Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación
Ilustraciones, gráficas, tablas
- Autores:
-
Tobar Delgado, Magaly Elizabeth
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83402
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
Extraction Methods
Ultrasound Assisted Extraction
Compuestos fenólicos
Phenolic compounds
Uchuva
Cape gooseberry
Physalis peruviana
Extraction
Cáliz
Calyx
Separación
Encapsulación
Encapsulation
Liposomes (organelles)
Liposomas (organulos)
Residuos agroalimentarios
Lecitina de soja
Capacidad antioxidante
Extracción
Rutina
Metodologías sostenibles
Encapsulación de antioxidantes
Sistemas coloidales
Nanotecnología
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_2b40a69f082e7ea6a369d73333781689 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83402 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
dc.title.translated.eng.fl_str_mv |
Ultrasound-assisted extraction of phenolic compounds from golden berry calix(Physalis peruviana L.) and encapsulation in liposomal systems |
title |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
spellingShingle |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación 660 - Ingeniería química::664 - Tecnología de alimentos Extraction Methods Ultrasound Assisted Extraction Compuestos fenólicos Phenolic compounds Uchuva Cape gooseberry Physalis peruviana Extraction Cáliz Calyx Separación Encapsulación Encapsulation Liposomes (organelles) Liposomas (organulos) Residuos agroalimentarios Lecitina de soja Capacidad antioxidante Extracción Rutina Metodologías sostenibles Encapsulación de antioxidantes Sistemas coloidales Nanotecnología |
title_short |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
title_full |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
title_fullStr |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
title_full_unstemmed |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
title_sort |
Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación |
dc.creator.fl_str_mv |
Tobar Delgado, Magaly Elizabeth |
dc.contributor.advisor.none.fl_str_mv |
Serna Cock, Liliana |
dc.contributor.author.none.fl_str_mv |
Tobar Delgado, Magaly Elizabeth |
dc.contributor.educationalvalidator.none.fl_str_mv |
Torres Castañeda, Harlen Yarce Castellanos, Cristhian Javier |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos Extraction Methods Ultrasound Assisted Extraction Compuestos fenólicos Phenolic compounds Uchuva Cape gooseberry Physalis peruviana Extraction Cáliz Calyx Separación Encapsulación Encapsulation Liposomes (organelles) Liposomas (organulos) Residuos agroalimentarios Lecitina de soja Capacidad antioxidante Extracción Rutina Metodologías sostenibles Encapsulación de antioxidantes Sistemas coloidales Nanotecnología |
dc.subject.other.none.fl_str_mv |
Extraction Methods Ultrasound Assisted Extraction |
dc.subject.agrovoc.none.fl_str_mv |
Compuestos fenólicos Phenolic compounds Uchuva Cape gooseberry Physalis peruviana Extraction Cáliz Calyx Separación Encapsulación Encapsulation Liposomes (organelles) Liposomas (organulos) |
dc.subject.proposal.spa.fl_str_mv |
Residuos agroalimentarios Lecitina de soja Capacidad antioxidante Extracción Rutina Metodologías sostenibles Encapsulación de antioxidantes Sistemas coloidales Nanotecnología |
description |
Ilustraciones, gráficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-09T16:50:44Z |
dc.date.available.none.fl_str_mv |
2023-02-09T16:50:44Z |
dc.date.issued.none.fl_str_mv |
2023-01-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83402 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83402 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005 Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023 Bernardo, J., Videira, R. A., Valentão, P., Veiga, F., & Andrade, P. B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 133(July), 110749. https://doi.org/10.1016/j.fct.2019.110749 Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BBA - Reviews on Biomembranes, 906(3), 353–404. https://doi.org/10.1016/0304-4157(87)90017-7 Bryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.07.025 Abou Baker, D. H., & Mohammed, D. M. (2022). Polyphenolic rich fraction of Physalis peruviana calyces and its nano emulsion induce apoptosis by caspase 3 up-regulation and G2/M arrest in hepatocellular carcinoma. Food Bioscience, 50(PA), 102007. https://doi.org/10.1016/j.fbio.2022.102007 Ahmadi, E., & Amir Hossein Elhamirad, Nasrin Mollania, M. R. S. A. (2021). Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. Science of Food and Agriculture. https://doi.org/https://doi.org/10.1002/jsfa.11544 Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(December 2020), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011 Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119(May 2018), 665–674. https://doi.org/10.1016/j.foodres.2018.10.044 Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology (Philadelphia), 53(14), 2192–2205. https://doi.org/10.1080/01496395.2018.1443137 Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005 Arruda, H. S., Neri-Numa, I. A., Kido, L. A., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75(August), 104203. https://doi.org/10.1016/j.jff.2020.104203 Atzberger, P. J. (2006). Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 351(4–5), 225–230. https://doi.org/10.1016/j.physleta.2005.10.107 Avendaño, W. A., Muñoz, H. F., Leal, L. J., Deaquiz, Y. A., & Castellanos, D. A. (2022). Physicochemical characterization of cape gooseberry (Physalis peruviana L.) fruits ecotype Colombia during preharvest development and growth. Journal of Food Science. https://doi.org/10.1111/1750-3841.16318 Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023 Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019a). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054 Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019b). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054 Bangham, A. D. (1961). Correlation between Surface Charge and Coagulant Action of Phospholipids. Nature. Batzri, S., & Korn, E. D. (1973). Single bilayer liposomes prepared without sonication. BBA - Biomembranes, 298(4), 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2 Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018 ben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine and Pharmacotherapy, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001 Bravo, K., Sepulveda Ortega, S., Lara Guzman, O., Navas Arboleda, A., & Osorio, E. (2011). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape Gooseberry ( Physalis peruviana L .). https://doi.org/10.1002/jsfa.6866 Bueno, D. (2014). Liposomas, ¿la medicina del futuro? Naukas. https://naukas.com/2014/09/24/liposomas-la-medicina-del-futuro Cardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66(April). https://doi.org/10.1016/j.jddst.2021.102797 Castañeda-Reyes, E. D., Perea-Flores, M. de J., Davila-Ortiz, G., Lee, Y., & de Mejia, E. G. (2020). Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. International Journal of Nanomedicine, 15, 7627–7650. https://doi.org/10.2147/IJN.S263516 Castro, J., Ocampo, Y., & Franco, L. (2015). Cape Gooseberry [Physalis peruviana L.] Los cálices mejoran la colitis inducida por ácido TNBS en ratas. Journal of Crohn’s and Colitis Advance Access. Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001 Chebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094 Chen, L. X., Xia, G. Y., Liu, Q. Y., Xie, Y. Y., & Qiu, F. (2014). Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 54, 31–35. https://doi.org/10.1016/j.bse.2013.12.030 Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036 Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44(7), 2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003 Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106 Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005 Domínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248 Dong, B., An, L., Yang, X., Zhang, X., Zhang, J., Tuerhong, M., Jin, D. Q., Ohizumi, Y., Lee, D., Xu, J., & Guo, Y. (2019). Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 87(February), 585–593. https://doi.org/10.1016/j.bioorg.2019.03.051 Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35(February), 100547. https://doi.org/10.1016/j.fbio.2020.100547 El-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E. A., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224–232. https://doi.org/10.1016/j.chnaes.2021.04.006 Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245(October 2017), 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120 Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003 Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593(September 2020), 120125. https://doi.org/10.1016/j.ijpharm.2020.120125 Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022 Franco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica, 27(1), 110–115. https://doi.org/10.7705/biomedica.v27i1.237 Franco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192 Fujita, M., & Yamaguchi, Y. (2010). Mesoscale modeling for self-organization of colloidal systems. Current Opinion in Colloid and Interface Science, 15(1–2), 8–12. https://doi.org/10.1016/j.cocis.2009.06.001 Gabriele, M., Caddeo, C., Lubrano, V., Valenti, D., & Pucci, L. (2022). Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. Lwt, 156(September 2021), 113044. https://doi.org/10.1016/j.lwt.2021.113044 Gad, F. I., Salem, E. G., Abdullatef, O. A., & Aborhyem, S. M. (2022). Potential hepatic-protective effect of Physalis peruviana against lead-induced toxicity in albino rats. 11(4), 1367–1381. https://doi.org/10.11591/ijphs.v11i4.21737 Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003 Gibis, M., Ruedt, C., & Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Research International, 88, 105–113. https://doi.org/10.1016/j.foodres.2016.02.010 Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3(3), 246–254. https://doi.org/10.1039/c1fo10181a Gibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014 Guiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 20(S2), S470–S490. https://doi.org/10.1080/15538362.2020.1741056 Guldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246(June 2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.10.025 Gültekin-Özgüven, M., Karadaʇ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212. https://doi.org/10.1016/j.foodchem.2016.01.091 Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). the Correlation Between Active Oxygens Scavenging and. Free Radical Biology & Medicine, 16(6), 845–850. Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51(January), 224–233. https://doi.org/10.1016/j.jddst.2019.03.006 Hassan, H. A., Ghareb, N. E., & Azhari, G. F. (2017). Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 3(2), 27. https://doi.org/10.20517/2394-5079.2016.33 He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36–48. https://doi.org/10.1016/j.apsb.2018.06.005 Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5 Jahanfar, S., Gahavami, M., Khosravi-Darani, K., Jahadi, M., & Mozafari, M. R. (2021). Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon, 7(12), e08632. https://doi.org/10.1016/j.heliyon.2021.e08632 Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 67, 150–159. https://doi.org/10.1016/j.tifs.2017.06.016 Krstić, Đ. D., Ristivojević, P. M., Gašić, U. M., Lazović, M., Fotirić Akšić, M. M., Milivojević, J., Morlock, G. E., Milojković-Opsenica, D. M., & Trifković, J. (2023). Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chemistry, 402(April 2022). https://doi.org/10.1016/j.foodchem.2022.134184 Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851 Lasic, D. D. (1995). Mechanisms of liposome formation. Journal of Liposome Research, 5(3), 431–441. https://doi.org/10.3109/08982109509010233 Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology, 104(March), 177–189. https://doi.org/10.1016/j.tifs.2020.08.012 Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64(May), 102605. https://doi.org/10.1016/j.jddst.2021.102605 Manconi, M., Marongiu, F., Castangia, I., Manca, M. L., Caddeo, C., Tuberoso, C. I. G., D’hallewin, G., Bacchetta, G., & Fadda, A. M. (2016). Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 146, 910–917. https://doi.org/10.1016/j.colsurfb.2016.07.043 Marín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245(July 2017), 525–535. https://doi.org/10.1016/j.foodchem.2017.10.141 Marín, D. P. (2019). Nanoliposomas a partir de productos naturales infrautilizados y residuos agroalimentarios como ingrediente funcional en alimentos. Universidad Complutense de Madrid, Facueltad de Ciencias Biollógicas. https://eprints.ucm.es/id/eprint/57956/1/T41485.pdf Mason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Ultrasound. In Emerging Technologies for Food Processing: An Overview. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-676757-5.50015-3 Medina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, Á. (2017). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204. https://doi.org/10.1002/jsfa.9413 Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., Banjac, V., Pojić, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/j.ultsonch.2021.105761 Monkad, S. M., Embaby, H., & Swalilam, H. (2017). Techno-funnctional Department of Food Technology , Faculty of Agriculture , Suez Canal University , National Center for Radiation , Research and Technology ( NCRRT ), Atomic Energy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.11.117 Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics (Vol. 3, Issue 4). https://doi.org/10.3390/pharmaceutics3040793 N. Marasini, K.A. Ghaffar, M. Skwarczynski, T. (2017). Liposomes as a Vaccine Delivery System. In Micro- and Nanotechnology in Vaccine Development. Elsevier Inc. https://doi.org/10.1016/B978-0-323-39981-4/00012-9 Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044 ocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386 Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009 Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205 Prior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, 18, 797–810. https://doi.org/10.1016/j.jff.2014.12.018 Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115–122. https://doi.org/10.1016/j.foodchem.2016.09.207 Ravi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9 Roohi, R., Abedi, E., Hashemi, S. M. B., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55(May), 66–79. https://doi.org/10.1016/j.ifset.2019.05.014 Šeremet, D., Vugrinec, K., Petrović, P., Butorac, A., Kuzmić, S., Vojvodić Cebin, A., Mandura, A., Lovrić, M., Pjanović, R., & Komes, D. (2022). Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chemistry, 370(September 2021), 0–2. https://doi.org/10.1016/j.foodchem.2021.131257 Sharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs, 22(8), 1063–1079. https://doi.org/10.1517/13543784.2013.805744 Silva Paccha, E. S. (2021). Revisión bibliográfica sobre la relación entre la presencia de compuestos fenólicos en extractos vegetales y su actividad antioxidante determinada por el método ORAC. Universidad Central Del Ecuador, Facultad de Ciencias Químicas, Figura 1, 2–3. Singh, H., Singh, T., Singh, A. P., Kaur, S., Arora, S., & Singh, B. (2022). Hepatoprotective effect of Physalis divaricata in paracetamol induced hepatotoxicity: In vitro, in silico and in vivo analysis. Journal of Ethnopharmacology, 290(January), 115024. https://doi.org/10.1016/j.jep.2022.115024 Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008 Stanisavljević, I. T., Lazić, M. L., & Veljković, V. B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry, 14(5), 646–652. https://doi.org/10.1016/j.ultsonch.2006.10.003 Suang Ng, H., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889 Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100(July), 541–550. https://doi.org/10.1016/j.foodres.2017.07.052 Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.13603 Villena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238(November 2017), 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024 Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002 Vinatoru, Mircea. (2015). Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25(1), 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 127 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83402/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83402/5/1088218102.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83402/6/1088218102.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 3a68a3e0d84a5f93fd60d1fb0c6f4d2d 0b051625d9b4d9ba4ab756645eb8c9e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090014487740416 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serna Cock, Liliana8df21e71eaf6c9df76be7ba1cc8224adTobar Delgado, Magaly Elizabethf95bcbc903b07690c49c1f33afd4b4d5Torres Castañeda, HarlenYarce Castellanos, Cristhian Javier2023-02-09T16:50:44Z2023-02-09T16:50:44Z2023-01-05https://repositorio.unal.edu.co/handle/unal/83402Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficas, tablasLos subproductos generados de la agroindustria alimentaria representan una fuente de fitonutrientes como los compuestos fenólicos, que pueden explorarse como bioactivos en la industria de productos naturales, generar valor agregado a los residuos y contribuir con las medidas de mitigación del impacto ambiental. Sin embargo, cuando los compuestos se extraen de la matriz de origen, son altamente susceptibles a la degradación por fenómenos fisicoquímicos. En este sentido, la presente investigación estudia la extracción asistida por ultrasonido de compuestos fenólicos obtenidos a partir del cáliz de uchuva (Physalis peruviana L.) y la formulación de sistemas liposomales como mecanismo de protección de la capacidad antioxidante. El desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g). Se demostró la capacidad antioxidante del extracto mediante diferentes mecanismos de acción y se encontró una concentración de Rutina de 18.932 mg/g. Se comprobó que los sistemas liposomales formulados protegieron la capacidad antioxidante del extracto de cáliz de P. peruviana. Los resultados de la optimización y caracterización de los liposomas evidenciaron sistemas con una distribución monodispersa y un diámetro medio de partícula en el rango nanométrico, se obtuvo una eficiencia de encapsulación de compuestos fenólicos de 68.32%, y porcentaje de liberación in vitro de 81.32%. (Texto tomado de la fuente)Food waste is a source of phytonutrients such as phenolic compounds, food waste can be explored as bioactive in the natural products industry, increase added value to waste and contribute to environmental impact mitigation measures. However, when the compounds are extracted from the original matrix, they are highly susceptible to degradation by physicochemical mechanisms. Accordingly, the present investigation studies the ultrasound-assisted extraction of phenolic compounds from the cape gooseberry (Physalis peruviana L.) calyx and the formulation of liposomal systems as a mechanism to protect antioxidant capacity. The methodological development includes the individual evaluation and optimization of the factors involved in the extraction of phenolic compounds, extraction of flavonols, evaluation of the antioxidant capacity in vitro and quantification of Rutin flavonol by HPLC. On the other hand, in the encapsulation method, formulation parameters of liposomal systems were optimized with respect to the response variables: particle diameter and encapsulation efficiency, in addition, the characterization of liposomes was performed regarding polydispersity index, electrical potential, antioxidant capacity. (ORAC) and in vitro release of phenolic compounds. Extraction for 10 min with aqueous ethanol (60%), wave amplitude (60%), liquid-solid ratio (40 mL/g) and particle size (210 µm) were the initial conditions for the extraction of flavonols from of the calyx of P. peruviana (74.6±1.4 mg RE/g), while, in the optimization of the extraction of phenolic compounds, the factors: wave amplitude (53%) liquid-solid ratio (32 mL/g) and particle size (200 µm) maximized the response (54.52 mg EAG/g). The antioxidant capacity of the extract was determined through different mechanisms of action and a Rutin concentration of 18,932 mg/g was found. In addition, liposomal systems protected the antioxidant capacity of the P. peruviana calyx extract. The results of the optimization and characterization of the liposomes showed systems with a monodisperse distribution and an average diameter of particles in the nanometric range, encapsulation efficiency of phenolic compounds of 68.32%, and percentage of in vitro release of 81.32%.MaestríaMagíster en Ingeniería AgroindustrialEl desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g).Ingeniería.Sede Palmiraxviii, 127 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira660 - Ingeniería química::664 - Tecnología de alimentosExtraction MethodsUltrasound Assisted ExtractionCompuestos fenólicosPhenolic compoundsUchuvaCape gooseberryPhysalis peruvianaExtractionCálizCalyxSeparaciónEncapsulaciónEncapsulationLiposomes (organelles)Liposomas (organulos)Residuos agroalimentariosLecitina de sojaCapacidad antioxidanteExtracciónRutinaMetodologías sosteniblesEncapsulación de antioxidantesSistemas coloidalesNanotecnologíaExtracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulaciónUltrasound-assisted extraction of phenolic compounds from golden berry calix(Physalis peruviana L.) and encapsulation in liposomal systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAltin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023Bernardo, J., Videira, R. A., Valentão, P., Veiga, F., & Andrade, P. B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 133(July), 110749. https://doi.org/10.1016/j.fct.2019.110749Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BBA - Reviews on Biomembranes, 906(3), 353–404. https://doi.org/10.1016/0304-4157(87)90017-7Bryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.07.025Abou Baker, D. H., & Mohammed, D. M. (2022). Polyphenolic rich fraction of Physalis peruviana calyces and its nano emulsion induce apoptosis by caspase 3 up-regulation and G2/M arrest in hepatocellular carcinoma. Food Bioscience, 50(PA), 102007. https://doi.org/10.1016/j.fbio.2022.102007Ahmadi, E., & Amir Hossein Elhamirad, Nasrin Mollania, M. R. S. A. (2021). Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. Science of Food and Agriculture. https://doi.org/https://doi.org/10.1002/jsfa.11544Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(December 2020), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119(May 2018), 665–674. https://doi.org/10.1016/j.foodres.2018.10.044Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology (Philadelphia), 53(14), 2192–2205. https://doi.org/10.1080/01496395.2018.1443137Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005Arruda, H. S., Neri-Numa, I. A., Kido, L. A., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75(August), 104203. https://doi.org/10.1016/j.jff.2020.104203Atzberger, P. J. (2006). Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 351(4–5), 225–230. https://doi.org/10.1016/j.physleta.2005.10.107Avendaño, W. A., Muñoz, H. F., Leal, L. J., Deaquiz, Y. A., & Castellanos, D. A. (2022). Physicochemical characterization of cape gooseberry (Physalis peruviana L.) fruits ecotype Colombia during preharvest development and growth. Journal of Food Science. https://doi.org/10.1111/1750-3841.16318Baldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019a). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019b). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054Bangham, A. D. (1961). Correlation between Surface Charge and Coagulant Action of Phospholipids. Nature.Batzri, S., & Korn, E. D. (1973). Single bilayer liposomes prepared without sonication. BBA - Biomembranes, 298(4), 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018ben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine and Pharmacotherapy, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001Bravo, K., Sepulveda Ortega, S., Lara Guzman, O., Navas Arboleda, A., & Osorio, E. (2011). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape Gooseberry ( Physalis peruviana L .). https://doi.org/10.1002/jsfa.6866Bueno, D. (2014). Liposomas, ¿la medicina del futuro? Naukas. https://naukas.com/2014/09/24/liposomas-la-medicina-del-futuroCardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66(April). https://doi.org/10.1016/j.jddst.2021.102797Castañeda-Reyes, E. D., Perea-Flores, M. de J., Davila-Ortiz, G., Lee, Y., & de Mejia, E. G. (2020). Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. International Journal of Nanomedicine, 15, 7627–7650. https://doi.org/10.2147/IJN.S263516Castro, J., Ocampo, Y., & Franco, L. (2015). Cape Gooseberry [Physalis peruviana L.] Los cálices mejoran la colitis inducida por ácido TNBS en ratas. Journal of Crohn’s and Colitis Advance Access.Chan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001Chebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094Chen, L. X., Xia, G. Y., Liu, Q. Y., Xie, Y. Y., & Qiu, F. (2014). Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 54, 31–35. https://doi.org/10.1016/j.bse.2013.12.030Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44(7), 2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005Domínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248Dong, B., An, L., Yang, X., Zhang, X., Zhang, J., Tuerhong, M., Jin, D. Q., Ohizumi, Y., Lee, D., Xu, J., & Guo, Y. (2019). Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 87(February), 585–593. https://doi.org/10.1016/j.bioorg.2019.03.051Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35(February), 100547. https://doi.org/10.1016/j.fbio.2020.100547El-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E. A., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224–232. https://doi.org/10.1016/j.chnaes.2021.04.006Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245(October 2017), 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003Figueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593(September 2020), 120125. https://doi.org/10.1016/j.ijpharm.2020.120125Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022Franco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica, 27(1), 110–115. https://doi.org/10.7705/biomedica.v27i1.237Franco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192Fujita, M., & Yamaguchi, Y. (2010). Mesoscale modeling for self-organization of colloidal systems. Current Opinion in Colloid and Interface Science, 15(1–2), 8–12. https://doi.org/10.1016/j.cocis.2009.06.001Gabriele, M., Caddeo, C., Lubrano, V., Valenti, D., & Pucci, L. (2022). Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. Lwt, 156(September 2021), 113044. https://doi.org/10.1016/j.lwt.2021.113044Gad, F. I., Salem, E. G., Abdullatef, O. A., & Aborhyem, S. M. (2022). Potential hepatic-protective effect of Physalis peruviana against lead-induced toxicity in albino rats. 11(4), 1367–1381. https://doi.org/10.11591/ijphs.v11i4.21737Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003Gibis, M., Ruedt, C., & Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Research International, 88, 105–113. https://doi.org/10.1016/j.foodres.2016.02.010Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3(3), 246–254. https://doi.org/10.1039/c1fo10181aGibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014Guiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 20(S2), S470–S490. https://doi.org/10.1080/15538362.2020.1741056Guldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246(June 2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.10.025Gültekin-Özgüven, M., Karadaʇ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212. https://doi.org/10.1016/j.foodchem.2016.01.091Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). the Correlation Between Active Oxygens Scavenging and. Free Radical Biology & Medicine, 16(6), 845–850.Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51(January), 224–233. https://doi.org/10.1016/j.jddst.2019.03.006Hassan, H. A., Ghareb, N. E., & Azhari, G. F. (2017). Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 3(2), 27. https://doi.org/10.20517/2394-5079.2016.33He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36–48. https://doi.org/10.1016/j.apsb.2018.06.005Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5Jahanfar, S., Gahavami, M., Khosravi-Darani, K., Jahadi, M., & Mozafari, M. R. (2021). Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon, 7(12), e08632. https://doi.org/10.1016/j.heliyon.2021.e08632Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 67, 150–159. https://doi.org/10.1016/j.tifs.2017.06.016Krstić, Đ. D., Ristivojević, P. M., Gašić, U. M., Lazović, M., Fotirić Akšić, M. M., Milivojević, J., Morlock, G. E., Milojković-Opsenica, D. M., & Trifković, J. (2023). Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chemistry, 402(April 2022). https://doi.org/10.1016/j.foodchem.2022.134184Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851Lasic, D. D. (1995). Mechanisms of liposome formation. Journal of Liposome Research, 5(3), 431–441. https://doi.org/10.3109/08982109509010233Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology, 104(March), 177–189. https://doi.org/10.1016/j.tifs.2020.08.012Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64(May), 102605. https://doi.org/10.1016/j.jddst.2021.102605Manconi, M., Marongiu, F., Castangia, I., Manca, M. L., Caddeo, C., Tuberoso, C. I. G., D’hallewin, G., Bacchetta, G., & Fadda, A. M. (2016). Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 146, 910–917. https://doi.org/10.1016/j.colsurfb.2016.07.043Marín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245(July 2017), 525–535. https://doi.org/10.1016/j.foodchem.2017.10.141Marín, D. P. (2019). Nanoliposomas a partir de productos naturales infrautilizados y residuos agroalimentarios como ingrediente funcional en alimentos. Universidad Complutense de Madrid, Facueltad de Ciencias Biollógicas. https://eprints.ucm.es/id/eprint/57956/1/T41485.pdfMason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Ultrasound. In Emerging Technologies for Food Processing: An Overview. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-676757-5.50015-3Medina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, Á. (2017). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204. https://doi.org/10.1002/jsfa.9413Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., Banjac, V., Pojić, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/j.ultsonch.2021.105761Monkad, S. M., Embaby, H., & Swalilam, H. (2017). Techno-funnctional Department of Food Technology , Faculty of Agriculture , Suez Canal University , National Center for Radiation , Research and Technology ( NCRRT ), Atomic Energy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.11.117Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics (Vol. 3, Issue 4). https://doi.org/10.3390/pharmaceutics3040793N. Marasini, K.A. Ghaffar, M. Skwarczynski, T. (2017). Liposomes as a Vaccine Delivery System. In Micro- and Nanotechnology in Vaccine Development. Elsevier Inc. https://doi.org/10.1016/B978-0-323-39981-4/00012-9Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044ocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205Prior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, 18, 797–810. https://doi.org/10.1016/j.jff.2014.12.018Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115–122. https://doi.org/10.1016/j.foodchem.2016.09.207Ravi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9Roohi, R., Abedi, E., Hashemi, S. M. B., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55(May), 66–79. https://doi.org/10.1016/j.ifset.2019.05.014Šeremet, D., Vugrinec, K., Petrović, P., Butorac, A., Kuzmić, S., Vojvodić Cebin, A., Mandura, A., Lovrić, M., Pjanović, R., & Komes, D. (2022). Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chemistry, 370(September 2021), 0–2. https://doi.org/10.1016/j.foodchem.2021.131257Sharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs, 22(8), 1063–1079. https://doi.org/10.1517/13543784.2013.805744Silva Paccha, E. S. (2021). Revisión bibliográfica sobre la relación entre la presencia de compuestos fenólicos en extractos vegetales y su actividad antioxidante determinada por el método ORAC. Universidad Central Del Ecuador, Facultad de Ciencias Químicas, Figura 1, 2–3.Singh, H., Singh, T., Singh, A. P., Kaur, S., Arora, S., & Singh, B. (2022). Hepatoprotective effect of Physalis divaricata in paracetamol induced hepatotoxicity: In vitro, in silico and in vivo analysis. Journal of Ethnopharmacology, 290(January), 115024. https://doi.org/10.1016/j.jep.2022.115024Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008Stanisavljević, I. T., Lazić, M. L., & Veljković, V. B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry, 14(5), 646–652. https://doi.org/10.1016/j.ultsonch.2006.10.003Suang Ng, H., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100(July), 541–550. https://doi.org/10.1016/j.foodres.2017.07.052Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.13603Villena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238(November 2017), 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002Vinatoru, Mircea. (2015). Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25(1), 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83402/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1088218102.2023.pdf1088218102.2023.pdfTesis Maestría en Ingeniería Agroindustrialapplication/pdf3379494https://repositorio.unal.edu.co/bitstream/unal/83402/5/1088218102.2023.pdf3a68a3e0d84a5f93fd60d1fb0c6f4d2dMD55THUMBNAIL1088218102.2023.pdf.jpg1088218102.2023.pdf.jpgGenerated Thumbnailimage/jpeg5822https://repositorio.unal.edu.co/bitstream/unal/83402/6/1088218102.2023.pdf.jpg0b051625d9b4d9ba4ab756645eb8c9e1MD56unal/83402oai:repositorio.unal.edu.co:unal/834022024-08-17 23:13:03.028Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |