interface Science, 15(1–2), 8–12. https://doi.org/10.1016/j.cocis.2009.06.001
Gabriele, M., Caddeo, C., Lubrano, V., Valenti, D., & Pucci, L. (2022). Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. Lwt, 156(September 2021), 113044. https://doi.org/10.1016/j.lwt.2021.113044
Gad, F. I., Salem, E. G., Abdullatef, O. A., & Aborhyem, S. M. (2022). Potential hepatic-protective effect of Physalis peruviana against lead-induced toxicity in albino rats. 11(4), 1367–1381. https://doi.org/10.11591/ijphs.v11i4.21737
Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003
Gibis, M., Ruedt, C., & Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Research International, 88, 105–113. https://doi.org/10.1016/j.foodres.2016.02.010
Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3(3), 246–254. https://doi.org/10.1039/c1fo10181a
Gibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014
Guiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 20(S2), S470–S490. https://doi.org/10.1080/15538362.2020.1741056
Guldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246(June 2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.10.025
Gültekin-Özgüven, M., Karadaʇ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212. https://doi.org/10.1016/j.foodchem.2016.01.091
Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). the Correlation Between Active Oxygens Scavenging and. Free Radical Biology & Medicine, 16(6), 845–850.
Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51(January), 224–233. https://doi.org/10.1016/j.jddst.2019.03.006
Hassan, H. A., Ghareb, N. E., & Azhari, G. F. (2017). Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 3(2), 27. https://doi.org/10.20517/2394-5079.2016.33
He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36–48. https://doi.org/10.1016/j.apsb.2018.06.005
Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
Jahanfar, S., Gahavami, M., Khosravi-Darani, K., Jahadi, M., & Mozafari, M. R. (2021). Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon, 7(12), e08632. https://doi.org/10.1016/j.heliyon.2021.e08632
Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 67, 150–159. https://doi.org/10.1016/j.tifs.2017.06.016
Krstić, Đ. D., Ristivojević, P. M., Gašić, U. M., Lazović, M., Fotirić Akšić, M. M., Milivojević, J., Morlock, G. E., Milojković-Opsenica, D. M., & Trifković, J. (2023). Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chemistry, 402(April 2022). https://doi.org/10.1016/j.foodchem.2022.134184
Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851
Lasic, D. D. (1995). Mechanisms of liposome formation. Journal of Liposome Research, 5(3), 431–441. https://doi.org/10.3109/08982109509010233
Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology, 104(March), 177–189. https://doi.org/10.1016/j.tifs.2020.08.012
Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64(May), 102605. https://doi.org/10.1016/j.jddst.2021.102605
Manconi, M., Marongiu, F., Castangia, I., Manca, M. L., Caddeo, C., Tuberoso, C. I. G., D’hallewin, G., Bacchetta, G., & Fadda, A. M. (2016). Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 146, 910–917. https://doi.org/10.1016/j.colsurfb.2016.07.043
Marín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245(July 2017), 525–535. https://doi.org/10.1016/j.foodchem.2017.10.141
Marín, D. P. (2019). Nanoliposomas a partir de productos naturales infrautilizados y residuos agroalimentarios como ingrediente funcional en alimentos. Universidad Complutense de Madrid, Facueltad de Ciencias Biollógicas. https://eprints.ucm.es/id/eprint/57956/1/T41485.pdf
Mason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Ultrasound. In Emerging Technologies for Food Processing: An Overview. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-676757-5.50015-3
Medina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, Á. (2017). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204. https://doi.org/10.1002/jsfa.9413
Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., Banjac, V., Pojić, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/j.ultsonch.2021.105761
Monkad, S. M., Embaby, H., & Swalilam, H. (2017). Techno-funnctional Department of Food Technology , Faculty of Agriculture , Suez Canal University , National Center for Radiation , Research and Technology ( NCRRT ), Atomic Energy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.11.117
Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics (Vol. 3, Issue 4). https://doi.org/10.3390/pharmaceutics3040793
N. Marasini, K.A. Ghaffar, M. Skwarczynski, T. (2017). Liposomes as a Vaccine Delivery System. In Micro- and Nanotechnology in Vaccine Development. Elsevier Inc. https://doi.org/10.1016/B978-0-323-39981-4/00012-9
Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044
ocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386
Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009
Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205
Prior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, 18, 797–810. https://doi.org/10.1016/j.jff.2014.12.018
Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115–122. https://doi.org/10.1016/j.foodchem.2016.09.207
Ravi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9
Roohi, R., Abedi, E., Hashemi, S. M. B., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55(May), 66–79. https://doi.org/10.1016/j.ifset.2019.05.014
Šeremet, D., Vugrinec, K., Petrović, P., Butorac, A., Kuzmić, S., Vojvodić Cebin, A., Mandura, A., Lovrić, M., Pjanović, R., & Komes, D. (2022). Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chemistry, 370(September 2021), 0–2. https://doi.org/10.1016/j.foodchem.2021.131257
Sharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs, 22(8), 1063–1079. https://doi.org/10.1517/13543784.2013.805744
Silva Paccha, E. S. (2021). Revisión bibliográfica sobre la relación entre la presencia de compuestos fenólicos en extractos vegetales y su actividad antioxidante determinada por el método ORAC. Universidad Central Del Ecuador, Facultad de Ciencias Químicas, Figura 1, 2–3.
Singh, H., Singh, T., Singh, A. P., Kaur, S., Arora, S., & Singh, B. (2022). Hepatoprotective effect of Physalis divaricata in paracetamol induced hepatotoxicity: In vitro, in silico and in vivo analysis. Journal of Ethnopharmacology, 290(January), 115024. https://doi.org/10.1016/j.jep.2022.115024
Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
Stanisavljević, I. T., Lazić, M. L., & Veljković, V. B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry, 14(5), 646–652. https://doi.org/10.1016/j.ultsonch.2006.10.003
Suang Ng, H., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889
Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100(July), 541–550. https://doi.org/10.1016/j.foodres.2017.07.052
Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.13603
Villena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238(November 2017), 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024
Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002
Vinatoru, Mircea. (2015). Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25(1), 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 127 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Administración
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83402/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83402/5/1088218102.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
3a68a3e0d84a5f93fd60d1fb0c6f4d2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886565148884992
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serna Cock, Liliana8df21e71eaf6c9df76be7ba1cc8224adTobar Delgado, Magaly Elizabethf95bcbc903b07690c49c1f33afd4b4d5Torres Castañeda, HarlenYarce Castellanos, Cristhian Javier2023-02-09T16:50:44Z2023-02-09T16:50:44Z2023-01-05https://repositorio.unal.edu.co/handle/unal/83402Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficas, tablasLos subproductos generados de la agroindustria alimentaria representan una fuente de fitonutrientes como los compuestos fenólicos, que pueden explorarse como bioactivos en la industria de productos naturales, generar valor agregado a los residuos y contribuir con las medidas de mitigación del impacto ambiental. Sin embargo, cuando los compuestos se extraen de la matriz de origen, son altamente susceptibles a la degradación por fenómenos fisicoquímicos. En este sentido, la presente investigación estudia la extracción asistida por ultrasonido de compuestos fenólicos obtenidos a partir del cáliz de uchuva (Physalis peruviana L.) y la formulación de sistemas liposomales como mecanismo de protección de la capacidad antioxidante. El desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g). Se demostró la capacidad antioxidante del extracto mediante diferentes mecanismos de acción y se encontró una concentración de Rutina de 18.932 mg/g. Se comprobó que los sistemas liposomales formulados protegieron la capacidad antioxidante del extracto de cáliz de P. peruviana. Los resultados de la optimización y caracterización de los liposomas evidenciaron sistemas con una distribución monodispersa y un diámetro medio de partícula en el rango nanométrico, se obtuvo una eficiencia de encapsulación de compuestos fenólicos de 68.32%, y porcentaje de liberación in vitro de 81.32%. (Texto tomado de la fuente)Food waste is a source of phytonutrients such as phenolic compounds, food waste can be explored as bioactive in the natural products industry, increase added value to waste and contribute to environmental impact mitigation measures. However, when the compounds are extracted from the original matrix, they are highly susceptible to degradation by physicochemical mechanisms. Accordingly, the present investigation studies the ultrasound-assisted extraction of phenolic compounds from the cape gooseberry (Physalis peruviana L.) calyx and the formulation of liposomal systems as a mechanism to protect antioxidant capacity. The methodological development includes the individual evaluation and optimization of the factors involved in the extraction of phenolic compounds, extraction of flavonols, evaluation of the antioxidant capacity in vitro and quantification of Rutin flavonol by HPLC. On the other hand, in the encapsulation method, formulation parameters of liposomal systems were optimized with respect to the response variables: particle diameter and encapsulation efficiency, in addition, the characterization of liposomes was performed regarding polydispersity index, electrical potential, antioxidant capacity. (ORAC) and in vitro release of phenolic compounds. Extraction for 10 min with aqueous ethanol (60%), wave amplitude (60%), liquid-solid ratio (40 mL/g) and particle size (210 µm) were the initial conditions for the extraction of flavonols from of the calyx of P. peruviana (74.6±1.4 mg RE/g), while, in the optimization of the extraction of phenolic compounds, the factors: wave amplitude (53%) liquid-solid ratio (32 mL/g) and particle size (200 µm) maximized the response (54.52 mg EAG/g). The antioxidant capacity of the extract was determined through different mechanisms of action and a Rutin concentration of 18,932 mg/g was found. In addition, liposomal systems protected the antioxidant capacity of the P. peruviana calyx extract. The results of the optimization and characterization of the liposomes showed systems with a monodisperse distribution and an average diameter of particles in the nanometric range, encapsulation efficiency of phenolic compounds of 68.32%, and percentage of in vitro release of 81.32%.MaestríaMagíster en Ingeniería AgroindustrialEl desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g).Ingeniería.Sede Palmiraxviii, 127 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira660 - Ingeniería química::664 - Tecnología de alimentosExtraction MethodsUltrasound Assisted ExtractionCompuestos fenólicosPhenolic compoundsUchuvaCape gooseberryPhysalis peruvianaExtractionCálizCalyxSeparaciónEncapsulaciónEncapsulationLiposomes (organelles)Liposomas (organulos)Residuos agroalimentariosLecitina de sojaCapacidad antioxidanteExtracciónRutinaMetodologías sosteniblesEncapsulación de antioxidantesSistemas coloidalesNanotecnologíaExtracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulaciónUltrasound-assisted extraction of phenolic compounds from golden berry calix(Physalis peruviana L.) and encapsulation in liposomal systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAltin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023Bernardo, J., Videira, R. A., Valentão, P., Veiga, F., & Andrade, P. B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 133(July), 110749. https://doi.org/10.1016/j.fct.2019.110749Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BBA - Reviews on Biomembranes, 906(3), 353–404. https://doi.org/10.1016/0304-4157(87)90017-7Bryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.07.025Abou Baker, D. H., & Mohammed, D. M. (2022). Polyphenolic rich fraction of Physalis peruviana calyces and its nano emulsion induce apoptosis by caspase 3 up-regulation and G2/M arrest in hepatocellular carcinoma. Food Bioscience, 50(PA), 102007. https://doi.org/10.1016/j.fbio.2022.102007Ahmadi, E., & Amir Hossein Elhamirad, Nasrin Mollania, M. R. S. A. (2021). Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. Science of Food and Agriculture. https://doi.org/https://doi.org/10.1002/jsfa.11544Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(December 2020), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119(May 2018), 665–674. https://doi.org/10.1016/j.foodres.2018.10.044Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology (Philadelphia), 53(14), 2192–2205. https://doi.org/10.1080/01496395.2018.1443137Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005Arruda, H. S., Neri-Numa, I. A., Kido, L. A., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75(August), 104203. https://doi.org/10.1016/j.jff.2020.104203Atzberger, P. J. (2006). Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 351(4–5), 225–230. https://doi.org/10.1016/j.physleta.2005.10.107Avendaño, W. A., Muñoz, H. F., Leal, L. J., Deaquiz, Y. A., & Castellanos, D. A. (2022). Physicochemical characterization of cape gooseberry (Physalis peruviana L.) fruits ecotype Colombia during preharvest development and growth. Journal of Food Science. https://doi.org/10.1111/1750-3841.16318Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019a). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019b). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054Bangham, A. D. (1961). Correlation between Surface Charge and Coagulant Action of Phospholipids. Nature.Batzri, S., & Korn, E. D. (1973). Single bilayer liposomes prepared without sonication. BBA - Biomembranes, 298(4), 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018ben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine and Pharmacotherapy, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001Bravo, K., Sepulveda Ortega, S., Lara Guzman, O., Navas Arboleda, A., & Osorio, E. (2011). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape Gooseberry ( Physalis peruviana L .). https://doi.org/10.1002/jsfa.6866Bueno, D. (2014). Liposomas, ¿la medicina del futuro? Naukas. https://naukas.com/2014/09/24/liposomas-la-medicina-del-futuroCardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66(April). https://doi.org/10.1016/j.jddst.2021.102797Castañeda-Reyes, E. D., Perea-Flores, M. de J., Davila-Ortiz, G., Lee, Y., & de Mejia, E. G. (2020). Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. International Journal of Nanomedicine, 15, 7627–7650. https://doi.org/10.2147/IJN.S263516Castro, J., Ocampo, Y., & Franco, L. (2015). Cape Gooseberry [Physalis peruviana L.] Los cálices mejoran la colitis inducida por ácido TNBS en ratas. Journal of Crohn’s and Colitis Advance Access.Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001Chebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094Chen, L. X., Xia, G. Y., Liu, Q. Y., Xie, Y. Y., & Qiu, F. (2014). Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 54, 31–35. https://doi.org/10.1016/j.bse.2013.12.030Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44(7), 2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005Domínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248Dong, B., An, L., Yang, X., Zhang, X., Zhang, J., Tuerhong, M., Jin, D. Q., Ohizumi, Y., Lee, D., Xu, J., & Guo, Y. (2019). Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 87(February), 585–593. https://doi.org/10.1016/j.bioorg.2019.03.051Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35(February), 100547. https://doi.org/10.1016/j.fbio.2020.100547El-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E. A., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224–232. https://doi.org/10.1016/j.chnaes.2021.04.006Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245(October 2017), 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593(September 2020), 120125. https://doi.org/10.1016/j.ijpharm.2020.120125Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022Franco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica, 27(1), 110–115. https://doi.org/10.7705/biomedica.v27i1.237Franco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192Fujita, M., & Yamaguchi, Y. (2010). Mesoscale modeling for self-organization of colloidal systems. Current Opinion in Colloid and Interface Science, 15(1–2), 8–12. https://doi.org/10.1016/j.cocis.2009.06.001Gabriele, M., Caddeo, C., Lubrano, V., Valenti, D., & Pucci, L. (2022). Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. Lwt, 156(September 2021), 113044. https://doi.org/10.1016/j.lwt.2021.113044Gad, F. I., Salem, E. G., Abdullatef, O. A., & Aborhyem, S. M. (2022). Potential hepatic-protective effect of Physalis peruviana against lead-induced toxicity in albino rats. 11(4), 1367–1381. https://doi.org/10.11591/ijphs.v11i4.21737Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003Gibis, M., Ruedt, C., & Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Research International, 88, 105–113. https://doi.org/10.1016/j.foodres.2016.02.010Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3(3), 246–254. https://doi.org/10.1039/c1fo10181aGibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014Guiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 20(S2), S470–S490. https://doi.org/10.1080/15538362.2020.1741056Guldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246(June 2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.10.025Gültekin-Özgüven, M., Karadaʇ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212. https://doi.org/10.1016/j.foodchem.2016.01.091Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). the Correlation Between Active Oxygens Scavenging and. Free Radical Biology & Medicine, 16(6), 845–850.Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51(January), 224–233. https://doi.org/10.1016/j.jddst.2019.03.006Hassan, H. A., Ghareb, N. E., & Azhari, G. F. (2017). Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 3(2), 27. https://doi.org/10.20517/2394-5079.2016.33He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36–48. https://doi.org/10.1016/j.apsb.2018.06.005Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5Jahanfar, S., Gahavami, M., Khosravi-Darani, K., Jahadi, M., & Mozafari, M. R. (2021). Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon, 7(12), e08632. https://doi.org/10.1016/j.heliyon.2021.e08632Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 67, 150–159. https://doi.org/10.1016/j.tifs.2017.06.016Krstić, Đ. D., Ristivojević, P. M., Gašić, U. M., Lazović, M., Fotirić Akšić, M. M., Milivojević, J., Morlock, G. E., Milojković-Opsenica, D. M., & Trifković, J. (2023). Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chemistry, 402(April 2022). https://doi.org/10.1016/j.foodchem.2022.134184Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851Lasic, D. D. (1995). Mechanisms of liposome formation. Journal of Liposome Research, 5(3), 431–441. https://doi.org/10.3109/08982109509010233Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology, 104(March), 177–189. https://doi.org/10.1016/j.tifs.2020.08.012Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64(May), 102605. https://doi.org/10.1016/j.jddst.2021.102605Manconi, M., Marongiu, F., Castangia, I., Manca, M. L., Caddeo, C., Tuberoso, C. I. G., D’hallewin, G., Bacchetta, G., & Fadda, A. M. (2016). Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 146, 910–917. https://doi.org/10.1016/j.colsurfb.2016.07.043Marín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245(July 2017), 525–535. https://doi.org/10.1016/j.foodchem.2017.10.141Marín, D. P. (2019). Nanoliposomas a partir de productos naturales infrautilizados y residuos agroalimentarios como ingrediente funcional en alimentos. Universidad Complutense de Madrid, Facueltad de Ciencias Biollógicas. https://eprints.ucm.es/id/eprint/57956/1/T41485.pdfMason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Ultrasound. In Emerging Technologies for Food Processing: An Overview. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-676757-5.50015-3Medina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, Á. (2017). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204. https://doi.org/10.1002/jsfa.9413Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., Banjac, V., Pojić, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/j.ultsonch.2021.105761Monkad, S. M., Embaby, H., & Swalilam, H. (2017). Techno-funnctional Department of Food Technology , Faculty of Agriculture , Suez Canal University , National Center for Radiation , Research and Technology ( NCRRT ), Atomic Energy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.11.117Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics (Vol. 3, Issue 4). https://doi.org/10.3390/pharmaceutics3040793N. Marasini, K.A. Ghaffar, M. Skwarczynski, T. (2017). Liposomes as a Vaccine Delivery System. In Micro- and Nanotechnology in Vaccine Development. Elsevier Inc. https://doi.org/10.1016/B978-0-323-39981-4/00012-9Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044ocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205Prior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, 18, 797–810. https://doi.org/10.1016/j.jff.2014.12.018Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115–122. https://doi.org/10.1016/j.foodchem.2016.09.207Ravi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9Roohi, R., Abedi, E., Hashemi, S. M. B., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55(May), 66–79. https://doi.org/10.1016/j.ifset.2019.05.014Šeremet, D., Vugrinec, K., Petrović, P., Butorac, A., Kuzmić, S., Vojvodić Cebin, A., Mandura, A., Lovrić, M., Pjanović, R., & Komes, D. (2022). Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chemistry, 370(September 2021), 0–2. https://doi.org/10.1016/j.foodchem.2021.131257Sharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs, 22(8), 1063–1079. https://doi.org/10.1517/13543784.2013.805744Silva Paccha, E. S. (2021). Revisión bibliográfica sobre la relación entre la presencia de compuestos fenólicos en extractos vegetales y su actividad antioxidante determinada por el método ORAC. Universidad Central Del Ecuador, Facultad de Ciencias Químicas, Figura 1, 2–3.Singh, H., Singh, T., Singh, A. P., Kaur, S., Arora, S., & Singh, B. (2022). Hepatoprotective effect of Physalis divaricata in paracetamol induced hepatotoxicity: In vitro, in silico and in vivo analysis. Journal of Ethnopharmacology, 290(January), 115024. https://doi.org/10.1016/j.jep.2022.115024Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008Stanisavljević, I. T., Lazić, M. L., & Veljković, V. B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry, 14(5), 646–652. https://doi.org/10.1016/j.ultsonch.2006.10.003Suang Ng, H., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100(July), 541–550. https://doi.org/10.1016/j.foodres.2017.07.052Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.13603Villena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238(November 2017), 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002Vinatoru, Mircea. (2015). Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25(1), 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83402/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1088218102.2023.pdf1088218102.2023.pdfTesis Maestría en Ingeniería Agroindustrialapplication/pdf3379494https://repositorio.unal.edu.co/bitstream/unal/83402/5/1088218102.2023.pdf3a68a3e0d84a5f93fd60d1fb0c6f4d2dMD55unal/83402oai:repositorio.unal.edu.co:unal/834022023-07-19 09:58:47.291Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=