Ecuaciones dispersivas no lineales en espacios de Sobolev con peso
En este trabajo abordaremos, de una forma alternativa a la realizada por Fonseca, Linares y Ponce en [7], el buen planteamiento local del problema de Cauchy asociado a la ecuación Korteweg-de Vries (@tu(x; t) + @3 xu(x; t) + u(x; t)@xu(x; t) = 0; x; t 2 R: u(x; 0) = u0(x): Con base en la fórmula de...
- Autores:
-
Muñoz García, Alexánder
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/63910
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/63910
http://bdigital.unal.edu.co/64545/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Matemáticas
Ecuaciones diferenciales
Problema de Cauchy
Ecuación KdV
Ecuaciones dispersivas
Ecuaciones no lineales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | En este trabajo abordaremos, de una forma alternativa a la realizada por Fonseca, Linares y Ponce en [7], el buen planteamiento local del problema de Cauchy asociado a la ecuación Korteweg-de Vries (@tu(x; t) + @3 xu(x; t) + u(x; t)@xu(x; t) = 0; x; t 2 R: u(x; 0) = u0(x): Con base en la fórmula de Duhamel y utilizando el teorema de punto fijo de Banach demostraremos la existencia y unicidad de solución en un subconjunto del espacio de Sobolev con peso Zs;r := Hs(R)\L2(jxjrdx). Para esta finalidad emplearemos estimativas lineales sobre el semigrupo unitario asociado y su derivada de Stein, argumentos similares a las ideas de Kenig, Ponce y Vega y un lema de interpolación de Nahas y Ponce. La dependencia continua del dato unicial u0 se deriva directamente del método empleado. |
---|