Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass

Avocado ripening and many of its quality parameters are influenced by ethylene production and pathologies such as anthracnose, whose management represents a challenge for the industry since they affect the commercialization of this fruit. An alternative to control ethylene production is the use of n...

Full description

Autores:
Nevado Velásquez, Paula Andrea
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85740
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85740
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Aguacate - calidad
Agricultura - Investigaciones
Cultivos alimenticios
Producción agropecuaria
Nanotecnología
Nanopartículas de TiO2-Ag
poscosecha
fotocatálisis
aguacate Hass
actividad antimicrobiana
control de etileno
autocombustión en solución
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_25e5e977c2218bb3e45d2b67be88f471
oai_identifier_str oai:repositorio.unal.edu.co:unal/85740
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
dc.title.translated.eng.fl_str_mv Nanotechnology-based alternatives in the control of ethylene and/or antimicrobial activity to improve the postharvest life of Hass avocado.
title Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
spellingShingle Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Aguacate - calidad
Agricultura - Investigaciones
Cultivos alimenticios
Producción agropecuaria
Nanotecnología
Nanopartículas de TiO2-Ag
poscosecha
fotocatálisis
aguacate Hass
actividad antimicrobiana
control de etileno
autocombustión en solución
title_short Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
title_full Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
title_fullStr Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
title_full_unstemmed Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
title_sort Alternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate Hass
dc.creator.fl_str_mv Nevado Velásquez, Paula Andrea
dc.contributor.advisor.none.fl_str_mv Paucar Álvarez, Carlos Guillermo
García García, Claudia Patricia
dc.contributor.author.none.fl_str_mv Nevado Velásquez, Paula Andrea
dc.contributor.researchgroup.spa.fl_str_mv Materiales Cerámicos y Vítreos
dc.contributor.orcid.spa.fl_str_mv Nevado Velásquez, Paula Andrea [0009-0009-2211-589X]
dc.contributor.googlescholar.spa.fl_str_mv Paula Andrea Nevado Velasquez
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Aguacate - calidad
Agricultura - Investigaciones
Cultivos alimenticios
Producción agropecuaria
Nanotecnología
Nanopartículas de TiO2-Ag
poscosecha
fotocatálisis
aguacate Hass
actividad antimicrobiana
control de etileno
autocombustión en solución
dc.subject.lemb.none.fl_str_mv Aguacate - calidad
Agricultura - Investigaciones
Cultivos alimenticios
Producción agropecuaria
Nanotecnología
dc.subject.proposal.spa.fl_str_mv Nanopartículas de TiO2-Ag
poscosecha
fotocatálisis
aguacate Hass
actividad antimicrobiana
control de etileno
autocombustión en solución
description Avocado ripening and many of its quality parameters are influenced by ethylene production and pathologies such as anthracnose, whose management represents a challenge for the industry since they affect the commercialization of this fruit. An alternative to control ethylene production is the use of nanoparticles with photocatalytic behavior that inhibit ethylene production through reactions. Thus, in this work, TiO2 particles doped with different concentrations of Ag were synthesized by the self-combustion technique in solution. The obtained particles were subjected to their respective morphological characterization using techniques such as XRD and SEM. Agglomerates of TiO2 particles were obtained in anatase phase, with 0.75%, 1.5% and 3.5% mol Ag of approximately 109.5 nm and in mixed anatase-ruthyl phase with 0% and 4.5% mol Ag with average sizes of 184.03 and 205.06 nm. The presence of Ag was confirmed by EDS, and through FTIR assays the bonds associated with the obtained material were identified (O-H and Ag interactions, Ti-O vibrations, O-H narrowing). The particle size distribution analysis and BET analysis, allow concluding that as the average agglomerate size decreases, there is an increase in the surface area, which is an important element for the photocatalytic activity. It was found that TiO2 particles with 0.75% mol Ag were the ones that presented the best response and therefore, they were taken as a reference to perform ethylene removal tests, antifungal activity and simulated transport tests. The presence of TiO2 particles doped with Ag enabled ethylene removal, antifungal activity and a delay in the ripening process of Hass avocado when in contact with the material.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08
dc.date.accessioned.none.fl_str_mv 2024-02-28T21:30:39Z
dc.date.available.none.fl_str_mv 2024-02-28T21:30:39Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85740
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85740
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Rivera, S. A.; Ferreyra, R.; Robledo, P.; Selles, G.; Arpaia, M. L.; Saavedra, J.; Defilippi, B. G. Identification of Preharvest Factors Determining Postharvest Ripening Behaviors in ‘Hass’ Avocado under Long Term Storage. Sci. Hortic. (Amsterdam). 2017, 216, 29–37. https://doi.org/10.1016/j.scienta.2016.12.024.
Bill, M.; Sivakumar, D.; Thompson, A. K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30 (3), 169–202. https://doi.org/10.1080/87559129.2014.907304.
Hershkovitz, V.; Friedman, H.; Goldschmidt, E. E.; Feygenberg, O.; Pesis, E. Induction of Ethylene in Avocado Fruit in Response to Chilling Stress on Tree. J. Plant Physiol. 2009, 166 (17), 1855–1862. https://doi.org/10.1016/j.jplph.2009.05.012.
Arpaia, M. L.; Collin, S.; Sievert, J.; Obenland, D. ‘Hass’ Avocado Quality as Influenced by Temperature and Ethylene Prior to and during Final Ripening. Postharvest Biol. Technol. 2018, 140 (February), 76–84. https://doi.org/10.1016/j.postharvbio.2018.02.015.
Giovannoni, J. Molecular Biology of Fruit and Maturation and Ripening. Anu. Rev. Plant Physiol. Plant Mol. Biol 2001, 52, 725–749.
Gwanpua, S. G.; Qian, Z.; East, A. R. Modelling Ethylene Regulated Changes in ‘Hass’ Avocado Quality. Postharvest Biol. Technol. 2018, 136 (October 2017), 12–22. https://doi.org/10.1016/j.postharvbio.2017.10.002.
Pesis, E.; Ackerman, M.; Ben-Arie, R.; Feygenberg, O.; Feng, X.; Apelbaum, A.; Goren, R.; Prusky, D. Ethylene Involvement in Chilling Injury Symptoms of Avocado during Cold Storage. Postharvest Biol. Technol. 2002, 24 (2), 171–181. https://doi.org/10.1016/S0925-5214(01)00134-X.
Sanders, G. M.; Korsten, L. Comparison of Cross Inoculation Potential of South African Avocado and Mango Isolates of Colletotrichum Gloeosporioides. Microbiol. Res. 2003, 158 (2), 143–150. https://doi.org/10.1078/0944-5013-00186.
Bosse, R. J.; Bower, J. P.; Bertling, I. Systemic Resistance Inducers Applied Preharvest for Colletotrichum Gloeosporioides Control in Avocados. Acta Hortic. 2013, 1007, 153–160. https://doi.org/10.17660/ActaHortic.2013.1007.14.
Schaller, G. E.; Binder, B. M. Inhibitors of Ethylene Biosynthesis and Signaling. Methods Mol. Biol. 2017, 1573, 87–99. https://doi.org/10.1007/978-1-4939-6854-1.
Ochoa-Ascencio, S.; Hertog, M. L. A. T. M.; Nicolaï, B. M. Modelling the Transient Effect of 1-MCP on “Hass” Avocado Softening: A Mexican Comparative Study. Postharvest Biol. Technol. 2009, 51 (1), 62–72. https://doi.org/10.1016/j.postharvbio.2008.06.002.
Woolf, A. B.; Requejo-Tapia, C.; Cox, K. A.; Jackman, R. C.; Gunson, A.; Arpaia, M. L.; White, A. 1-MCP Reduces Physiological Storage Disorders of “Hass” Avocados. Postharvest Biol. Technol. 2005, 35 (1), 43–60. https://doi.org/10.1016/j.postharvbio.2004.07.009
Meyer, M. D.; Terry, L. A. Fatty Acid and Sugar Composition of Avocado, Cv. Hass, in Response to Treatment with an Ethylene Scavenger or 1-Methylcyclopropene to Extend Storage Life. Food Chem. 2010, 121 (4), 1203–1210. https://doi.org/10.1016/j.foodchem.2010.02.005.
Shimshoni, J. A.; Bommuraj, V.; Chen, Y.; Sperling, R.; Barel, S.; Feygenberg, O.; Maurer, D.; Alkan, N. Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods 2020, 9 (2), 1–12. https://doi.org/10.3390/foods9020124.
Chi, H.; Song, S.; Luo, M.; Zhang, C.; Li, W.; Li, L.; Qin, Y. Effect of PLA Nanocomposite Films Containing Bergamot Essential Oil, TiO 2 Nanoparticles, and Ag Nanoparticles on Shelf Life of Mangoes. Sci. Hortic. (Amsterdam). 2019, 249 (November 2018), 192–198. https://doi.org/10.1016/j.scienta.2019.01.059.
Wang, L.; Shao, S.; Madebo, M. P.; Hou, Y.; Zheng, Y.; Jin, P. Effect of Nano-SiO2 Packing on Postharvest Quality and Antioxidant Capacity of Loquat Fruit under Ambient Temperature Storage. Food Chem. 2020, 315 (November 2019), 126295. https://doi.org/10.1016/j.foodchem.2020.126295.
Li, J.; Sun, Q.; Sun, Y.; Chen, B.; Wu, X.; Le, T. Improvement of Banana Postharvest Quality Using a Novel Soybean Protein Isolate/Cinnamaldehyde/Zinc Oxide Bionanocomposite Coating Strategy. Sci. Hortic. (Amsterdam). 2019, 258 (July), 108786. https://doi.org/10.1016/j.scienta.2019.108786
Díaz, J.; Ardila, C.; Guerra, M. Estudio de Caso Sobre La Admisibilidad Del Aguacate Hass Colombiano En El Mercado Estadounidense : Oportunidades En El Este de Asia Case Study on the Eligibility of Colombian Hass Avocado in The. Rev. Mundo Asia Pacífico 2019, 8 (14), 5–27. https://doi.org/10.17230/map.v8.i14.01.
Gil, J. G.; Franco, G.; Henao-Rojas, J. Review of Concept of Quality in Hass Avocado and Pre-Harvest and Harvest Factors That Determine It under Tropical Conditions; 2020. https://doi.org/10.17584/rcch.2019v13i3.10503.
Astudillo-Ordóñez, C. E.; Rodríguez, P. Physicochemical Parameters of Avocado Persea Americana Mill. Cv. Hass (Lauraceae) Grown in Antioquia (Colombia) for Export. Corpoica Cienc. y Tecnol. Agropecu. 2018, 19 (2), 393–402. https://doi.org/10.21930/rcta.vol19_num2_art:694.
Analdex, 2017. Los Retos Del Aguacate Hass Colombiano En Los Mercados Internacionales. In Presented at the Seminario Internacional de Aguacate Hass, - Armenia - Quindío-Colombia; 2017; pp 1–29.
Meindrawan, B.; Suyatma, N. E.; Wardana, A. A.; Pamela, V. Y. Nanocomposite Coating Based on Carrageenan and ZnO Nanoparticles to Maintain the Storage Quality of Mango. Food Packag. Shelf Life 2018, 18 (October), 140–146. https://doi.org/10.1016/j.fpsl.2018.10.006.
He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis Cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166 (3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003.
Hu, Q.; Fang, Y.; Yang, Y.; Ma, N.; Zhao, L. Effect of Nanocomposite-Based Packaging on Postharvest Quality of Ethylene-Treated Kiwifruit (Actinidia Deliciosa) during Cold Storage. Food Res. Int. 2011, 44 (6), 1589–1596. https://doi.org/10.1016/j.foodres.2011.04.018.
Alghuthaymi, M.; Abd-Elsalam, K. A.; Paraliker, P.; Rai, M. Chapter 13 - Mono and Hybrid Nanomaterials: Novel Strategies to Manage Postharvest Diseases. In Micro and Nano Technologies; Abd-Elsalam, K. A. B. T.-M. H. N. for S. A.-F. and E., Ed.; Elsevier, 2020; pp 287–317. https://doi.org/https://doi.org/10.1016/B978-0-12-821354-4.00013-3.
Smith, W. Fundamentos De La Ciencia e Ingeneria De Materiales, Tercera.; Fernandez Madrid, C., Ed.; McGRAW-HILL INTERAMERICANA DE ESPAÑA S.A.U: España, 2014.
Candal, R. J.; Bilmes, S. A. Semiconductores Con Actividad Fotocatalítica. In Eliminación de Contaminantes por Fotocatálisis Heterogénea; Blesa, M. A., Ed.; CYTED, 2004; pp 79–101.
Ameta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis; 2018. https://doi.org/10.1016/B978-0-12-810499-6.00006-1.
Kim, S.; Lee, M.; Hong, C.; Yoon, Y.; An, H.; Lee, D.; Jeong, W.; Yoo, D.; Kang, Y.; Youn, Y.; Han, S. A Band-Gap Database for Semiconducting Inorganic Materials Calculated with Hybrid Functional. Sci. Data 2020, 7 (1), 1–6. https://doi.org/10.1038/s41597-020-00723-8.
Khan, S. U. M.; Kainthla, R. C.; Bockris, J. O. M. The Redox Potential and the Fermi Level in Solution. J. Phys. Chem. 1987, 91 (23), 5974–5977. https://doi.org/10.1021/j100307a032.
Reiss, H. The Fermi Level and the Redox Potential. J. Phys. Chem. 1985, 89 (18), 3783–3791. https://doi.org/10.1021/j100264a005.
Gupta, S. M.; Tripathi, M. A Review of TiO2 Nanoparticles. Chinese Sci. Bull. 2011, 56 (16), 1639–1657. https://doi.org/10.1007/s11434-011-4476-1.
Cardenas, Carolina; Tobon, Jorge; Garcia, C. Photocatalytic Properties Evaluation of Portland White Cement Added. Rev. Lat. Met. Mat. 2012, 33 (2), 316–322.
Simonsen, M. E. Heterogeneous Photocatalysis. Chem. Adv. Environ. Purif. Process. Water Fundam. Appl. 2014, 135–170. https://doi.org/10.1016/B978-0-444-53178-0.00004-3.
Nixon, J. F. Topics in Current Chemistry; Bignozzi, C. A., Ed.; 1982; Vol. 234. https://doi.org/10.1016/s0022-328x(00)85867-2.
Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31 (50), 1–26. https://doi.org/10.1002/adma.201901997.
De Lasa, H.; Serrano, B.; Salaices, M. Photocatalytic Reaction Engineering; 2005. https://doi.org/10.1007/0-387-27591-6.
Liang, A. H.; Jia, Z.; Zhang, H.; Wang, X.; Wang, J. Photocatalysis Oxidation Activity Regulation of Ag / TiO 2 Composites Evaluated by the Selective Oxidation of Rhodamine B. Appl. Surf. Sci. 2017. https://doi.org/10.1016/j.apsusc.2017.05.211.
Ullah, H.; Viglašová, E.; Galamboš, M. Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods. Processes 2021, 9 (2), 1–11. https://doi.org/10.3390/pr9020263.
Lopera, A. A; Velasquez, A. M; Chavarriaga, E. A ; Ocampo, S; Zaghete, M. A; Graminha, M. A; Garcia, C. P. Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible. J. Phys. Conf. Ser. 2017, 935 (012013). https://doi.org/doi :10.1088/1742-6596/935/1/012013.
Samoylov, A. M.; Popov, V. N. Titanium Dioxide (Tio₂) and Its Applications; Matthew Dean, 2021. https://doi.org/10.1016/b978-0-12-819960-2.00024-9.
Navrotsky, A.; Jamieson, J. C.; Kleppa, O. J. Enthalpy of Transformation of a High-Pressure Polymorph of Titanium Dioxide to the Rutile Modification. Science (80-. ). 1967, 158 (3799), 388–389. https://doi.org/10.1126/science.158.3799.388.
Scarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. Titan. Dioxide - Mater. a Sustain. Environ. 2018, No. June 2018. https://doi.org/10.5772/intechopen.74244.
Moreno, B.; Carballo, M.; Jurado, J. R.; Chinarro, E. Una Revisión Del Uso Del TiO2 En Terapias e Ingeniería Tisular. Bol. la Soc. Esp. Ceram. y Vidr. 2009, 48 (6), 321–328.
Stucchi, M.; Bianchi, C. L.; Pirola, C.; Vitali, S.; Cerrato, G.; Morandi, S.; Argirusis, C.; Sourkouni, G.; Sakkas, P. M.; Capucci, V. Surface Decoration of Commercial Micro-Sized TiO2 by Means of High Energy Ultrasound: A Way to Enhance Its Photocatalytic Activity under Visible Light. Appl. Catal. B Environ. 2014, 178, 124–132. https://doi.org/10.1016/j.apcatb.2014.10.004.
Hanaor, D. A. H.; Sorrell, C. C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46 (4), 855–874. https://doi.org/10.1007/s10853-010-5113-0.
Gallagher, R. P.; Lee, T. K. Adverse Effects of Ultraviolet Radiation: A Brief Review. Prog. Biophys. Mol. Biol. 2006, 92 (1), 119–131. https://doi.org/10.1016/j.pbiomolbio.2006.02.011.
Lopera Sepúlveda, A. A. Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea, Universidad Nacional de Colombia., 2017.
Wang, J.; Li, C.; Luan, X.; Li, J.; Wang, B.; Zhang, L.; Xu, R.; Zhang, X. Investigation on Solar Photocatalytic Activity of TiO2 Loaded Composite: TiO2/Skeleton, TiO2/Dens and TiO2/HAP. J. Mol. Catal. A Chem. 2010, 320 (1–2), 62–67. https://doi.org/10.1016/j.molcata.2010.01.004.
Wei, P.; Liu, J.; Li, Z. Effect of Pt Loading and Calcination Temperature on the Photocatalytic Hydrogen Production Activity of TiO2 Microspheres. Ceram. Int. 2013, 39 (5), 5387–5391. https://doi.org/10.1016/j.ceramint.2012.12.045.
Zaleska, A. Doped-TiO₂ : A Review. Recent Patents Eng. 2008, 2, 157-164 2008, 2 (3), 157–164. https://doi.org/doi:10.2174/187221208786306289.
Malekshahi Byranvand, M.; Nemati Kharat, A.; Fatholahi, L.; Malekshahi Beiranvand, Z. A Review on Synthesis of Nano-TiO2 via Different Methods. J. Nanostructures 2013, 3 (1), 1–9. https://doi.org/10.7508/jns.2013.01.001.
Mahshid, S.; Askari, M.; Sasani Ghamsari, M.; Afshar, N.; Lahuti, S. Mixed-Phase TiO2 Nanoparticles Preparation Using Sol-Gel Method. Journal of Alloys and Compounds. 2009, pp 586–589. https://doi.org/10.1016/j.jallcom.2008.11.094.
Arami, Hamed; Mazloumi, Mahyar; Khalifehzadeh, Razieh; Sadrnezhaad, S. . Sonochemical Preparation of TiO2 Nanoparticles. Mater. Lett. 2007, 61 (23–24), 4559–4561. https://doi.org/doi.org/10.1016/j.matlet.2007.02.051.
Endrödi, B.; Kecsenovity, E.; Rajeshwar, K.; Janáky, C. One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Appl. Energy Mater. 2018, 1 (2), 851–858. https://doi.org/10.1021/acsaem.7b00289.
Chigane, M.; Shinagawa, T.; Tani, J. ichi. Preparation of Titanium Dioxide Thin Films by Indirect-Electrodeposition. Thin Solid Films. 2017, pp 203–207. https://doi.org/10.1016/j.tsf.2017.03.031.
Novitskaya, E.; Kelly, J. P.; Bhaduri, S.; Graeve, O. A. A Review of Solution Combustion Synthesis: An Analysis of Parameters Controlling Powder Characteristics. Int. Mater. Rev. 2021, 66 (3), 188–214. https://doi.org/10.1080/09506608.2020.1765603.
Deganello, F.; Tyagi, A. K. Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials. Prog. Cryst. Growth Charact. Mater. 2018, 64 (2), 23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001.
Alves, Annelise Kopp; Bergmann, Carlos P.; Berutti, F. A. Synthesis and Characterization of Nanostructured Materials; Springer, 2009. https://doi.org/10.1007/978-3-642-41275-2.
Ma, X.; Xue, L.; Li, X.; Yang, M.; Yan, Y. Controlling the Crystalline Phase of TiO2 Powders Obtained by the Solution Combustion Method and Their Photocatalysis Activity. Ceram. Int. 2015, 41 (9), 11927–11935. https://doi.org/10.1016/j.ceramint.2015.05.161.
Martínez-González, M. E.; Balois Morales, R.; Alia-Tejacal, I.; Cortes-Cruz, M. A.; Palomino-Hermosillo, Y. A.; López-Gúzman, G. G. Postcosecha de Frutos: Maduración y Cambios Bioquímicos. Rev. Mex. Ciencias Agrícolas 2017, No. 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674.
Osorio, S.; Scossa, F.; Fernie, A. R. Molecular Regulation of Fruit Ripening. Front. Plant Sci. 2013, 4 (JUN), 1–8. https://doi.org/10.3389/fpls.2013.00198.
INTAGRI. Frutos Climatéricos y No Climatéricos. Postcosecha y Comer. 2017, No. Figura 1, 4.
Equipo Editorial INTAGRI SC. Papel Del Etileno En La Maduración de Frutos | Intagri S.C. Ser. Poscosecha y Comer. 2001, 16 (Artículos Técnicos de INTAGRI), 4p.
Bapat, V. A.; Trivedi, P. K.; Ghosh, A.; Sane, V. A.; Ganapathi, T. R.; Nath, P. Ripening of Fleshy Fruit: Molecular Insight and the Role of Ethylene. Biotechnol. Adv. 2010, 28 (1), 94–107. https://doi.org/10.1016/j.biotechadv.2009.10.002.
Sadeghi, K.; Lee, Y.; Seo, J. Ethylene Scavenging Systems in Packaging of Fresh Produce: A Review. Food Rev. Int. 2021, 37 (2), 155–176. https://doi.org/10.1080/87559129.2019.1695836.
Balaguera-López, H. E.; Salamanca-Gutiérrez, F. A.; García, J. C.; Herrera-Árevalo, A. Etileno y Retardantes de La Maduración En La Poscosecha de Productos Agrícolas. Una Revisión. Rev. Colomb. Ciencias Hortícolas 2015, 8 (2), 302. https://doi.org/10.17584/rcch.2014v8i2.3222.
Weber, A. Aplicação de Produtos Da Fermentação e Ultrabaixo Oxigênio Para a Conservação de Maçãs ‘Royal Gala,’ Universidade Federal de Santa Maria, 2010.
Gavin, C.; Barzallo, D.; Vera, H.; Lazo, R. Revisión Bibliográfica: Etileno En Poscosecha, Tecnologías Para Su Manejo y Control. Ecuadorian Sci. J. 2021, 5 (4), 163–178. https://doi.org/10.46480/esj.5.4.179.
Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J. Isolation and Characterization of Arabidopsis Mutants Defective in the Induction of Ethylene Biosynthesis by Cytokinin. Genetics 1998, 149 (1), 417–427. https://doi.org/10.1093/genetics/149.1.417.
Ramírez-Gil, J. G.; Henao-Rojas, J. C.; Morales-Osorio, J. G. Postharvest Diseases and Disorders in Avocado Cv. Hass and Their Relationship to Preharvest Management Practices. Heliyon 2021, 7 (1), e05905. https://doi.org/10.1016/j.heliyon.2021.e05905.
Grisales Vásquez, Nancy Yohana; Rodríguez Fonseca, P. E. ;; Correa Londoño, Guillermo Antonio; Tamayo Molano, P. J. Inventario de Los Principales Fitopatógenos de Poscosecha y Defectos de Calidad de Los Frutos de Aguacate (Persea Americana Mill Cv. Hass). AGROSAVIA, Corporación colombiana de investigación agropecuaria. 2019, p 24.
Gonzalez, J. A. H.; Baños, S. B.; Garcia, S. S.; Gutierrez Martinez, P. Situación Actual Del Manejo Poscosecha y de Enfermedades Fungosas Del Aguacate ‘Hass’ Para Exportación En Michoacán. Rev. Mex. Ciencias Agrícolas 2020, 11 (7), 1647–1660. https://doi.org/10.29312/remexca.v11i7.2402.
Duvenhage, J. A. The Influence of Wet Picking on Post Harvest Diseases and Disorders of Avocado Fruit. South African Avocado Grow. Assoc. 1993, 16, 77–79.
Rodríguez-López, É. S.; Cárdenas-Soriano, E.; Hernández-Delgado, S.; Gutiérrez-Diez, A.; Mayek-Pérez, N. Análisis de La Infección de Colletotrichum Gloeosporioides (Penz.) Penz. & Sacc. de Frutos de Aguacatero. Rev. Bras. Frutic. 2013, 35 (3), 898–905. https://doi.org/10.1590/S0100-29452013000300029.
Brezmes Llecha, J. Diseño de Una Nariz Electrónica Para La Determinación No Destructiva Del Grado de La Maduración de La Fruta, Universitat Politécnica de Catalunya, 2001.
Sivalingam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2. Appl. Catal. B Environ. 2003, 45 (1), 23–38. https://doi.org/10.1016/S0926-3373(03)00124-3.
Sivalingam, G.; Priya, M. H.; Madras, G. Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2. Appl. Catal. B Environ. 2004, 51 (1), 67–76. https://doi.org/10.1016/j.apcatb.2004.02.006.
Aarthi, T.; Madras, G. Photocatalytic Degradation of Rhodamine Dyes with Nano-TiO2. Ind. Eng. Chem. Res. 2007, 46 (1), 7–14. https://doi.org/10.1021/ie060948n.
CHENG, Y.; SUN, H.; JIN, W.; XU, N. Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method* * Supported by the Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu Province and Ministry of Education. Chinese J. Chem. Eng. 2007, 15 (2), 178–183. https://doi.org/10.1016/S1004-9541(07)60055-X.
Jongprateep, O.; Puranasamriddhi, R.; Palomas, J. Nanoparticulate Titanium Dioxide Synthesized by Sol-Gel and Solution Combustion Techniques. Ceram. Int. 2015, 41 (S1), S169–S173. https://doi.org/10.1016/j.ceramint.2015.03.193.
Challagulla, S.; Nagarjuna, R.; Ganesan, R.; Roy, S. TiO2 Synthesized by Various Routes and Its Role on Environmental Remediation and Alternate Energy Production. Nano-Structures and Nano-Objects. 2017, pp 147–156. https://doi.org/10.1016/j.nanoso.2017.10.002.
Chung, S. L.; Wang, C. M. Solution Combustion Synthesis of TiO 2 and Its Use for Fabrication of Photoelectrode for Dye-Sensitized Solar Cell. J. Mater. Sci. Technol. 2012, 28 (8), 713–722. https://doi.org/10.1016/S1005-0302(12)60120-0.
Challagulla, S.; Roy, S. The Role of Fuel to Oxidizer Ratio in Solution Combustion Synthesis of TiO2and Its Influence on Photocatalysis. J. Mater. Res. 2017, 32 (14), 2764–2772. https://doi.org/10.1557/jmr.2017.244.
Nassar, M. Y.; Ali, E. I.; Zakaria, E. S. Tunable Auto-Combustion Preparation of TiO2 Nanostructures as Efficient Adsorbents for the Removal of an Anionic Textile Dye. RSC Adv. 2017, 7 (13), 8034–8050. https://doi.org/10.1039/c6ra27924d.
Li, G.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing Mixed-Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photo-Oxidation and Photoreduction Applications. J. Catal. 2008, 253 (1), 105–110. https://doi.org/10.1016/j.jcat.2007.10.014.
Jho, J. H.; Kim, D. H.; Kim, S. J.; Lee, K. S. Synthesis and Photocatalytic Property of a Mixture of Anatase and Rutile TiO2 Doped with Fe by Mechanical Alloying Process. J. Alloys Compd. 2008, 459 (1–2), 386–389. https://doi.org/10.1016/j.jallcom.2007.04.285.
He, J.; Du, Y. en; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24 (16), 1–14. https://doi.org/10.3390/molecules24162996.
Hoffmann, T. G.; Ronzoni, A. F.; da Silva, D. L.; Bertoli, S. L.; de Souza, C. K. Impact of Household Refrigeration Parameters on Postharvest Quality of Fresh Food Produce. J. Food Eng. 2021, 306 (November 2020). https://doi.org/10.1016/j.jfoodeng.2021.110641.
García, J. C.; Balaguera-López, H.; Aníbal, & H. Conservación Del Fruto de Banano Bocadillo ( Musa AA Simmonds ) Con La Aplicación de Permanganato de Potasio Conservation of Baby Banana ( Musa AA Simmonds ) Fruits with the Application of Potassium Permanganate ( KMnO 4 ). 2012, 6 (2), 161–171.
Fonseca, J. de M.; Alves, M. J. dos S.; Soares, L. S.; Moreira, R. de F. P. M.; Valencia, G. A.; Monteiro, A. R. A Review on TiO2-Based Photocatalytic Systems Applied in Fruit Postharvest: Set-Ups and Perspectives. Food Res. Int. 2021, 144 (April). https://doi.org/10.1016/j.foodres.2021.110378.
Park, D. R.; Ahn, B. J.; Park, H. S.; Yamashita, H.; Anpo, M. Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts: Effect of the Presence of O2 and H2O and the Addition of Pt. Korean J. Chem. Eng. 2001, 18 (6), 930–934. https://doi.org/10.1007/BF02705621.
Yamazaki, S.; Tanaka, S.; Tsukamoto, H. Kinetic Studies of Oxidation of Ethylene over a TiO2 Photocatalyst. J. Photochem. Photobiol. A Chem. 1999, 121 (1), 55–61. https://doi.org/10.1016/S1010-6030(98)00448-1.
Hauchecorne, B.; Tytgat, T.; Verbruggen, S. W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. Photocatalytic Degradation of Ethylene: An FTIR in Situ Study under Atmospheric Conditions. Appl. Catal. B Environ. 2011, 105 (1–2), 111–116. https://doi.org/10.1016/j.apcatb.2011.03.041.
Lin, Y. T.; Weng, C. H.; Chen, F. Y. Key Operating Parameters Affecting Photocatalytic Activity of Visible-Light-Induced C-Doped TiO2 Catalyst for Ethylene Oxidation. Chem. Eng. J. 2014, 248, 175–183. https://doi.org/10.1016/j.cej.2014.02.085.
Lin, Y. T.; Weng, C. H.; Hsu, H. J.; Huang, J. W.; Srivastav, A. L.; Shiesh, C. C. Effect of Oxygen, Moisture, and Temperature on the Photo Oxidation of Ethylene on N-Doped TiO2 Catalyst. Sep. Purif. Technol. 2014, 134, 117–125. https://doi.org/10.1016/j.seppur.2014.07.039.
Pathak, N.; Caleb, O. J.; Geyer, M.; Herppich, W. B.; Rauh, C.; Mahajan, P. V. Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. Food Bioprocess Technol. 2017, 10 (6), 982–1001. https://doi.org/10.1007/s11947-017-1889-0.
Chavadej, S.; Saktrakool, K.; Rangsunvigit, P.; Lobban, L. L.; Sreethawong, T. Oxidation of Ethylene by a Multistage Corona Discharge System in the Absence and Presence of Pt/TiO2. Chem. Eng. J. 2007, 132 (1–3), 345–353. https://doi.org/10.1016/j.cej.2007.01.030.
Chang, K. L.; Sekiguchi, K.; Wang, Q.; Zhao, F. Removal of Ethylene and Secondary Organic Aerosols Using UV-C254 + 185 Nm with TiO2 Catalyst. Aerosol Air Qual. Res. 2013, 13 (2), 618–626. https://doi.org/10.4209/aaqr.2012.07.0195.
Rodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of Photocatalytic Titanium Dioxide-Based Nanomaterials in Sustainable Agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001.
Yadav, H. M.; Kim, J. S.; Pawar, S. H. Developments in Photocatalytic Antibacterial Activity of Nano TiO2: A Review. Korean J. Chem. Eng. 2016, 33 (7), 1989–1998. https://doi.org/10.1007/s11814-016-0118-2.
Regmi, C.; Joshi, B.; Ray, S. K.; Gyawali, G.; Pandey, R. P. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Front. Chem. 2018, 6 (February), 1–6. https://doi.org/10.3389/fchem.2018.00033.
Jang, H. D.; Kim, S. K.; Kim, S. J. Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Nanoparticle Res. 2001, 3 (2–3), 141–147. https://doi.org/10.1023/A:1017948330363.
Almquist, C. B.; Biswas, P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal. 2002, 212 (2), 145–156. https://doi.org/10.1006/jcat.2002.3783.
Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 Particle Size on the Photocatalytic Reduction of CO2. Appl. Catal. B Environ. 2009, 89 (3–4), 494–502. https://doi.org/10.1016/j.apcatb.2009.01.010.
Hussain, M.; Bensaid, S.; Geobaldo, F.; Saracco, G.; Russo, N. Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO 2 Nanoparticles. Ind. Eng. Chem. Res. 2011, 50 (IMCCRE 2010), 2536–2543.
de Chiara, M. L. V.; Pal, S.; Licciulli, A.; Amodio, M. L.; Colelli, G. Photocatalytic Degradation of Ethylene on Mesoporous TiO2/SiO2 Nanocomposites: Effects on the Ripening of Mature Green Tomatoes. Biosyst. Eng. 2015, 132, 61–70. https://doi.org/10.1016/j.biosystemseng.2015.02.008.
Pathak, N.; Caleb, O. J.; Rauh, C.; Mahajan, P. V. Efficacy of Photocatalysis and Photolysis Systems for the Removal of Ethylene under Different Storage Conditions. Postharvest Biol. Technol. 2019, 147 (September 2018), 68–77. https://doi.org/10.1016/j.postharvbio.2018.09.006.
Lourenço, R. E. R. S.; Linhares, A. A. N.; de Oliveira, A. V.; da Silva, M. G.; de Oliveira, J. G.; Canela, M. C. Photodegradation of Ethylene by Use of TiO2 Sol-Gel on Polypropylene and on Glass for Application in the Postharvest of Papaya Fruit. Environ. Sci. Pollut. Res. 2017, 24 (7), 6047–6054. https://doi.org/10.1007/s11356-016-8197-5.
Hur, J. S.; Oh, S. O.; Lim, K. M.; Jung, J. S.; Kim, J. W.; Koh, Y. J. Novel Effects of TiO2 Photocatalytic Ozonation on Control of Postharvest Fungal Spoilage of Kiwifruit. Postharvest Biol. Technol. 2005, 35 (1), 109–113. https://doi.org/10.1016/j.postharvbio.2004.03.013.
Shahbaz, H. M.; Kim, S.; Kim, J. U.; Park, D.; Lee, M.; Lee, D. U.; Park, J. Inactivation of Salmonella Typhimurium in Fresh Cherry Tomatoes Using Combined Treatment of UV–TiO2 Photocatalysis and High Hydrostatic Pressure. Food Sci. Biotechnol. 2018, 27 (5), 1531–1539. https://doi.org/10.1007/s10068-018-0368-3.
Lopera Sepúlveda, A. A.; Arenas Velásquez, A. M.; Patiño Linares, I. A.; de Almeida, L.; Fontana, C. R.; Garcia, C.; Silva Graminha, M. A. Efficacy of Photodynamic Therapy Using TiO2 Nanoparticles Doped with Zn and Hypericin in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania Amazonensis. Photodiagnosis Photodyn. Ther. 2020, 30 (January), 101676. https://doi.org/10.1016/j.pdpdt.2020.101676.
Park, B. G. Photocatalytic Activity of Tio2-Doped Fe, Ag, and Ni with n under Visible Light Irradiation. Gels 2022, 8 (1). https://doi.org/10.3390/gels8010014.
Jongprateep, O.; Meesombad, K.; Techapiesancharoenkij, R.; Surawathanawises, K. Chemical Composition, Microstructure, Bandgap Energy and Electrocatalytic Activities of TiO2 and Ag-Doped TiO2 Powder Synthesized by Solution Combustion Technique. Ceram. Int. 2018, 44 (August), S228–S232. https://doi.org/10.1016/j.ceramint.2018.08.108.
Li, Y.; Ma, M.; Chen, W.; Li, L.; Zen, M. Preparation of Ag-Doped TiO2 Nanoparticles by a Miniemulsion Method and Their Photoactivity in Visible Light Illuminations. Mater. Chem. Phys. 2011, 129 (1–2), 501–505. https://doi.org/10.1016/j.matchemphys.2011.04.055.
Miao, Y.; Xu, X.; Liu, K.; Wang, N. Preparation of Novel Cu/TiO2 Mischcrystal Composites and Antibacterial Activities for Escherichia Coli under Visible Light. Ceram. Int. 2017, 43 (13), 9658–9663. https://doi.org/10.1016/j.ceramint.2017.04.137.
Lopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P. Synthesis and Spectroscopic Characterization of Nanoparticles of TiO2 Doped with Pt Produced via the Self-Combustion Route. J. Phys. D. Appl. Phys. 2016, 49 (20). https://doi.org/10.1088/0022-3727/49/20/205501.
Patil, K C; Hedge, M S; Rattan, Tanu; Aruna, S. T. Chemistry Of Nanocrystalline Oxide Materials. 2008. https://doi.org/10.1142/9789812793157.
Sane, P.; Chaudhari, S.; Nemade, P.; Sontakke, S. Photocatalytic Reduction of Chromium (VI) Using Combustion Synthesized TiO2. J. Environ. Chem. Eng. 2018, 6 (1), 68–73. https://doi.org/10.1016/j.jece.2017.11.060.
Khan, S. A.; Khan, S. B.; Khan, L. U.; Farooq, A.; Akhtar, K.; Asiri, A. M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. Handb. Mater. Charact. 2018, 317–344. https://doi.org/10.1007/978-3-319-92955-2_9.
Jansses, M. Fundamental Measurement Techniques. In Flammability Testing of Materials Used in Construction, Transport and Mining; Apte Transport and Mining, V. B. B. T.-F. T. of M. U. in C., Ed.; Woodhead Publishing, 2006; pp 22–62. https://doi.org/https://doi.org/10.1533/9781845691042.22.
Clavijo, J. Caracterización de Materiales a Través de Medidas de Microscopía Electrónica de Barrido (SEM). Elementos 2013, 3 (3). https://doi.org/10.15765/e.v3i3.420.
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.
Alothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5 (12), 2874–2902. https://doi.org/10.3390/ma5122874.
Tahir, M. B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of Nanotechnology in Photocatalysis. Encycl. Smart Mater. 2022, 578–589. https://doi.org/10.1016/b978-0-12-815732-9.00006-1.
Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary Tio2 –Cux s–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10 (22), 1–16. https://doi.org/10.3390/app10228070.
Bhanvase, B.; Barai, D. Nanofluids for Heat and Mass Transfer, 1st ed.; Elsevier, Ed.; Academic press- Elsevier, 2021. https://doi.org/10.1016/B978-0-12-821955-3.00009-1.
Nobbs, J. H. Dyers Scales for Assessing the Colour of Dyed Fabrics. In Color Science ’98; Gilchrist, J. N., Ed.; Universidad de Leeds, Reino Unido: Reino Unido, 2016; Vol. 3.
Yang, S.; Wu, Z.; Huang, L. P.; Zhou, B.; Lei, M.; Sun, L.; Tian, Q.; Pan, J.; Wu, W.; Zhang, H. Significantly Enhanced Dye Removal Performance of Hollow Tin Oxide Nanoparticles via Carbon Coating in Dark Environment and Study of Its Mechanism. Nanoscale Res. Lett. 2014, 9 (1), 1–9. https://doi.org/10.1186/1556-276X-9-442.
Chakinala, N.; Gogate, P. R.; Chakinala, A. G. Photocatalytic Degradation of Rhodamine-b over Mono- And Bi-Metallic Tio2 Catalysts. Mater. Today Proc. 2021, 43, 3066–3070. https://doi.org/10.1016/j.matpr.2021.01.403.
Wang, S.; Han, Z.; Di, T.; Li, R.; Liu, S.; Cheng, Z. Preparation of Pod-Shaped TiO2 and Ag@TiO2 Nano Burst Tubes and Their Photocatalytic Activity. R. Soc. Open Sci. 2019, 6 (9). https://doi.org/10.1098/rsos.191019.
Jin, R.; Ye, X.; Fan, J.; Jiang, D.; Chen, H. Y. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal. Chem. 2019, 91 (4), 2605–2609. https://doi.org/10.1021/acs.analchem.8b05311.
Carvalho, C. P.; Velásquez, M. A.; Van Rooyen, Z. Determinación Del Índice Mínimo de Materia Seca Para La Óptima Cosecha Del Aguacate ‘Hass’ En Colombia. Agron. Colomb. 2014, 32 (3), 399–406. https://doi.org/10.15446/agron.colomb.v32n3.46031.
Barnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi; Burgess life science series; Burgess Publishing Company, 1972.
White, T. J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR Protoc. 1990, No. December 2015, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.
Castellanos, D. A.; Mendoza, R.; Gavara, R.; Herrera, A. O. Respiration and Ethylene Generation Modeling of “Hass” Avocado and Feijoa Fruits and Application in Modified Atmosphere Packaging. Int. J. Food Prop. 2017, 20 (2), 333–349. https://doi.org/10.1080/10942912.2016.1160921.
Mendoza, R.; Castellanos, D. A.; García, J. C.; Vargas, J. C.; Herrera, A. O. Ethylene Production, Respiration and Gas Exchange Modelling in Modified Atmosphere Packaging for Banana Fruits. Int. J. Food Sci. Technol. 2016, 51 (3), 777–788. https://doi.org/10.1111/ijfs.13037.
Garavito, J.; Herrera, A. O.; Castellanos, D. A. A Combined Mathematical Model to Represent Transpiration, Respiration, and Water Activity Changes in Fresh Cape Gooseberry (Physalis Peruviana) Fruits. Biosyst. Eng. 2021, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015.
Maftoonazad, N.; Ramaswamy, H. S. Effect of Pectin-Based Coating on the Kinetics of Quality Change Associated with Stored Avocados. J. Food Process. Preserv. 2008, 32 (4), 621–643. https://doi.org/10.1111/j.1745-4549.2008.00203.x.
Crocetti, G. XRD Phase Analysis of TiO2 Sunscreens; NMI Nanometrology: Australia, 2012.
Durango-Giraldo, G.; Cardona, A.; Zapata, J. F.; Santa, J. F.; Buitrago-Sierra, R. Titanium Dioxide Modified with Silver by Two Methods for Bactericidal Applications. Heliyon 2019, 5 (5), e01608. https://doi.org/10.1016/j.heliyon.2019.e01608.
Sangchay, W. Photocatalytic and Antibacterial Activity of Ag-Doped TiO 2 Nanoparticles. KKU Res.J. 2013, 18 (5), 731–738.
Madadi, M.; Ghorbanpour, M.; Feizi, A. Antibacterial and Photocatalytic Activity of Anatase Phase Ag-Doped TiO2 Nanoparticles. Micro Nano Lett. 2018, 13 (11), 1590–1593. https://doi.org/10.1049/mnl.2018.5057.
Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced Photocatalytic and Antibacterial Activities of Ag-Doped TiO2 Nanoparticles under Visible Light. Mater. Chem. Phys. 2018, 212, 325–335. https://doi.org/10.1016/j.matchemphys.2018.03.052.
Mogal, S. I.; Gandhi, V. G.; Mishra, M.; Tripathi, S.; Shripathi, T.; Joshi, P. A.; Shah, D. O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53 (14), 5749–5758. https://doi.org/10.1021/ie404230q.
Byrne, C.; Fagan, R.; Hinder, S.; McCormack, D. E.; Pillai, S. C. New Approach of Modifying the Anatase to Rutile Transition Temperature in TiO2 Photocatalysts. RSC Adv. 2016, 6 (97), 95232–95238. https://doi.org/10.1039/c6ra19759k.
Spurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29 (5), 760–762. https://doi.org/10.1021/ac60125a006.
Chao, H. E.; Yun, Y. U.; Xingfang, H. U.; Larbot, A. Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania Powder. J. Eur. Ceram. Soc. 2003, 23 (9), 1457–1464. https://doi.org/10.1016/S0955-2219(02)00356-4.
Munir, T; Sharif, M; Ali, H; Kashif, M; Sohail, A; Sabir, N; Amin, N; Mahmood, A; Ahmed, N. Impact of Silver Dopant on Structural and Optical Properties of TiO2 Nanoparticles. Dig. J. Nanomater. Biostructures 2019, 14 (2), 279–284. https://doi.org/10.1007/s00339-019-2594-9.
Mohan, D. G.; Gopi, S.; Rajasekar, V.; Krishnan, K.; Mohan, D. G.; Gopi S.; Selvarajan, L.; Rajavel, R.; Prakash, B.; Mohan, D. G.; Gopi, S.; Alloys, A. A.; Taguchi, U.; Selvarajan, L.; Sasikumar, R.; Mohan, D. G.; Naveen Kumar, P.; Muralidharan, V. Studies on Optical and Electrical Properties of Green Synthesized TiO2@Ag Core-Shell Nanocomposite Material; 2019; Vol. 27. https://doi.org/10.1080/14484846.2018.1432089.
Sakthivel, T; Ashok Kumar, K; Rajajeyaganthan Ramanathan; Senthilselvan, J; Jagannathan, K. Silver Doped TiO2 Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications. Mater. Res. Express Accept. 2017, 4 (126310), 0–68. https://doi.org/https://doi.org/10.1088/2053-1591/aa9e36.
Lei, X. F.; Xue, X. X.; Yang, H. Preparation and Characterization of Ag-Doped TiO 2 Nanomaterials and Their Photocatalytic Reduction of Cr(VI) under Visible Light. Appl. Surf. Sci. 2014, 321, 396–403. https://doi.org/10.1016/j.apsusc.2014.10.045.
Pohan, L. A. G.; Kambiré, O.; Nasir, M.; Ouattara, L. Photocatalytic and Antimicrobial Properties of [AgTiO2]:[Clay] Nanocomposite Prepared with Clay Different Ratios. Mod. Res. Catal. 2020, 09 (04), 47–61. https://doi.org/10.4236/mrc.2020.94004.
Kusiak-Nejman, E.; Czyżewski, A.; Wanag, A.; Dubicki, M.; Sadłowski, M.; Wróbel, R. J.; Morawski, A. W. Photocatalytic Oxidation of Nitric Oxide over AgNPs/TiO2-Loaded Carbon Fiber Cloths. J. Environ. Manage. 2020, 262. https://doi.org/10.1016/j.jenvman.2020.110343.
White, J. L. Interpretation of Infrared Spectra of Soil Minerals. Soil Sci. 1971, 112 (1), 22–31. https://doi.org/10.1097/00010694-197107000-00005.
Martinez Rojas, Vanessa;Matejova, Lenka;Lopez Milla, Alcidez;Cruz, Gerardo;Solis Veliz, José;Gomez Leon, M. PRODUCTION OF TiO 2 PARTICLES BY SOL-GEL ULTRASOUND ASSISTED FOR PHOTOCATALYTIC APPLICATIONS. Rev. la Soc. Química del Perú 2015, 81 (3), 201–211.
Rao, T. N.; Riyazuddin; Babji, P.; Ahmad, N.; Khan, R. A.; Hassan, I.; Shahzad, S. A.; Husain, F. M. Green Synthesis and Structural Classification of Acacia Nilotica Mediated-Silver Doped Titanium Oxide (Ag/TiO2) Spherical Nanoparticles: Assessment of Its Antimicrobial and Anticancer Activity. Saudi J. Biol. Sci. 2019, 26 (7), 1385–1391. https://doi.org/10.1016/j.sjbs.2019.09.005.
Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like Polyoxotitanium Cage with High Solution Stability. J. Am. Chem. Soc. 2016, 138 (8), 2556–2559. https://doi.org/10.1021/jacs.6b00613.
Shokri, M.; Jodat, A.; Modirshahla, N.; Behnajady, M. A. Photocatalytic Degradation of Chloramphenicol in an Aqueous Suspension of Silver-Doped TiO2 Nanoparticles. Environ. Technol. (United Kingdom) 2013, 34 (9), 1161–1166. https://doi.org/10.1080/09593330.2012.743589.
Chen, C.; Lei, X. F.; Xue, M. Z. A Simple Method to Synthesise Ag-Doped TiO2 Photocatalysts with Different Ag0:Ag2O Atomic Ratios for Enhancing Visible-Light Photocatalytic Activity. J. Chem. Res. 2017, 41 (8), 475–483. https://doi.org/10.3184/174751917X15012350965047.
Nhu, V. T. T.; Tuan, H. N. A.; Hien, N. Q.; Minh, D. Q. Synthesis of Ag Nano/TiO2 by γ-Irradiation and Optimisation of Photocatalytic Degradation of Rhodamine B. Int. J. Nanotechnol. 2018, 15 (1–3), 118–134. https://doi.org/10.1504/IJNT.2018.089563.
Tseng, K. H.; Chung, M. Y.; Chang, C. Y.; Cheng, T. S. A Study of Photocatalysis of Methylene Blue of TiO2 Fabricated by Electric Spark Discharge Method. J. Nanomater. 2017, 2017. https://doi.org/10.1155/2017/9346201.
Rasalingam, S.; Wu, C. M.; Koodali, R. T. Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Appl. Mater. Interfaces 2015, 7 (7), 4368–4380. https://doi.org/10.1021/am508883f.
Jo, Y. K.; Kim, B. H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93 (10), 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037.
Encinas Basurto, D. A.; Alvarez Carvajal, F.; Armenta Calderon, A.; Gonzalez Soto, T. E.; Esquer Miranda, E.; Juarez Onofre, J.; Mendez Ibarra, R. Silver Nanoparticles Coated with Chitosan against Fusarium Oxysporum Causing the Tomato Wilt. Biotecnia 2020, 22 (3), 73–80. https://doi.org/10.18633/biotecnia.v22i3.952.
Kim, S. W.; Jung, J. H.; Lamsal, K.; Kim, Y. S.; Min, J. S.; Lee, Y. S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology. 2012, pp 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053.
Farrokhi, S.; Ahari, H.; Abedini, M. R. Comparative Effects of Colloidal Silver Nanoparticles Used in Packaging Film and Spray in Inactivating Bacteria Experimentally Added to Chicken Eggshells. Int. J. Food Prop. 2017, 20 (10), 2314–2322. https://doi.org/10.1080/10942912.2016.1236274.
Bruinsma, J.; Paull, R. E. Respiration during Postharvest Development of Soursop Fruit, Annona Muricata L. Plant Physiol. 1984, 76 (1), 131–138. https://doi.org/10.1104/pp.76.1.131.
Taiti, C.; Costa, C.; Menesatti, P.; Caparrotta, S.; Bazihizina, N.; Azzarello, E.; Petrucci, W. A.; Masi, E.; Giordani, E. Use of Volatile Organic Compounds and Physicochemical Parameters for Monitoring the Post-Harvest Ripening of Imported Tropical Fruits. Eur. Food Res. Technol. 2015, 241 (1), 91–102. https://doi.org/10.1007/s00217-015-2438-6.
Buelvas Salgado, G. A.; Patiño Gómez, J. H.; Cano-Salazar, J. A. Evaluation of the Oil Extraction from Has Avocado (Persea Americana Mill) by the Use of an Enzymatic Treatment. Rev. Lasallista Investig. 2012, 9 (2), 138–150.
Kassim, A.; Workneh, T. S.; Bezuidenhout, C. N. A Review on Postharvest Handling of Avocado Fruit. African J. Agric. Res. 2013, 8 (21), 2385–2402. https://doi.org/10.5897/AJAR12.1248.
Henríquez Arias, L. E.; Patiño Gómez, J. H.; Salazar, J. A. Application of the Matrixes Engineering on the Development of Minimally Processed Hass Avocado (Persea Americana Mill) with Additions of Vitamin c and Calcium. Rev. Lasallista Investig. 2013, 9 (2), 44–54.
Vinha, A. F.; Moreira, J.; Barreira, S. V. P. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea Americana Mill.). J. Agric. Sci. 2013, 5 (12). https://doi.org/10.5539/jas.v5n12p100.
Márquez, C.; Yepes, D.; Sanchez, L.; Osorio, J. Cambios Físico-Químicos Del Aguacate (Persea Americana Mill. Cv. “Hass”) En Poscosecha Para Dos Municipios de Antioquia. Temas Agrarios. 2016, pp 32–47. https://doi.org/10.21897/rta.v19i1.723.
Farkas, D. F.; Lazar, M. E. Osmotic Dehydration of Apple Pieces: Effect of Temperature and Syrup Concentration on Rates. Food Technol. 1969.
Henríquez Poblete, A. E. Síntesis y Modificación de Materiales Con Actividad Fotocatalítica Para La Oxofuncionalización Selectiva de Hidrocarburos Tesis Para Optar Al Grado de Doctor En Ciencias Con Mención En Química, Universidad de Concepcion, 2017.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 130 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85740/4/TesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf
https://repositorio.unal.edu.co/bitstream/unal/85740/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85740/5/TesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf.jpg
bitstream.checksum.fl_str_mv 1da0ef085566f33f4102777e77a3a288
eb34b1cf90b7e1103fc9dfd26be24b4a
903227e077e1db39e971e1db427af3a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886019282239488
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Paucar Álvarez, Carlos Guillermo94d13d6f2365951b28bffaf23ff9b290García García, Claudia Patricia6448197d2cc32832cb2f81989b4a9a99Nevado Velásquez, Paula Andrea6b994dc7dc79a45ef1dbf8c8a5a5afd3Materiales Cerámicos y VítreosNevado Velásquez, Paula Andrea [0009-0009-2211-589X]Paula Andrea Nevado Velasquez2024-02-28T21:30:39Z2024-02-28T21:30:39Z2022-08https://repositorio.unal.edu.co/handle/unal/85740Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Avocado ripening and many of its quality parameters are influenced by ethylene production and pathologies such as anthracnose, whose management represents a challenge for the industry since they affect the commercialization of this fruit. An alternative to control ethylene production is the use of nanoparticles with photocatalytic behavior that inhibit ethylene production through reactions. Thus, in this work, TiO2 particles doped with different concentrations of Ag were synthesized by the self-combustion technique in solution. The obtained particles were subjected to their respective morphological characterization using techniques such as XRD and SEM. Agglomerates of TiO2 particles were obtained in anatase phase, with 0.75%, 1.5% and 3.5% mol Ag of approximately 109.5 nm and in mixed anatase-ruthyl phase with 0% and 4.5% mol Ag with average sizes of 184.03 and 205.06 nm. The presence of Ag was confirmed by EDS, and through FTIR assays the bonds associated with the obtained material were identified (O-H and Ag interactions, Ti-O vibrations, O-H narrowing). The particle size distribution analysis and BET analysis, allow concluding that as the average agglomerate size decreases, there is an increase in the surface area, which is an important element for the photocatalytic activity. It was found that TiO2 particles with 0.75% mol Ag were the ones that presented the best response and therefore, they were taken as a reference to perform ethylene removal tests, antifungal activity and simulated transport tests. The presence of TiO2 particles doped with Ag enabled ethylene removal, antifungal activity and a delay in the ripening process of Hass avocado when in contact with the material.La maduración del aguacate y muchos de sus parámetros de calidad son influenciados por la producción de etileno y patologías como la antracnosis, cuyo manejo representa un reto para la industria ya que afectan la calidad del fruto y con ello su comercialización. Una alternativa en el control de la producción de etileno es el uso de nanopartículas con comportamiento fotocatalítico que mediante reacciones inhiban la producción del gas. Es así como en este trabajo se sintetizaron partículas de TiO2 dopado con diferentes concentraciones de Ag por la técnica de autocombustión en solución. Las partículas obtenidas se caracterizaron morfológicamente utilizando técnicas como DRX y SEM. Se obtuvieron aglomerados de partículas de TiO2 en fase anatasa , con 0,75%, 1,5% y 3,5% mol Ag de aproximadamente 109,5 nm y en fase mixta de anatasa-rutilo con 0% y 4,5% mol Ag con tamaños promedios de 184,03 y 205,06 nm. La presencia de Ag se confirmó mediante EDS, y a través de ensayos de FTIR se identificaron los enlaces asociados al material obtenido (interacciones O-H y Ag, vibraciones Ti-O, estrechamiento O-H). Los análisis de distribución de tamaño de partícula y análisis BET, permiten concluir que a medida que el tamaño promedio de aglomerado disminuye, hay un aumento en el área de superficie, lo cual constituye un elemento importante para la actividad fotocatalítica. Se encontró que las partículas de TiO2 con 0,75% mol Ag fueron las que mejor respuesta presentaron y por lo tanto, se tomaron como referencia para realizar pruebas de remoción de etileno, actividad antifúngica y pruebas de transporte simulado. La presencia de partículas de TiO2 dopadas con Ag posibilitaron la remoción de etileno, presentan actividad antifúngica y un retraso en el proceso de maduración del aguacate Hass al tener contacto con el material. (Tomado de la fuente)MaestríaMagíster en Ciencias - QuímicaCiencias Naturales.Sede Medellín130 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesAguacate - calidadAgricultura - InvestigacionesCultivos alimenticiosProducción agropecuariaNanotecnologíaNanopartículas de TiO2-Agposcosechafotocatálisisaguacate Hassactividad antimicrobianacontrol de etilenoautocombustión en soluciónAlternativas de base nanotecnológica en el control de etileno y/o actividad antimicrobiana para mejorar la vida poscosecha del aguacate HassNanotechnology-based alternatives in the control of ethylene and/or antimicrobial activity to improve the postharvest life of Hass avocado.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaRivera, S. A.; Ferreyra, R.; Robledo, P.; Selles, G.; Arpaia, M. L.; Saavedra, J.; Defilippi, B. G. Identification of Preharvest Factors Determining Postharvest Ripening Behaviors in ‘Hass’ Avocado under Long Term Storage. Sci. Hortic. (Amsterdam). 2017, 216, 29–37. https://doi.org/10.1016/j.scienta.2016.12.024.Bill, M.; Sivakumar, D.; Thompson, A. K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30 (3), 169–202. https://doi.org/10.1080/87559129.2014.907304.Hershkovitz, V.; Friedman, H.; Goldschmidt, E. E.; Feygenberg, O.; Pesis, E. Induction of Ethylene in Avocado Fruit in Response to Chilling Stress on Tree. J. Plant Physiol. 2009, 166 (17), 1855–1862. https://doi.org/10.1016/j.jplph.2009.05.012.Arpaia, M. L.; Collin, S.; Sievert, J.; Obenland, D. ‘Hass’ Avocado Quality as Influenced by Temperature and Ethylene Prior to and during Final Ripening. Postharvest Biol. Technol. 2018, 140 (February), 76–84. https://doi.org/10.1016/j.postharvbio.2018.02.015.Giovannoni, J. Molecular Biology of Fruit and Maturation and Ripening. Anu. Rev. Plant Physiol. Plant Mol. Biol 2001, 52, 725–749.Gwanpua, S. G.; Qian, Z.; East, A. R. Modelling Ethylene Regulated Changes in ‘Hass’ Avocado Quality. Postharvest Biol. Technol. 2018, 136 (October 2017), 12–22. https://doi.org/10.1016/j.postharvbio.2017.10.002.Pesis, E.; Ackerman, M.; Ben-Arie, R.; Feygenberg, O.; Feng, X.; Apelbaum, A.; Goren, R.; Prusky, D. Ethylene Involvement in Chilling Injury Symptoms of Avocado during Cold Storage. Postharvest Biol. Technol. 2002, 24 (2), 171–181. https://doi.org/10.1016/S0925-5214(01)00134-X.Sanders, G. M.; Korsten, L. Comparison of Cross Inoculation Potential of South African Avocado and Mango Isolates of Colletotrichum Gloeosporioides. Microbiol. Res. 2003, 158 (2), 143–150. https://doi.org/10.1078/0944-5013-00186.Bosse, R. J.; Bower, J. P.; Bertling, I. Systemic Resistance Inducers Applied Preharvest for Colletotrichum Gloeosporioides Control in Avocados. Acta Hortic. 2013, 1007, 153–160. https://doi.org/10.17660/ActaHortic.2013.1007.14.Schaller, G. E.; Binder, B. M. Inhibitors of Ethylene Biosynthesis and Signaling. Methods Mol. Biol. 2017, 1573, 87–99. https://doi.org/10.1007/978-1-4939-6854-1.Ochoa-Ascencio, S.; Hertog, M. L. A. T. M.; Nicolaï, B. M. Modelling the Transient Effect of 1-MCP on “Hass” Avocado Softening: A Mexican Comparative Study. Postharvest Biol. Technol. 2009, 51 (1), 62–72. https://doi.org/10.1016/j.postharvbio.2008.06.002.Woolf, A. B.; Requejo-Tapia, C.; Cox, K. A.; Jackman, R. C.; Gunson, A.; Arpaia, M. L.; White, A. 1-MCP Reduces Physiological Storage Disorders of “Hass” Avocados. Postharvest Biol. Technol. 2005, 35 (1), 43–60. https://doi.org/10.1016/j.postharvbio.2004.07.009Meyer, M. D.; Terry, L. A. Fatty Acid and Sugar Composition of Avocado, Cv. Hass, in Response to Treatment with an Ethylene Scavenger or 1-Methylcyclopropene to Extend Storage Life. Food Chem. 2010, 121 (4), 1203–1210. https://doi.org/10.1016/j.foodchem.2010.02.005.Shimshoni, J. A.; Bommuraj, V.; Chen, Y.; Sperling, R.; Barel, S.; Feygenberg, O.; Maurer, D.; Alkan, N. Postharvest Fungicide for Avocado Fruits: Antifungal Efficacy and Peel to Pulp Distribution Kinetics. Foods 2020, 9 (2), 1–12. https://doi.org/10.3390/foods9020124.Chi, H.; Song, S.; Luo, M.; Zhang, C.; Li, W.; Li, L.; Qin, Y. Effect of PLA Nanocomposite Films Containing Bergamot Essential Oil, TiO 2 Nanoparticles, and Ag Nanoparticles on Shelf Life of Mangoes. Sci. Hortic. (Amsterdam). 2019, 249 (November 2018), 192–198. https://doi.org/10.1016/j.scienta.2019.01.059.Wang, L.; Shao, S.; Madebo, M. P.; Hou, Y.; Zheng, Y.; Jin, P. Effect of Nano-SiO2 Packing on Postharvest Quality and Antioxidant Capacity of Loquat Fruit under Ambient Temperature Storage. Food Chem. 2020, 315 (November 2019), 126295. https://doi.org/10.1016/j.foodchem.2020.126295.Li, J.; Sun, Q.; Sun, Y.; Chen, B.; Wu, X.; Le, T. Improvement of Banana Postharvest Quality Using a Novel Soybean Protein Isolate/Cinnamaldehyde/Zinc Oxide Bionanocomposite Coating Strategy. Sci. Hortic. (Amsterdam). 2019, 258 (July), 108786. https://doi.org/10.1016/j.scienta.2019.108786Díaz, J.; Ardila, C.; Guerra, M. Estudio de Caso Sobre La Admisibilidad Del Aguacate Hass Colombiano En El Mercado Estadounidense : Oportunidades En El Este de Asia Case Study on the Eligibility of Colombian Hass Avocado in The. Rev. Mundo Asia Pacífico 2019, 8 (14), 5–27. https://doi.org/10.17230/map.v8.i14.01.Gil, J. G.; Franco, G.; Henao-Rojas, J. Review of Concept of Quality in Hass Avocado and Pre-Harvest and Harvest Factors That Determine It under Tropical Conditions; 2020. https://doi.org/10.17584/rcch.2019v13i3.10503.Astudillo-Ordóñez, C. E.; Rodríguez, P. Physicochemical Parameters of Avocado Persea Americana Mill. Cv. Hass (Lauraceae) Grown in Antioquia (Colombia) for Export. Corpoica Cienc. y Tecnol. Agropecu. 2018, 19 (2), 393–402. https://doi.org/10.21930/rcta.vol19_num2_art:694.Analdex, 2017. Los Retos Del Aguacate Hass Colombiano En Los Mercados Internacionales. In Presented at the Seminario Internacional de Aguacate Hass, - Armenia - Quindío-Colombia; 2017; pp 1–29.Meindrawan, B.; Suyatma, N. E.; Wardana, A. A.; Pamela, V. Y. Nanocomposite Coating Based on Carrageenan and ZnO Nanoparticles to Maintain the Storage Quality of Mango. Food Packag. Shelf Life 2018, 18 (October), 140–146. https://doi.org/10.1016/j.fpsl.2018.10.006.He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis Cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166 (3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003.Hu, Q.; Fang, Y.; Yang, Y.; Ma, N.; Zhao, L. Effect of Nanocomposite-Based Packaging on Postharvest Quality of Ethylene-Treated Kiwifruit (Actinidia Deliciosa) during Cold Storage. Food Res. Int. 2011, 44 (6), 1589–1596. https://doi.org/10.1016/j.foodres.2011.04.018.Alghuthaymi, M.; Abd-Elsalam, K. A.; Paraliker, P.; Rai, M. Chapter 13 - Mono and Hybrid Nanomaterials: Novel Strategies to Manage Postharvest Diseases. In Micro and Nano Technologies; Abd-Elsalam, K. A. B. T.-M. H. N. for S. A.-F. and E., Ed.; Elsevier, 2020; pp 287–317. https://doi.org/https://doi.org/10.1016/B978-0-12-821354-4.00013-3.Smith, W. Fundamentos De La Ciencia e Ingeneria De Materiales, Tercera.; Fernandez Madrid, C., Ed.; McGRAW-HILL INTERAMERICANA DE ESPAÑA S.A.U: España, 2014.Candal, R. J.; Bilmes, S. A. Semiconductores Con Actividad Fotocatalítica. In Eliminación de Contaminantes por Fotocatálisis Heterogénea; Blesa, M. A., Ed.; CYTED, 2004; pp 79–101.Ameta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis; 2018. https://doi.org/10.1016/B978-0-12-810499-6.00006-1.Kim, S.; Lee, M.; Hong, C.; Yoon, Y.; An, H.; Lee, D.; Jeong, W.; Yoo, D.; Kang, Y.; Youn, Y.; Han, S. A Band-Gap Database for Semiconducting Inorganic Materials Calculated with Hybrid Functional. Sci. Data 2020, 7 (1), 1–6. https://doi.org/10.1038/s41597-020-00723-8.Khan, S. U. M.; Kainthla, R. C.; Bockris, J. O. M. The Redox Potential and the Fermi Level in Solution. J. Phys. Chem. 1987, 91 (23), 5974–5977. https://doi.org/10.1021/j100307a032.Reiss, H. The Fermi Level and the Redox Potential. J. Phys. Chem. 1985, 89 (18), 3783–3791. https://doi.org/10.1021/j100264a005.Gupta, S. M.; Tripathi, M. A Review of TiO2 Nanoparticles. Chinese Sci. Bull. 2011, 56 (16), 1639–1657. https://doi.org/10.1007/s11434-011-4476-1.Cardenas, Carolina; Tobon, Jorge; Garcia, C. Photocatalytic Properties Evaluation of Portland White Cement Added. Rev. Lat. Met. Mat. 2012, 33 (2), 316–322.Simonsen, M. E. Heterogeneous Photocatalysis. Chem. Adv. Environ. Purif. Process. Water Fundam. Appl. 2014, 135–170. https://doi.org/10.1016/B978-0-444-53178-0.00004-3.Nixon, J. F. Topics in Current Chemistry; Bignozzi, C. A., Ed.; 1982; Vol. 234. https://doi.org/10.1016/s0022-328x(00)85867-2.Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31 (50), 1–26. https://doi.org/10.1002/adma.201901997.De Lasa, H.; Serrano, B.; Salaices, M. Photocatalytic Reaction Engineering; 2005. https://doi.org/10.1007/0-387-27591-6.Liang, A. H.; Jia, Z.; Zhang, H.; Wang, X.; Wang, J. Photocatalysis Oxidation Activity Regulation of Ag / TiO 2 Composites Evaluated by the Selective Oxidation of Rhodamine B. Appl. Surf. Sci. 2017. https://doi.org/10.1016/j.apsusc.2017.05.211.Ullah, H.; Viglašová, E.; Galamboš, M. Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods. Processes 2021, 9 (2), 1–11. https://doi.org/10.3390/pr9020263.Lopera, A. A; Velasquez, A. M; Chavarriaga, E. A ; Ocampo, S; Zaghete, M. A; Graminha, M. A; Garcia, C. P. Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible Synthesis by Combustion in Solution of Zn2TiO4 + Ag for Photocatalytic and Photodynamic Applications in the Visible. J. Phys. Conf. Ser. 2017, 935 (012013). https://doi.org/doi :10.1088/1742-6596/935/1/012013.Samoylov, A. M.; Popov, V. N. Titanium Dioxide (Tio₂) and Its Applications; Matthew Dean, 2021. https://doi.org/10.1016/b978-0-12-819960-2.00024-9.Navrotsky, A.; Jamieson, J. C.; Kleppa, O. J. Enthalpy of Transformation of a High-Pressure Polymorph of Titanium Dioxide to the Rutile Modification. Science (80-. ). 1967, 158 (3799), 388–389. https://doi.org/10.1126/science.158.3799.388.Scarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. Titan. Dioxide - Mater. a Sustain. Environ. 2018, No. June 2018. https://doi.org/10.5772/intechopen.74244.Moreno, B.; Carballo, M.; Jurado, J. R.; Chinarro, E. Una Revisión Del Uso Del TiO2 En Terapias e Ingeniería Tisular. Bol. la Soc. Esp. Ceram. y Vidr. 2009, 48 (6), 321–328.Stucchi, M.; Bianchi, C. L.; Pirola, C.; Vitali, S.; Cerrato, G.; Morandi, S.; Argirusis, C.; Sourkouni, G.; Sakkas, P. M.; Capucci, V. Surface Decoration of Commercial Micro-Sized TiO2 by Means of High Energy Ultrasound: A Way to Enhance Its Photocatalytic Activity under Visible Light. Appl. Catal. B Environ. 2014, 178, 124–132. https://doi.org/10.1016/j.apcatb.2014.10.004.Hanaor, D. A. H.; Sorrell, C. C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46 (4), 855–874. https://doi.org/10.1007/s10853-010-5113-0.Gallagher, R. P.; Lee, T. K. Adverse Effects of Ultraviolet Radiation: A Brief Review. Prog. Biophys. Mol. Biol. 2006, 92 (1), 119–131. https://doi.org/10.1016/j.pbiomolbio.2006.02.011.Lopera Sepúlveda, A. A. Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea Diseño de Un Dispositivo Médico Que Sirva Como Terapia Alternativa Para El Tratamiento de La Leishmaniasis Cutánea, Universidad Nacional de Colombia., 2017.Wang, J.; Li, C.; Luan, X.; Li, J.; Wang, B.; Zhang, L.; Xu, R.; Zhang, X. Investigation on Solar Photocatalytic Activity of TiO2 Loaded Composite: TiO2/Skeleton, TiO2/Dens and TiO2/HAP. J. Mol. Catal. A Chem. 2010, 320 (1–2), 62–67. https://doi.org/10.1016/j.molcata.2010.01.004.Wei, P.; Liu, J.; Li, Z. Effect of Pt Loading and Calcination Temperature on the Photocatalytic Hydrogen Production Activity of TiO2 Microspheres. Ceram. Int. 2013, 39 (5), 5387–5391. https://doi.org/10.1016/j.ceramint.2012.12.045.Zaleska, A. Doped-TiO₂ : A Review. Recent Patents Eng. 2008, 2, 157-164 2008, 2 (3), 157–164. https://doi.org/doi:10.2174/187221208786306289.Malekshahi Byranvand, M.; Nemati Kharat, A.; Fatholahi, L.; Malekshahi Beiranvand, Z. A Review on Synthesis of Nano-TiO2 via Different Methods. J. Nanostructures 2013, 3 (1), 1–9. https://doi.org/10.7508/jns.2013.01.001.Mahshid, S.; Askari, M.; Sasani Ghamsari, M.; Afshar, N.; Lahuti, S. Mixed-Phase TiO2 Nanoparticles Preparation Using Sol-Gel Method. Journal of Alloys and Compounds. 2009, pp 586–589. https://doi.org/10.1016/j.jallcom.2008.11.094.Arami, Hamed; Mazloumi, Mahyar; Khalifehzadeh, Razieh; Sadrnezhaad, S. . Sonochemical Preparation of TiO2 Nanoparticles. Mater. Lett. 2007, 61 (23–24), 4559–4561. https://doi.org/doi.org/10.1016/j.matlet.2007.02.051.Endrödi, B.; Kecsenovity, E.; Rajeshwar, K.; Janáky, C. One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Appl. Energy Mater. 2018, 1 (2), 851–858. https://doi.org/10.1021/acsaem.7b00289.Chigane, M.; Shinagawa, T.; Tani, J. ichi. Preparation of Titanium Dioxide Thin Films by Indirect-Electrodeposition. Thin Solid Films. 2017, pp 203–207. https://doi.org/10.1016/j.tsf.2017.03.031.Novitskaya, E.; Kelly, J. P.; Bhaduri, S.; Graeve, O. A. A Review of Solution Combustion Synthesis: An Analysis of Parameters Controlling Powder Characteristics. Int. Mater. Rev. 2021, 66 (3), 188–214. https://doi.org/10.1080/09506608.2020.1765603.Deganello, F.; Tyagi, A. K. Solution Combustion Synthesis, Energy and Environment: Best Parameters for Better Materials. Prog. Cryst. Growth Charact. Mater. 2018, 64 (2), 23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001.Alves, Annelise Kopp; Bergmann, Carlos P.; Berutti, F. A. Synthesis and Characterization of Nanostructured Materials; Springer, 2009. https://doi.org/10.1007/978-3-642-41275-2.Ma, X.; Xue, L.; Li, X.; Yang, M.; Yan, Y. Controlling the Crystalline Phase of TiO2 Powders Obtained by the Solution Combustion Method and Their Photocatalysis Activity. Ceram. Int. 2015, 41 (9), 11927–11935. https://doi.org/10.1016/j.ceramint.2015.05.161.Martínez-González, M. E.; Balois Morales, R.; Alia-Tejacal, I.; Cortes-Cruz, M. A.; Palomino-Hermosillo, Y. A.; López-Gúzman, G. G. Postcosecha de Frutos: Maduración y Cambios Bioquímicos. Rev. Mex. Ciencias Agrícolas 2017, No. 19, 4075–4087. https://doi.org/10.29312/remexca.v0i19.674.Osorio, S.; Scossa, F.; Fernie, A. R. Molecular Regulation of Fruit Ripening. Front. Plant Sci. 2013, 4 (JUN), 1–8. https://doi.org/10.3389/fpls.2013.00198.INTAGRI. Frutos Climatéricos y No Climatéricos. Postcosecha y Comer. 2017, No. Figura 1, 4.Equipo Editorial INTAGRI SC. Papel Del Etileno En La Maduración de Frutos | Intagri S.C. Ser. Poscosecha y Comer. 2001, 16 (Artículos Técnicos de INTAGRI), 4p.Bapat, V. A.; Trivedi, P. K.; Ghosh, A.; Sane, V. A.; Ganapathi, T. R.; Nath, P. Ripening of Fleshy Fruit: Molecular Insight and the Role of Ethylene. Biotechnol. Adv. 2010, 28 (1), 94–107. https://doi.org/10.1016/j.biotechadv.2009.10.002.Sadeghi, K.; Lee, Y.; Seo, J. Ethylene Scavenging Systems in Packaging of Fresh Produce: A Review. Food Rev. Int. 2021, 37 (2), 155–176. https://doi.org/10.1080/87559129.2019.1695836.Balaguera-López, H. E.; Salamanca-Gutiérrez, F. A.; García, J. C.; Herrera-Árevalo, A. Etileno y Retardantes de La Maduración En La Poscosecha de Productos Agrícolas. Una Revisión. Rev. Colomb. Ciencias Hortícolas 2015, 8 (2), 302. https://doi.org/10.17584/rcch.2014v8i2.3222.Weber, A. Aplicação de Produtos Da Fermentação e Ultrabaixo Oxigênio Para a Conservação de Maçãs ‘Royal Gala,’ Universidade Federal de Santa Maria, 2010.Gavin, C.; Barzallo, D.; Vera, H.; Lazo, R. Revisión Bibliográfica: Etileno En Poscosecha, Tecnologías Para Su Manejo y Control. Ecuadorian Sci. J. 2021, 5 (4), 163–178. https://doi.org/10.46480/esj.5.4.179.Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J. Isolation and Characterization of Arabidopsis Mutants Defective in the Induction of Ethylene Biosynthesis by Cytokinin. Genetics 1998, 149 (1), 417–427. https://doi.org/10.1093/genetics/149.1.417.Ramírez-Gil, J. G.; Henao-Rojas, J. C.; Morales-Osorio, J. G. Postharvest Diseases and Disorders in Avocado Cv. Hass and Their Relationship to Preharvest Management Practices. Heliyon 2021, 7 (1), e05905. https://doi.org/10.1016/j.heliyon.2021.e05905.Grisales Vásquez, Nancy Yohana; Rodríguez Fonseca, P. E. ;; Correa Londoño, Guillermo Antonio; Tamayo Molano, P. J. Inventario de Los Principales Fitopatógenos de Poscosecha y Defectos de Calidad de Los Frutos de Aguacate (Persea Americana Mill Cv. Hass). AGROSAVIA, Corporación colombiana de investigación agropecuaria. 2019, p 24.Gonzalez, J. A. H.; Baños, S. B.; Garcia, S. S.; Gutierrez Martinez, P. Situación Actual Del Manejo Poscosecha y de Enfermedades Fungosas Del Aguacate ‘Hass’ Para Exportación En Michoacán. Rev. Mex. Ciencias Agrícolas 2020, 11 (7), 1647–1660. https://doi.org/10.29312/remexca.v11i7.2402.Duvenhage, J. A. The Influence of Wet Picking on Post Harvest Diseases and Disorders of Avocado Fruit. South African Avocado Grow. Assoc. 1993, 16, 77–79.Rodríguez-López, É. S.; Cárdenas-Soriano, E.; Hernández-Delgado, S.; Gutiérrez-Diez, A.; Mayek-Pérez, N. Análisis de La Infección de Colletotrichum Gloeosporioides (Penz.) Penz. & Sacc. de Frutos de Aguacatero. Rev. Bras. Frutic. 2013, 35 (3), 898–905. https://doi.org/10.1590/S0100-29452013000300029.Brezmes Llecha, J. Diseño de Una Nariz Electrónica Para La Determinación No Destructiva Del Grado de La Maduración de La Fruta, Universitat Politécnica de Catalunya, 2001.Sivalingam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G. Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2. Appl. Catal. B Environ. 2003, 45 (1), 23–38. https://doi.org/10.1016/S0926-3373(03)00124-3.Sivalingam, G.; Priya, M. H.; Madras, G. Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2. Appl. Catal. B Environ. 2004, 51 (1), 67–76. https://doi.org/10.1016/j.apcatb.2004.02.006.Aarthi, T.; Madras, G. Photocatalytic Degradation of Rhodamine Dyes with Nano-TiO2. Ind. Eng. Chem. Res. 2007, 46 (1), 7–14. https://doi.org/10.1021/ie060948n.CHENG, Y.; SUN, H.; JIN, W.; XU, N. Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method* * Supported by the Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu Province and Ministry of Education. Chinese J. Chem. Eng. 2007, 15 (2), 178–183. https://doi.org/10.1016/S1004-9541(07)60055-X.Jongprateep, O.; Puranasamriddhi, R.; Palomas, J. Nanoparticulate Titanium Dioxide Synthesized by Sol-Gel and Solution Combustion Techniques. Ceram. Int. 2015, 41 (S1), S169–S173. https://doi.org/10.1016/j.ceramint.2015.03.193.Challagulla, S.; Nagarjuna, R.; Ganesan, R.; Roy, S. TiO2 Synthesized by Various Routes and Its Role on Environmental Remediation and Alternate Energy Production. Nano-Structures and Nano-Objects. 2017, pp 147–156. https://doi.org/10.1016/j.nanoso.2017.10.002.Chung, S. L.; Wang, C. M. Solution Combustion Synthesis of TiO 2 and Its Use for Fabrication of Photoelectrode for Dye-Sensitized Solar Cell. J. Mater. Sci. Technol. 2012, 28 (8), 713–722. https://doi.org/10.1016/S1005-0302(12)60120-0.Challagulla, S.; Roy, S. The Role of Fuel to Oxidizer Ratio in Solution Combustion Synthesis of TiO2and Its Influence on Photocatalysis. J. Mater. Res. 2017, 32 (14), 2764–2772. https://doi.org/10.1557/jmr.2017.244.Nassar, M. Y.; Ali, E. I.; Zakaria, E. S. Tunable Auto-Combustion Preparation of TiO2 Nanostructures as Efficient Adsorbents for the Removal of an Anionic Textile Dye. RSC Adv. 2017, 7 (13), 8034–8050. https://doi.org/10.1039/c6ra27924d.Li, G.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing Mixed-Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photo-Oxidation and Photoreduction Applications. J. Catal. 2008, 253 (1), 105–110. https://doi.org/10.1016/j.jcat.2007.10.014.Jho, J. H.; Kim, D. H.; Kim, S. J.; Lee, K. S. Synthesis and Photocatalytic Property of a Mixture of Anatase and Rutile TiO2 Doped with Fe by Mechanical Alloying Process. J. Alloys Compd. 2008, 459 (1–2), 386–389. https://doi.org/10.1016/j.jallcom.2007.04.285.He, J.; Du, Y. en; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24 (16), 1–14. https://doi.org/10.3390/molecules24162996.Hoffmann, T. G.; Ronzoni, A. F.; da Silva, D. L.; Bertoli, S. L.; de Souza, C. K. Impact of Household Refrigeration Parameters on Postharvest Quality of Fresh Food Produce. J. Food Eng. 2021, 306 (November 2020). https://doi.org/10.1016/j.jfoodeng.2021.110641.García, J. C.; Balaguera-López, H.; Aníbal, & H. Conservación Del Fruto de Banano Bocadillo ( Musa AA Simmonds ) Con La Aplicación de Permanganato de Potasio Conservation of Baby Banana ( Musa AA Simmonds ) Fruits with the Application of Potassium Permanganate ( KMnO 4 ). 2012, 6 (2), 161–171.Fonseca, J. de M.; Alves, M. J. dos S.; Soares, L. S.; Moreira, R. de F. P. M.; Valencia, G. A.; Monteiro, A. R. A Review on TiO2-Based Photocatalytic Systems Applied in Fruit Postharvest: Set-Ups and Perspectives. Food Res. Int. 2021, 144 (April). https://doi.org/10.1016/j.foodres.2021.110378.Park, D. R.; Ahn, B. J.; Park, H. S.; Yamashita, H.; Anpo, M. Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts: Effect of the Presence of O2 and H2O and the Addition of Pt. Korean J. Chem. Eng. 2001, 18 (6), 930–934. https://doi.org/10.1007/BF02705621.Yamazaki, S.; Tanaka, S.; Tsukamoto, H. Kinetic Studies of Oxidation of Ethylene over a TiO2 Photocatalyst. J. Photochem. Photobiol. A Chem. 1999, 121 (1), 55–61. https://doi.org/10.1016/S1010-6030(98)00448-1.Hauchecorne, B.; Tytgat, T.; Verbruggen, S. W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. Photocatalytic Degradation of Ethylene: An FTIR in Situ Study under Atmospheric Conditions. Appl. Catal. B Environ. 2011, 105 (1–2), 111–116. https://doi.org/10.1016/j.apcatb.2011.03.041.Lin, Y. T.; Weng, C. H.; Chen, F. Y. Key Operating Parameters Affecting Photocatalytic Activity of Visible-Light-Induced C-Doped TiO2 Catalyst for Ethylene Oxidation. Chem. Eng. J. 2014, 248, 175–183. https://doi.org/10.1016/j.cej.2014.02.085.Lin, Y. T.; Weng, C. H.; Hsu, H. J.; Huang, J. W.; Srivastav, A. L.; Shiesh, C. C. Effect of Oxygen, Moisture, and Temperature on the Photo Oxidation of Ethylene on N-Doped TiO2 Catalyst. Sep. Purif. Technol. 2014, 134, 117–125. https://doi.org/10.1016/j.seppur.2014.07.039.Pathak, N.; Caleb, O. J.; Geyer, M.; Herppich, W. B.; Rauh, C.; Mahajan, P. V. Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. Food Bioprocess Technol. 2017, 10 (6), 982–1001. https://doi.org/10.1007/s11947-017-1889-0.Chavadej, S.; Saktrakool, K.; Rangsunvigit, P.; Lobban, L. L.; Sreethawong, T. Oxidation of Ethylene by a Multistage Corona Discharge System in the Absence and Presence of Pt/TiO2. Chem. Eng. J. 2007, 132 (1–3), 345–353. https://doi.org/10.1016/j.cej.2007.01.030.Chang, K. L.; Sekiguchi, K.; Wang, Q.; Zhao, F. Removal of Ethylene and Secondary Organic Aerosols Using UV-C254 + 185 Nm with TiO2 Catalyst. Aerosol Air Qual. Res. 2013, 13 (2), 618–626. https://doi.org/10.4209/aaqr.2012.07.0195.Rodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of Photocatalytic Titanium Dioxide-Based Nanomaterials in Sustainable Agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001.Yadav, H. M.; Kim, J. S.; Pawar, S. H. Developments in Photocatalytic Antibacterial Activity of Nano TiO2: A Review. Korean J. Chem. Eng. 2016, 33 (7), 1989–1998. https://doi.org/10.1007/s11814-016-0118-2.Regmi, C.; Joshi, B.; Ray, S. K.; Gyawali, G.; Pandey, R. P. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Front. Chem. 2018, 6 (February), 1–6. https://doi.org/10.3389/fchem.2018.00033.Jang, H. D.; Kim, S. K.; Kim, S. J. Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Nanoparticle Res. 2001, 3 (2–3), 141–147. https://doi.org/10.1023/A:1017948330363.Almquist, C. B.; Biswas, P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal. 2002, 212 (2), 145–156. https://doi.org/10.1006/jcat.2002.3783.Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 Particle Size on the Photocatalytic Reduction of CO2. Appl. Catal. B Environ. 2009, 89 (3–4), 494–502. https://doi.org/10.1016/j.apcatb.2009.01.010.Hussain, M.; Bensaid, S.; Geobaldo, F.; Saracco, G.; Russo, N. Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO 2 Nanoparticles. Ind. Eng. Chem. Res. 2011, 50 (IMCCRE 2010), 2536–2543.de Chiara, M. L. V.; Pal, S.; Licciulli, A.; Amodio, M. L.; Colelli, G. Photocatalytic Degradation of Ethylene on Mesoporous TiO2/SiO2 Nanocomposites: Effects on the Ripening of Mature Green Tomatoes. Biosyst. Eng. 2015, 132, 61–70. https://doi.org/10.1016/j.biosystemseng.2015.02.008.Pathak, N.; Caleb, O. J.; Rauh, C.; Mahajan, P. V. Efficacy of Photocatalysis and Photolysis Systems for the Removal of Ethylene under Different Storage Conditions. Postharvest Biol. Technol. 2019, 147 (September 2018), 68–77. https://doi.org/10.1016/j.postharvbio.2018.09.006.Lourenço, R. E. R. S.; Linhares, A. A. N.; de Oliveira, A. V.; da Silva, M. G.; de Oliveira, J. G.; Canela, M. C. Photodegradation of Ethylene by Use of TiO2 Sol-Gel on Polypropylene and on Glass for Application in the Postharvest of Papaya Fruit. Environ. Sci. Pollut. Res. 2017, 24 (7), 6047–6054. https://doi.org/10.1007/s11356-016-8197-5.Hur, J. S.; Oh, S. O.; Lim, K. M.; Jung, J. S.; Kim, J. W.; Koh, Y. J. Novel Effects of TiO2 Photocatalytic Ozonation on Control of Postharvest Fungal Spoilage of Kiwifruit. Postharvest Biol. Technol. 2005, 35 (1), 109–113. https://doi.org/10.1016/j.postharvbio.2004.03.013.Shahbaz, H. M.; Kim, S.; Kim, J. U.; Park, D.; Lee, M.; Lee, D. U.; Park, J. Inactivation of Salmonella Typhimurium in Fresh Cherry Tomatoes Using Combined Treatment of UV–TiO2 Photocatalysis and High Hydrostatic Pressure. Food Sci. Biotechnol. 2018, 27 (5), 1531–1539. https://doi.org/10.1007/s10068-018-0368-3.Lopera Sepúlveda, A. A.; Arenas Velásquez, A. M.; Patiño Linares, I. A.; de Almeida, L.; Fontana, C. R.; Garcia, C.; Silva Graminha, M. A. Efficacy of Photodynamic Therapy Using TiO2 Nanoparticles Doped with Zn and Hypericin in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania Amazonensis. Photodiagnosis Photodyn. Ther. 2020, 30 (January), 101676. https://doi.org/10.1016/j.pdpdt.2020.101676.Park, B. G. Photocatalytic Activity of Tio2-Doped Fe, Ag, and Ni with n under Visible Light Irradiation. Gels 2022, 8 (1). https://doi.org/10.3390/gels8010014.Jongprateep, O.; Meesombad, K.; Techapiesancharoenkij, R.; Surawathanawises, K. Chemical Composition, Microstructure, Bandgap Energy and Electrocatalytic Activities of TiO2 and Ag-Doped TiO2 Powder Synthesized by Solution Combustion Technique. Ceram. Int. 2018, 44 (August), S228–S232. https://doi.org/10.1016/j.ceramint.2018.08.108.Li, Y.; Ma, M.; Chen, W.; Li, L.; Zen, M. Preparation of Ag-Doped TiO2 Nanoparticles by a Miniemulsion Method and Their Photoactivity in Visible Light Illuminations. Mater. Chem. Phys. 2011, 129 (1–2), 501–505. https://doi.org/10.1016/j.matchemphys.2011.04.055.Miao, Y.; Xu, X.; Liu, K.; Wang, N. Preparation of Novel Cu/TiO2 Mischcrystal Composites and Antibacterial Activities for Escherichia Coli under Visible Light. Ceram. Int. 2017, 43 (13), 9658–9663. https://doi.org/10.1016/j.ceramint.2017.04.137.Lopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P. Synthesis and Spectroscopic Characterization of Nanoparticles of TiO2 Doped with Pt Produced via the Self-Combustion Route. J. Phys. D. Appl. Phys. 2016, 49 (20). https://doi.org/10.1088/0022-3727/49/20/205501.Patil, K C; Hedge, M S; Rattan, Tanu; Aruna, S. T. Chemistry Of Nanocrystalline Oxide Materials. 2008. https://doi.org/10.1142/9789812793157.Sane, P.; Chaudhari, S.; Nemade, P.; Sontakke, S. Photocatalytic Reduction of Chromium (VI) Using Combustion Synthesized TiO2. J. Environ. Chem. Eng. 2018, 6 (1), 68–73. https://doi.org/10.1016/j.jece.2017.11.060.Khan, S. A.; Khan, S. B.; Khan, L. U.; Farooq, A.; Akhtar, K.; Asiri, A. M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. Handb. Mater. Charact. 2018, 317–344. https://doi.org/10.1007/978-3-319-92955-2_9.Jansses, M. Fundamental Measurement Techniques. In Flammability Testing of Materials Used in Construction, Transport and Mining; Apte Transport and Mining, V. B. B. T.-F. T. of M. U. in C., Ed.; Woodhead Publishing, 2006; pp 22–62. https://doi.org/https://doi.org/10.1533/9781845691042.22.Clavijo, J. Caracterización de Materiales a Través de Medidas de Microscopía Electrónica de Barrido (SEM). Elementos 2013, 3 (3). https://doi.org/10.15765/e.v3i3.420.Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.Alothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5 (12), 2874–2902. https://doi.org/10.3390/ma5122874.Tahir, M. B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of Nanotechnology in Photocatalysis. Encycl. Smart Mater. 2022, 578–589. https://doi.org/10.1016/b978-0-12-815732-9.00006-1.Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary Tio2 –Cux s–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10 (22), 1–16. https://doi.org/10.3390/app10228070.Bhanvase, B.; Barai, D. Nanofluids for Heat and Mass Transfer, 1st ed.; Elsevier, Ed.; Academic press- Elsevier, 2021. https://doi.org/10.1016/B978-0-12-821955-3.00009-1.Nobbs, J. H. Dyers Scales for Assessing the Colour of Dyed Fabrics. In Color Science ’98; Gilchrist, J. N., Ed.; Universidad de Leeds, Reino Unido: Reino Unido, 2016; Vol. 3.Yang, S.; Wu, Z.; Huang, L. P.; Zhou, B.; Lei, M.; Sun, L.; Tian, Q.; Pan, J.; Wu, W.; Zhang, H. Significantly Enhanced Dye Removal Performance of Hollow Tin Oxide Nanoparticles via Carbon Coating in Dark Environment and Study of Its Mechanism. Nanoscale Res. Lett. 2014, 9 (1), 1–9. https://doi.org/10.1186/1556-276X-9-442.Chakinala, N.; Gogate, P. R.; Chakinala, A. G. Photocatalytic Degradation of Rhodamine-b over Mono- And Bi-Metallic Tio2 Catalysts. Mater. Today Proc. 2021, 43, 3066–3070. https://doi.org/10.1016/j.matpr.2021.01.403.Wang, S.; Han, Z.; Di, T.; Li, R.; Liu, S.; Cheng, Z. Preparation of Pod-Shaped TiO2 and Ag@TiO2 Nano Burst Tubes and Their Photocatalytic Activity. R. Soc. Open Sci. 2019, 6 (9). https://doi.org/10.1098/rsos.191019.Jin, R.; Ye, X.; Fan, J.; Jiang, D.; Chen, H. Y. In Situ Imaging of Photocatalytic Activity at Titanium Dioxide Nanotubes Using Scanning Ion Conductance Microscopy. Anal. Chem. 2019, 91 (4), 2605–2609. https://doi.org/10.1021/acs.analchem.8b05311.Carvalho, C. P.; Velásquez, M. A.; Van Rooyen, Z. Determinación Del Índice Mínimo de Materia Seca Para La Óptima Cosecha Del Aguacate ‘Hass’ En Colombia. Agron. Colomb. 2014, 32 (3), 399–406. https://doi.org/10.15446/agron.colomb.v32n3.46031.Barnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi; Burgess life science series; Burgess Publishing Company, 1972.White, T. J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR Protoc. 1990, No. December 2015, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.Castellanos, D. A.; Mendoza, R.; Gavara, R.; Herrera, A. O. Respiration and Ethylene Generation Modeling of “Hass” Avocado and Feijoa Fruits and Application in Modified Atmosphere Packaging. Int. J. Food Prop. 2017, 20 (2), 333–349. https://doi.org/10.1080/10942912.2016.1160921.Mendoza, R.; Castellanos, D. A.; García, J. C.; Vargas, J. C.; Herrera, A. O. Ethylene Production, Respiration and Gas Exchange Modelling in Modified Atmosphere Packaging for Banana Fruits. Int. J. Food Sci. Technol. 2016, 51 (3), 777–788. https://doi.org/10.1111/ijfs.13037.Garavito, J.; Herrera, A. O.; Castellanos, D. A. A Combined Mathematical Model to Represent Transpiration, Respiration, and Water Activity Changes in Fresh Cape Gooseberry (Physalis Peruviana) Fruits. Biosyst. Eng. 2021, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015.Maftoonazad, N.; Ramaswamy, H. S. Effect of Pectin-Based Coating on the Kinetics of Quality Change Associated with Stored Avocados. J. Food Process. Preserv. 2008, 32 (4), 621–643. https://doi.org/10.1111/j.1745-4549.2008.00203.x.Crocetti, G. XRD Phase Analysis of TiO2 Sunscreens; NMI Nanometrology: Australia, 2012.Durango-Giraldo, G.; Cardona, A.; Zapata, J. F.; Santa, J. F.; Buitrago-Sierra, R. Titanium Dioxide Modified with Silver by Two Methods for Bactericidal Applications. Heliyon 2019, 5 (5), e01608. https://doi.org/10.1016/j.heliyon.2019.e01608.Sangchay, W. Photocatalytic and Antibacterial Activity of Ag-Doped TiO 2 Nanoparticles. KKU Res.J. 2013, 18 (5), 731–738.Madadi, M.; Ghorbanpour, M.; Feizi, A. Antibacterial and Photocatalytic Activity of Anatase Phase Ag-Doped TiO2 Nanoparticles. Micro Nano Lett. 2018, 13 (11), 1590–1593. https://doi.org/10.1049/mnl.2018.5057.Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced Photocatalytic and Antibacterial Activities of Ag-Doped TiO2 Nanoparticles under Visible Light. Mater. Chem. Phys. 2018, 212, 325–335. https://doi.org/10.1016/j.matchemphys.2018.03.052.Mogal, S. I.; Gandhi, V. G.; Mishra, M.; Tripathi, S.; Shripathi, T.; Joshi, P. A.; Shah, D. O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 2014, 53 (14), 5749–5758. https://doi.org/10.1021/ie404230q.Byrne, C.; Fagan, R.; Hinder, S.; McCormack, D. E.; Pillai, S. C. New Approach of Modifying the Anatase to Rutile Transition Temperature in TiO2 Photocatalysts. RSC Adv. 2016, 6 (97), 95232–95238. https://doi.org/10.1039/c6ra19759k.Spurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29 (5), 760–762. https://doi.org/10.1021/ac60125a006.Chao, H. E.; Yun, Y. U.; Xingfang, H. U.; Larbot, A. Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania Powder. J. Eur. Ceram. Soc. 2003, 23 (9), 1457–1464. https://doi.org/10.1016/S0955-2219(02)00356-4.Munir, T; Sharif, M; Ali, H; Kashif, M; Sohail, A; Sabir, N; Amin, N; Mahmood, A; Ahmed, N. Impact of Silver Dopant on Structural and Optical Properties of TiO2 Nanoparticles. Dig. J. Nanomater. Biostructures 2019, 14 (2), 279–284. https://doi.org/10.1007/s00339-019-2594-9.Mohan, D. G.; Gopi, S.; Rajasekar, V.; Krishnan, K.; Mohan, D. G.; Gopi S.; Selvarajan, L.; Rajavel, R.; Prakash, B.; Mohan, D. G.; Gopi, S.; Alloys, A. A.; Taguchi, U.; Selvarajan, L.; Sasikumar, R.; Mohan, D. G.; Naveen Kumar, P.; Muralidharan, V. Studies on Optical and Electrical Properties of Green Synthesized TiO2@Ag Core-Shell Nanocomposite Material; 2019; Vol. 27. https://doi.org/10.1080/14484846.2018.1432089.Sakthivel, T; Ashok Kumar, K; Rajajeyaganthan Ramanathan; Senthilselvan, J; Jagannathan, K. Silver Doped TiO2 Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications. Mater. Res. Express Accept. 2017, 4 (126310), 0–68. https://doi.org/https://doi.org/10.1088/2053-1591/aa9e36.Lei, X. F.; Xue, X. X.; Yang, H. Preparation and Characterization of Ag-Doped TiO 2 Nanomaterials and Their Photocatalytic Reduction of Cr(VI) under Visible Light. Appl. Surf. Sci. 2014, 321, 396–403. https://doi.org/10.1016/j.apsusc.2014.10.045.Pohan, L. A. G.; Kambiré, O.; Nasir, M.; Ouattara, L. Photocatalytic and Antimicrobial Properties of [AgTiO2]:[Clay] Nanocomposite Prepared with Clay Different Ratios. Mod. Res. Catal. 2020, 09 (04), 47–61. https://doi.org/10.4236/mrc.2020.94004.Kusiak-Nejman, E.; Czyżewski, A.; Wanag, A.; Dubicki, M.; Sadłowski, M.; Wróbel, R. J.; Morawski, A. W. Photocatalytic Oxidation of Nitric Oxide over AgNPs/TiO2-Loaded Carbon Fiber Cloths. J. Environ. Manage. 2020, 262. https://doi.org/10.1016/j.jenvman.2020.110343.White, J. L. Interpretation of Infrared Spectra of Soil Minerals. Soil Sci. 1971, 112 (1), 22–31. https://doi.org/10.1097/00010694-197107000-00005.Martinez Rojas, Vanessa;Matejova, Lenka;Lopez Milla, Alcidez;Cruz, Gerardo;Solis Veliz, José;Gomez Leon, M. PRODUCTION OF TiO 2 PARTICLES BY SOL-GEL ULTRASOUND ASSISTED FOR PHOTOCATALYTIC APPLICATIONS. Rev. la Soc. Química del Perú 2015, 81 (3), 201–211.Rao, T. N.; Riyazuddin; Babji, P.; Ahmad, N.; Khan, R. A.; Hassan, I.; Shahzad, S. A.; Husain, F. M. Green Synthesis and Structural Classification of Acacia Nilotica Mediated-Silver Doped Titanium Oxide (Ag/TiO2) Spherical Nanoparticles: Assessment of Its Antimicrobial and Anticancer Activity. Saudi J. Biol. Sci. 2019, 26 (7), 1385–1391. https://doi.org/10.1016/j.sjbs.2019.09.005.Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like Polyoxotitanium Cage with High Solution Stability. J. Am. Chem. Soc. 2016, 138 (8), 2556–2559. https://doi.org/10.1021/jacs.6b00613.Shokri, M.; Jodat, A.; Modirshahla, N.; Behnajady, M. A. Photocatalytic Degradation of Chloramphenicol in an Aqueous Suspension of Silver-Doped TiO2 Nanoparticles. Environ. Technol. (United Kingdom) 2013, 34 (9), 1161–1166. https://doi.org/10.1080/09593330.2012.743589.Chen, C.; Lei, X. F.; Xue, M. Z. A Simple Method to Synthesise Ag-Doped TiO2 Photocatalysts with Different Ag0:Ag2O Atomic Ratios for Enhancing Visible-Light Photocatalytic Activity. J. Chem. Res. 2017, 41 (8), 475–483. https://doi.org/10.3184/174751917X15012350965047.Nhu, V. T. T.; Tuan, H. N. A.; Hien, N. Q.; Minh, D. Q. Synthesis of Ag Nano/TiO2 by γ-Irradiation and Optimisation of Photocatalytic Degradation of Rhodamine B. Int. J. Nanotechnol. 2018, 15 (1–3), 118–134. https://doi.org/10.1504/IJNT.2018.089563.Tseng, K. H.; Chung, M. Y.; Chang, C. Y.; Cheng, T. S. A Study of Photocatalysis of Methylene Blue of TiO2 Fabricated by Electric Spark Discharge Method. J. Nanomater. 2017, 2017. https://doi.org/10.1155/2017/9346201.Rasalingam, S.; Wu, C. M.; Koodali, R. T. Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Appl. Mater. Interfaces 2015, 7 (7), 4368–4380. https://doi.org/10.1021/am508883f.Jo, Y. K.; Kim, B. H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93 (10), 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037.Encinas Basurto, D. A.; Alvarez Carvajal, F.; Armenta Calderon, A.; Gonzalez Soto, T. E.; Esquer Miranda, E.; Juarez Onofre, J.; Mendez Ibarra, R. Silver Nanoparticles Coated with Chitosan against Fusarium Oxysporum Causing the Tomato Wilt. Biotecnia 2020, 22 (3), 73–80. https://doi.org/10.18633/biotecnia.v22i3.952.Kim, S. W.; Jung, J. H.; Lamsal, K.; Kim, Y. S.; Min, J. S.; Lee, Y. S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology. 2012, pp 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053.Farrokhi, S.; Ahari, H.; Abedini, M. R. Comparative Effects of Colloidal Silver Nanoparticles Used in Packaging Film and Spray in Inactivating Bacteria Experimentally Added to Chicken Eggshells. Int. J. Food Prop. 2017, 20 (10), 2314–2322. https://doi.org/10.1080/10942912.2016.1236274.Bruinsma, J.; Paull, R. E. Respiration during Postharvest Development of Soursop Fruit, Annona Muricata L. Plant Physiol. 1984, 76 (1), 131–138. https://doi.org/10.1104/pp.76.1.131.Taiti, C.; Costa, C.; Menesatti, P.; Caparrotta, S.; Bazihizina, N.; Azzarello, E.; Petrucci, W. A.; Masi, E.; Giordani, E. Use of Volatile Organic Compounds and Physicochemical Parameters for Monitoring the Post-Harvest Ripening of Imported Tropical Fruits. Eur. Food Res. Technol. 2015, 241 (1), 91–102. https://doi.org/10.1007/s00217-015-2438-6.Buelvas Salgado, G. A.; Patiño Gómez, J. H.; Cano-Salazar, J. A. Evaluation of the Oil Extraction from Has Avocado (Persea Americana Mill) by the Use of an Enzymatic Treatment. Rev. Lasallista Investig. 2012, 9 (2), 138–150.Kassim, A.; Workneh, T. S.; Bezuidenhout, C. N. A Review on Postharvest Handling of Avocado Fruit. African J. Agric. Res. 2013, 8 (21), 2385–2402. https://doi.org/10.5897/AJAR12.1248.Henríquez Arias, L. E.; Patiño Gómez, J. H.; Salazar, J. A. Application of the Matrixes Engineering on the Development of Minimally Processed Hass Avocado (Persea Americana Mill) with Additions of Vitamin c and Calcium. Rev. Lasallista Investig. 2013, 9 (2), 44–54.Vinha, A. F.; Moreira, J.; Barreira, S. V. P. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea Americana Mill.). J. Agric. Sci. 2013, 5 (12). https://doi.org/10.5539/jas.v5n12p100.Márquez, C.; Yepes, D.; Sanchez, L.; Osorio, J. Cambios Físico-Químicos Del Aguacate (Persea Americana Mill. Cv. “Hass”) En Poscosecha Para Dos Municipios de Antioquia. Temas Agrarios. 2016, pp 32–47. https://doi.org/10.21897/rta.v19i1.723.Farkas, D. F.; Lazar, M. E. Osmotic Dehydration of Apple Pieces: Effect of Temperature and Syrup Concentration on Rates. Food Technol. 1969.Henríquez Poblete, A. E. Síntesis y Modificación de Materiales Con Actividad Fotocatalítica Para La Oxofuncionalización Selectiva de Hidrocarburos Tesis Para Optar Al Grado de Doctor En Ciencias Con Mención En Química, Universidad de Concepcion, 2017.EstudiantesInvestigadoresMaestrosORIGINALTesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdfTesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdfapplication/pdf3283555https://repositorio.unal.edu.co/bitstream/unal/85740/4/TesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf1da0ef085566f33f4102777e77a3a288MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85740/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAILTesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf.jpgTesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf.jpgGenerated Thumbnailimage/jpeg4475https://repositorio.unal.edu.co/bitstream/unal/85740/5/TesisMaestriaPaulaAndreaNevadoVelasquezFinal.pdf.jpg903227e077e1db39e971e1db427af3a6MD55unal/85740oai:repositorio.unal.edu.co:unal/857402024-02-28 23:05:08.107Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=