Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa

fotografías a color, ilustraciones, gráficas, tablas

Autores:
Patiño Lagos, Margareth Andrea
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81969
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81969
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
620 - Ingeniería y operaciones afines
660 - Ingeniería química
540 - Química y ciencias afines
500 - Ciencias naturales y matemáticas
600 - Tecnología (Ciencias aplicadas)
Genetics
Plant biotechnology
Genética
Biotecnología vegetal
Saccharomyces cerevisiae
Xilosa
Producción de xilitol
Recombinantes
Silenciamiento génico
ingeniería evolutiva
Saccharomyces cerevisiae
xylose
xylitol production
Recombinant
Gene silencing
Evolutionary engineering
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2264627026c7a095f138dbeccd42802c
oai_identifier_str oai:repositorio.unal.edu.co:unal/81969
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
dc.title.translated.eng.fl_str_mv Genetic improvement of a yeast Saccharomyces cerevisiae isolated in Colombia for xylose fermentation
title Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
spellingShingle Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
570 - Biología
620 - Ingeniería y operaciones afines
660 - Ingeniería química
540 - Química y ciencias afines
500 - Ciencias naturales y matemáticas
600 - Tecnología (Ciencias aplicadas)
Genetics
Plant biotechnology
Genética
Biotecnología vegetal
Saccharomyces cerevisiae
Xilosa
Producción de xilitol
Recombinantes
Silenciamiento génico
ingeniería evolutiva
Saccharomyces cerevisiae
xylose
xylitol production
Recombinant
Gene silencing
Evolutionary engineering
title_short Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
title_full Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
title_fullStr Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
title_full_unstemmed Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
title_sort Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa
dc.creator.fl_str_mv Patiño Lagos, Margareth Andrea
dc.contributor.advisor.none.fl_str_mv Velásquez Lozano, Mario Enrique
Ugarte Stambuk, Boris Juan Carlos
dc.contributor.author.none.fl_str_mv Patiño Lagos, Margareth Andrea
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 570 - Biología
620 - Ingeniería y operaciones afines
660 - Ingeniería química
540 - Química y ciencias afines
500 - Ciencias naturales y matemáticas
600 - Tecnología (Ciencias aplicadas)
topic 570 - Biología
620 - Ingeniería y operaciones afines
660 - Ingeniería química
540 - Química y ciencias afines
500 - Ciencias naturales y matemáticas
600 - Tecnología (Ciencias aplicadas)
Genetics
Plant biotechnology
Genética
Biotecnología vegetal
Saccharomyces cerevisiae
Xilosa
Producción de xilitol
Recombinantes
Silenciamiento génico
ingeniería evolutiva
Saccharomyces cerevisiae
xylose
xylitol production
Recombinant
Gene silencing
Evolutionary engineering
dc.subject.lemb.eng.fl_str_mv Genetics
Plant biotechnology
dc.subject.lemb.spa.fl_str_mv Genética
Biotecnología vegetal
dc.subject.proposal.spa.fl_str_mv Saccharomyces cerevisiae
Xilosa
Producción de xilitol
Recombinantes
Silenciamiento génico
ingeniería evolutiva
dc.subject.proposal.eng.fl_str_mv Saccharomyces cerevisiae
xylose
xylitol production
Recombinant
Gene silencing
Evolutionary engineering
description fotografías a color, ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-19
dc.date.accessioned.none.fl_str_mv 2022-08-18T21:27:34Z
dc.date.available.none.fl_str_mv 2022-08-18T21:27:34Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81969
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81969
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Ahmad, Irshad, Woo Yong Shim, y Jung-Hoe Kim. 2012. «Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway». Bioprocess and Biosystems Engineering 36 (9): 1279-84. https://doi.org/10.1007/s00449-012-0872-4
Alonso, A., y A. Kotyk. 1978. «Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae». Folia Microbiologica 23 (2): 118-25. https://doi.org/10.1007/BF02915311
Arora, Anju, Shweta Priya, Pankhuri Sharma, Shalley Sharma, y Lata Nain. 2016. «Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw». Biocatalysis and Agricultural Biotechnology 8 (octubre): 66-72. https://doi.org/10.1016/j.bcab.2016.08.006
Attfield, Paul V., y Philip J. L. Bell. 2006. «Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source». FEMS Yeast Research 6 (6): 862-68. https://doi.org/10.1111/j.1567- 1364.2006.00098.x
Ausubel, F. M., R. Brent, R. E. Kingston, D. D Moore, J. G. Seidman, J. A. Smith, y K. Struhl. 1992. Short Protocols in Molecular Biology. 2nd ed. John Wiley & Sons
Bamba, Takahiro, Tomohisa Hasunuma, y Akihiko Kondo. 2016. «Disruption of PHO13 improves ethanol production via the xylose isomerase pathway». AMB Express 6 (1): 4. https://doi.org/10.1186/s13568-015-0175-7
Barnett, J. A., R. W Payne, y D Yarrow. 1990. Yeasts : Characteristics and Identification. 2nd ed. Cambridge ; New York : Cambridge University Press. https://trove.nla.gov.au/version/6557753
Basso, L. C., H. V. de Amorim, A. J. de Oliveira, y M. L. Lopes. 2008. «Yeast selection for fuel ethanol production in Brazil». FEMS Yeast Research 8 (7): 1155-63. https://doi.org/10.1111/j.1567-1364.2008.00428.x
Batt, C. A., S. Carvallo, D. D. Easson, M. Akedo, y A. J. Sinskey. 1986. «Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae». Biotechnology and Bioengineering 28 (4): 549-53. https://doi.org/10.1002/bit.260280411
Belinchón, Mónica M., y Juana M. Gancedo. 2003. «Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae». Archives of Microbiology 180 (4): 293-97. https://doi.org/10.1007/s00203-003-0593-9
Bengtsson, Oskar, Marie Jeppsson, Marco Sonderegger, Nadia Skorupa Parachin, Uwe Sauer, Bärbel Hahn-Hägerdal, y Marie-F. Gorwa-Grauslund. 2008. «Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering». Yeast (Chichester, England) 25 (11): 835-47. https://doi.org/10.1002/yea.1638
Benson, Dennis A., Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, y David L. Wheeler. 2003. «GenBank». Nucleic Acids Research 31 (1): 23-27
Bergdahl, Basti, Anders G. Sandström, Celina Borgström, Tarinee Boonyawan, Ed W. J. van Niel, y Marie F. Gorwa-Grauslund. 2013. «Engineering yeast Hexokinase 2 for improved tolerance toward xylose-induced inactivation». PLoS ONE 8 (9). https://doi.org/10.1371/journal.pone.0075055
Berttilsson, M., J. Andersson, y G. Lidén. 2008. «Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters». Bioprocess and Biosystems Engineering 31 (4): 369-77. https://doi.org/10.1007/s00449-007-0169-1
Bhukya, Bhima, Srinivas Banoth, y Archana Anthappagudem. 2019. «Chapter 5 - Saccharomyces cerevisiae as potential probiotic: strategies for isolation and selection». En Applied Microbiology and Bioengineering, editado por Pratyoosh Shukla, 71-85. Academic Press. https://doi.org/10.1016/B978-0-12-815407-6.00005-8
Bisson, L. F., y D. G. Fraenkel. 1983. «Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae». Proceedings of the National Academy of Sciences of the United States of America 80 (6): 1730-34. https://doi.org/10.1073/pnas.80.6.1730
Bisson, Linda F., Qingwen Fan, y Gordon A. Walker. 2016. «Sugar and glycerol transport in Saccharomyces cerevisiae». Advances in Experimental Medicine and Biology 892: 125-68. https://doi.org/10.1007/978-3-319-25304-6_6
Boles, E., y C. P. Hollenberg. 1997. «The Molecular genetics of hexose transport in yeasts». FEMS Microbiology Reviews 21 (1): 85-111. https://doi.org/10.1111/j.1574- 6976.1997.tb00346.x
Borneman, Anthony R., Brian A. Desany, David Riches, Jason P. Affourtit, Angus H. Forgan, Isak S. Pretorius, Michael Egholm, y Paul J. Chambers. 2012. «The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii Origins». FEMS Yeast Research 12 (1): 88-96. https://doi.org/10.1111/j.1567-1364.2011.00773.x
Bradbury, John E., Keith D. Richards, Heather A. Niederer, Soon A. Lee, P. Rod Dunbar, y Richard C. Gardner. 2006. «A homozygous diploid subset of commercial wine yeast strains». Antonie Van Leeuwenhoek 89 (1): 27-37. https://doi.org/10.1007/s10482-005- 9006-1
Brink, Daniel P., Celina Borgström, Felipe G. Tueros, y Marie F. Gorwa-Grauslund. 2016. «Real-Time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling». Microbial Cell Factories 15 (1): 183. https://doi.org/10.1186/s12934-016-0580-x
Bruinenberg, P. M., P. H. M. de Bot, J. Dijken, y W. A. Scheffers. 1984. «NADH-Linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts». Applied Microbiology and Biotechnology 19 (4): 256-60. https://doi.org/10.1007/BF00251847
Buziol, Stefan, Jessica Becker, Anja Baumeister, Susanne Jung, Klaus Mauch, Matthias Reuss, y Eckhard Boles. 2002. «Determination of in vivo kinetics of the starvation-induced Hxt5 Glucose Transporter of Saccharomyces cerevisiae». FEMS Yeast Research 2 (3): 283-91. https://doi.org/10.1016/S1567-1356(02)00113-7
Cadete, Raquel M., Alejandro M. de Las Heras, Anders G. Sandström, Carla Ferreira, Francisco Gírio, Marie-Françoise Gorwa-Grauslund, Carlos A. Rosa, y César Fonseca. 2016. «Exploring xylose metabolism in Spathaspora Species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 167. https://doi.org/10.1186/s13068-016-0570-6
Carlson, M. 1999. «Glucose repression in yeast». Current Opinion in Microbiology 2 (2): 202-7. https://doi.org/10.1016/S1369-5274(99)80035-6
Carvalho, Walter, Marcio A. Batista, Larissa Canilha, Julio C. Santos, Attilio Converti, y Silvio S. Silva. 2004. «Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production». Journal of Chemical Technology & Biotechnology 79 (11): 1308-12. https://doi.org/10.1002/jctb.1131
Chang, Sue-Feng, y Nancy W. Y. Ho. 1988. «Cloning the yeast xylulokinase gene for the improvement of xylose fermentation». Applied Biochemistry and Biotechnology 17 (1): 313-18. https://doi.org/10.1007/BF02779165
Cheng, Cheng, Rui-Qi Tang, Liang Xiong, Ronald E. Hector, Feng-Wu Bai, y Xin-Qing Zhao. 2018. «Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae». Biotechnology for Biofuels 11: 28. https://doi.org/10.1186/s13068-018-1018-y
Chiang, C., y S. G. Knight. 1959. «D-xylose metabolism by cell-free extracts of Penicillium chrysogenum». Biochimica Et Biophysica Acta 35: 454-63
Chiang, Lin-Chang, Cheng-Shung Gong, Li-Fu Chen, y George T. Tsao. 1981. «Dxylulose fermentation to ethanol by Saccharomyces cerevisiae». Applied and Environmental Microbiology 42 (2): 284-89
Cid, Angel, Carlos Gancedo, y Rosario Lagunas. 1987. «Inactivation of the glucose transport system in sporulating yeast». FEMS Microbiology Letters 41 (1): 59-61
Cifuentes, Y. A. 2016. «Secuenciación y caracterización del genoma de la cepa Saccharomyces cerevisiae 202-3 con potencial para la producción de etanol de segunda generación». Universidad Nacional de Colombia
Cifuentes, Yina, Sergio Latorre, Andrés Pinzón, y Mario Velásquez. 2015. «Draft genome sequence of a natural isolated Saccharomyces cerevisiae from Colombia». En 2015 IEEE 5th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), 1-2. https://doi.org/10.1109/ICCABS.2015.7344727
Coelho, Marco A., Carla Gonçalves, José Paulo Sampaio, y Paula Gonçalves. 2013. «Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene». PLOS Genetics 9 (6): e1003587. https://doi.org/10.1371/journal.pgen.1003587
Dário, M. G. 2012. «Efeito da alteração na captação de sacarose ao metabolismo de Saccharomyces cerevisiae.» Text, Universidade de São Paulo. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-04062012-114632/
De Bari, Isabella, Daniela Cuna, Vincenzo Di Matteo, y Federico Liuzzi. 2014. «Bioethanol production from steam-pretreated corn stover through an isomerase mediated process». New Biotechnology 31 (2): 185-95. https://doi.org/10.1016/j.nbt.2013.12.003
DelaFuente, G. 1970. «Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate». European Journal of Biochemistry 16 (2): 240-43. https://doi.org/10.1111/j.1432-1033.1970.tb01077.x
Della-Bianca, Bianca Eli, Thiago Olitta Basso, Boris Ugarte Stambuk, Luiz Carlos Basso, y Andreas Karoly Gombert. 2013. «What do we know about the yeast strains from the brazilian fuel ethanol industry? ». Applied Microbiology and Biotechnology 97 (3): 979-91. https://doi.org/10.1007/s00253-012-4631-x
Deng, X. X., y N. W. Ho. 1990. «Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific Note». Applied Biochemistry and Biotechnology 24-25: 193-99
Devadas, Suganthi Martena, Mamatha Ballal, Peralam Yegneswaran Prakash, Manjunath H. Hande, Geetha V. Bhat, y Vinitha Mohandas. 2017. «Auxanographic carbohydrate assimilation method for large scale yeast identification». Journal of Clinical and Diagnostic Research: JCDR 11 (4): DC01-3. https://doi.org/10.7860/JCDR/2017/25967.9653
Diderich, J. A., J. A., J. M. Schuurmans, M. C. van Gaalen, A. L. Kruckerberg, y K. van Dam. 2001. «Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae». Yeast (Chichester, England) 18 (16): 1515-24. https://doi.org/10.1002/yea.779
Diderich, J. A., M. Schepper, P. van Hoek, M. A. Luttik, J. P. van Dijken, J. T. Pronk, P. Klaassen, et al., 1999. «Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae». The Journal of Biological Chemistry 274 (22): 15350-59. https://doi.org/10.1074/jbc.274.22.15350
Does, A. L., y L. F. Bisson. 1989. «Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis». Applied and Environmental Microbiology 55 (1): 159-64. https://doi.org/10.1128/AEM.55.1.159-164.1989
Elbing, Karin, Christer Larsson, Roslyn M. Bill, Eva Albers, Jacky L. Snoep, Eckhard Boles, Stefan Hohmann, y Lena Gustafsson. 2004. «Role of Hexose Transport in control of glycolytic flux in Saccharomyces cerevisiae». Applied and Environmental Microbiology 70 (9): 5323-30. https://doi.org/10.1128/AEM.70.9.5323-5330.2004
Eliasson, A., E. Boles, B. Johansson, M. Osterberg, J. M. Thevelein, I. Spencer-Martins, H. Juhnke, y B. Hahn-Hägerdal. 2000. «Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 53 (4): 376-82
Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2018. «A semi-synthetic regulon enables rapid growth of yeast on xylose». Nature Communications 9 (1): 1233. https://doi.org/10.1038/s41467-018-03645-7
Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2019. «Pentose metabolism in Saccharomyces cerevisiae: The need to engineer global regulatory systems». Biotechnology Journal 14 (1): e1800364. https://doi.org/10.1002/biot.201800364
Espinoza-Acosta, José Luis. 2020. «Biotechnological production of xylitol from agricultural waste». Biotecnia 22 (1): 126-34. https://doi.org/10.18633/biotecnia.v22i1.1160
Farwick, A., S. Bruder, V. Schadeweg, M. Oreb, y E. Boles. 2014. «Engineering of yeast Hexose Transporters to transport D-Xylose without Inhibition by D-Glucose». Proceedings of the National Academy of Sciences 111 (14): 5159-64. https://doi.org/10.1073/pnas.1323464111
Fernández, R., P. Herrero, S. Gascón, y F. Moreno. 1984. «Xylose induced decrease in Hexokinase PII activity confers resistance to carbon catabolite repression of invertase synthesis in Saccharomyces carlsbergensis». Archives of Microbiology 139 (2): 139-42. https://doi.org/10.1007/BF00401988
Fukuda, Akira, Yuki Kuriya, Jin Konishi, Kozue Mutaguchi, Takeshi Uemura, Daisuke Miura, y Masahiro Okamoto. 2018. «Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae». Journal of Bioscience and Bioengineering 127 (5): 563-69. https://doi.org/10.1016/j.jbiosc.2018.10.020
Garcia Sanchez, Rosa, Kaisa Karhumaa, César Fonseca, Violeta Sànchez Nogué, João RM Almeida, Christer U. Larsson, Oskar Bengtsson, Maurizio Bettiga, Bärbel HahnHägerdal, y Marie F. Gorwa-Grauslund. 2010. «Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering». Biotechnology for Biofuels 3 (1): 13. https://doi.org/10.1186/1754-6834-3-13
Gietz, R. D., A. ST Jean, R. A. Woods, y R. H. Schiestl. 1992. «Improved method for high efficiency transformation of intact yeast cells.» Nucleic Acids Research 20 (6): 1425
Gietz, R. D., y R. A. Woods. 2002. «Transformation of yeast by Lithium Acetate/singlestranded carrier DNA/Polyethylene Glycol method». Methods in Enzymology 350: 87-96
Gietz, R. Daniel, y Robert H. Schiestl. 2007. «High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method». Nature Protocols 2 (1): 31-34. https://doi.org/10.1038/nprot.2007.13
Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, et al., 1996. «Life with 6000 Genes». Science (New York, N.Y.) 274 (5287): 546, 563-67
Gonçalves, D. L. 2014. «Influência dos transportadores de açúcares na fermentação de xilose por linhagens recombinantes de Saccharomyces cerevisiae». Tese (Doutorado em Bioquímica), Florianópolis - SC: Universidade Federal de Santa Catarina
Gonçalves, D. L., A. Matsushika, B. B. de Sales, T. Goshima, E. P. S. Bon, y B. U. Stambuk. 2014. «Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual Hexose Transporters». Enzyme and Microbial Technology 63: 13-20. https://doi.org/10.1016/j.enzmictec.2014.05.003
Gong, C. S., T. A. Claypool, L. D. McCracken, C. M. Maun, P. P. Ueng, y G. T. Tsao. 1983. «Conversion of pentoses by yeasts». Biotechnology and Bioengineering 25 (1): 85- 102. https://doi.org/10.1002/bit.260250108
Gong, Cheng-Shung, Li-Fu Chen, Michael C. Flickinger, Lin-Chang Chiang, y George T. Tsao. 1981. «Production of ethanol from D-Xylose by using D-xylose isomerase and yeasts». Applied and Environmental Microbiology 41 (2): 430-36
Granström, Tom Birger, Goro Takata, Masaaki Tokuda, y Ken Izumori. 2004. «Izumoring: A novel and complete strategy for bioproduction of rare sugars». Journal of Bioscience and Bioengineering 97 (2): 89-94. https://doi.org/10.1016/S1389-1723(04)70173-5
Grunstein, Michael, y Susan M. Gasser. 2013. «Epigenetics in Saccharomyces cerevisiae». Cold Spring Harbor Perspectives in Biology 5 (7). https://doi.org/10.1101/cshperspect.a017491
Gueldener, U., J. Heinisch, G. J. Koehler, D. Voss, y J. H. Hegemann. 2002. «A second set of LoxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast». Nucleic Acids Research 30 (6): e23
Güldener, Ulrich, Susanne Heck, Thomas Fiedler, Jens Beinhauer, y Johannes H. Hegemann. 1996. «A new efficient gene disruption cassette for repeated use in budding yeast». Nucleic Acids Research 24 (13): 2519-24. https://doi.org/10.1093/nar/24.13.2519
Hahn-hägerdal, B., T. Lindén, T. Senac, y K. Skoog. 1991. «Ethanolic fermentation of pentoses in lignocellulose hydrolysates». Applied Biochemistry and Biotechnology 28-29 (1): 131-44. https://doi.org/10.1007/BF02922595
Hahn-Hägerdal, Bärbel, Sissi Berner, y Kerstin Skoog. 1986. «Improved ethanol production from xylose with glucose isomerase and Saccharomyces cerevisiae Using the respiratory inhibitor azide». Applied Microbiology and Biotechnology 24 (4): 287-93. https://doi.org/10.1007/BF00257051
Hamacher, Tanja, Jessica Becker, Márk Gárdonyi, Bärbel Hahn-Hägerdal, y Eckhard Boles. 2002. «Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization». Microbiology (Reading, England) 148 (Pt 9): 2783-88. https://doi.org/10.1099/00221287-148-9-2783
Hammond, John R. M. 2003. «Yeast Genetics». En Brewing Microbiology, editado por Fergus G. Priest y Iain Campbell, 67-112. Springer US. https://doi.org/10.1007/978-1- 4419-9250-5_3
Han, Ji-Hye, Ju-Yong Park, Hyun Woo Kang, Gi-Wook Choi, Bong-Woo Chung, y Jiho Min. 2010. «Specific Expression Patterns of Xyl1, Xyl2 and Xyl3 in Response to different sugars in Pichia stipitis». Journal of Microbiology and Biotechnology 20 (5): 946-49. https://doi.org/10.4014/jmb.0912.12028
Hanly, T. J., y M. A. Henson. 2013. «Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures.», 2013, sec. 6:44
Harju, S., H. Fedosyuk, y K. R. Peterson. 2004. «Rapid Isolation of Yeast Genomic DNA: Bust n’ Grab». BMC Biotechnology 4 (abril): 8. https://doi.org/10.1186/1472-6750-4-8
Hector, R. E., J. A. Mertens, M. J. Bowman, N. N. Nichols, M. A. Cotta, y S. R. Hughes. 2011. «Saccharomyces cerevisiae Engineered for Xylose Metabolism Requires Gluconeogenesis and the Oxidative Branch of the Pentose Phosphate Pathway for Aerobic Xylose Assimilation». Yeast (Chichester, England) 28 (9): 645-60. https://doi.org/10.1002/yea.1893
Heredia, C. F., A. Sols, y G. Dela Fuente. 1968. «Specificity of the constitutive hexose transport in yeast». European Journal of Biochemistry 5 (3): 321-29. https://doi.org/10.1111/j.1432-1033.1968.tb00373.x
Ho, Nancy W. Y., y Sue-Fen Chang. 1989. «Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations». Enzyme and Microbial Technology 11 (7): 417-21. https://doi.org/10.1016/0141-0229(89)90136-1
Hofer, M., y F. R. Nassar. 1987. «Aerobic and anaerobic uptake of sugars in Schizosaccharomyces pombe». Microbiology 133 (8): 2163-72. https://doi.org/10.1099/00221287-133-8-2163
Hohenschuh, William, Ronald Hector, y Ganti S. Murthy. 2015. «A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae». Bioresource Technology 188: 153-60. https://doi.org/10.1016/j.biortech.2015.02.015
Hou, Jin, Chenxi Qiu, Yu Shen, Hongxing Li, y Xiaoming Bao. 2017. «Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose». FEMS Yeast Research 17 (4). https://doi.org/10.1093/femsyr/fox034
Hou, X. 2012. «anaerobic xylose fermentation by Spathaspora passalidarum». Applied Microbiology and Biotechnology 94 (1): 205-14. https://doi.org/10.1007/s00253-011-3694- 4
Hovsepian, Junie, Quentin Defenouillère, Véronique Albanèse, Libuše Váchová, Camille Garcia, Zdena Palková, y Sébastien Léon. 2017. «multilevel regulation of an α-arrestin by glucose depletion controls Hexose Transporter endocytosis». The Journal of Cell Biology 216 (6): 1811-31. https://doi.org/10.1083/jcb.201610094
Howard, R. L., E. Abotsi, EL Jansen van Rensburg, y S. Howard. 2003. «Lignocellulose biotechnology: issues of bioconversion and enzyme production». African Journal of Biotechnology 2 (12): 602-19. https://doi.org/10.4314/ajb.v2i12.14892
Hsiao, H Y, L C Chiang, P P Ueng, y G T Tsao. 1982. «Sequential utilization of mixed monosaccharides by yeasts». Applied and Environmental Microbiology 43 (4): 840-45
Huxley, C., E. D. Green, y I. Dunham. 1990. «Rapid Assessment of S. cerevisiae Mating Type by PCR». Trends in Genetics: TIG 6 (8): 236
Ito, Keisuke, Sohei Ito, Tatsuro Shimamura, Yasuaki Kawarasaki, Keiko Abe, Takumi Misaka, Takuya Kobayashi, y So Iwata. 2010. «Crystallization and preliminary X-ray analysis of a glucansucrase from the dental caries pathogen Streptococcus mutans». Acta Crystallographica Section F: Structural Biology and Crystallization Communications 66 (Pt 9): 1086-88. https://doi.org/10.1107/S1744309110029714
Jeffries, T. W., y N. Q. SHI. 1999. «Genetic engineering for improved xylose fermentation by yeasts». Advances in Biochemical Engineering/Biotechnology 65: 117-61
Jeffries, Thomas W., Igor V. Grigoriev, Jane Grimwood, José M. Laplaza, Andrea Aerts, Asaf Salamov, Jeremy Schmutz, et al. 2007. «Genome sequence of the lignocellulosebioconverting and xylose-fermenting yeast Pichia Stipitis». Nature Biotechnology 25 (3): 319-26. https://doi.org/10.1038/nbt1290
Jeppsson, H, S Yu, y B Hahn-Hägerdal. 1996. «Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture.» Applied and Environmental Microbiology 62 (5): 1705-9
Johansson, Björn, y Bärbel Hahn-Hägerdal. 2002. «the non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001». FEMS Yeast Research 2 (3): 277-82. https://doi.org/10.1016/S1567-1356(02)00114-9
Jönsson, Leif J, Björn Alriksson, y Nils-Olof Nilvebrant. 2013. «Bioconversion of lignocellulose: inhibitors and detoxification». Biotechnology for Biofuels 6 (enero): 16. https://doi.org/10.1186/1754-6834-6-16
Jordan, Paulina, Jun-Yong Choe, Eckhard Boles, y Mislav Oreb. 2016. «Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters». Scientific Reports 6 (1): 23502. https://doi.org/10.1038/srep23502
Kahar, Prihardi, Kazuo Taku, y Shuzo Tanaka. 2011. «Enhancement of Xylose Uptake in 2-Deoxyglucose tolerant mutant of Saccharomyces cerevisiae». Journal of Bioscience and Bioengineering 111 (5): 557-63. https://doi.org/10.1016/j.jbiosc.2010.12.020
Kilian, S. G., B. A. Prior, y J. C. du Preez. 1993. «The kinetics and regulation of M-xylose transport in Candida Utilis». World Journal of Microbiology and Biotechnology 9 (3): 357- 60. https://doi.org/10.1007/BF00383080
Kim, S. R., H. Xu, A. Lesmana, U. Kuzmanovic, M. AU, C. Florencia, E. J. Oh, G. Zhang, K. H. Kim, y Y-S. Jin. 2015. «Deletion of PHO13, encoding haloacid dehalogenase type iia phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae». Applied and Environmental Microbiology 81 (5): 1601-9. https://doi.org/10.1128/AEM.03474-14
Kim, Soo Rin, Jeffrey M. Skerker, Wei Kang, Anastashia Lesmana, Na Wei, Adam P. Arkin, y Yong-Su Jin. 2013. «Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae». PLOS ONE 8 (2): e57048. https://doi.org/10.1371/journal.pone.0057048
Kobayashi, Yosuke, Takehiko Sahara, Satoru Ohgiya, Yoichi Kamagata, y Kazuhiro E. Fujimori. 2018. «Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae». AMB Express 8 (1): 139. https://doi.org/10.1186/s13568-018-0670-8
Konishi, Jin, Akira Fukuda, Kozue Mutaguchi, y Takeshi Uemura. 2015. «Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes». Biotechnology Letters 37 (8): 1623-30. https://doi.org/10.1007/s10529-015-1840- 2
Korabecna, M. 2007. «The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 S rRNA Gene): Its biological meaning and application». En in Medical Mycology. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Méndez-Vilas
Kötter, P., y M. Ciriacy. 1993. «Xylose Fermentation by Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 38 (6): 776-83. https://doi.org/10.1007/BF00167144
Kotyk, A. 1967. «Properties of the sugar carrier in baker’s yeast. II. Specificity of Transport». Folia Microbiologica 12 (2): 121-31. https://doi.org/10.1007/BF02896872
Kotyk, A., y A. Kleinzeller. 1963. «Transport of D-Xylose and sugar space in baker’s yeast». Folia Microbiologica 8 (mayo): 156-64. https://doi.org/10.1007/BF02894974
Kruckeberg, A. L. 1996. «The Hexose Transporter Family of Saccharomyces cerevisiae». Archives of Microbiology 166 (5): 283-92. https://doi.org/10.1007/s002030050385
Kurtzman, Cletus, J. W. Fell, y Teun Boekhout. 2011. The Yeasts: A Taxonomic Study. 5.a ed. Elsevier
Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, y J. T. Pronk. 2005. «Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain». FEMS Yeast Research 5 (10): 925-34. https://doi.org/10.1016/j.femsyr.2005.04.004
Kwolek-Mirek, Magdalena, y Renata Zadrag-Tecza. 2014. «Comparison of methods used for assessing the viability and vitality of yeast cells». FEMS Yeast Research 14 (7): 1068- 79. https://doi.org/10.1111/1567-1364.12202
Lagunas, R., C. Dominguez, A. Busturia, y M. J. Sáez. 1982. «Mechanisms of appearance of the pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems». Journal of Bacteriology 152 (1): 19-25
Lancheros-Castaneda, S., D. Morales Fonseca, y M. Velásquez Lozano. 2015. «Increase in second generation ethanol production by different nutritional conditions from sugarcane bagasse hydrolysate using a Saccharomyces cerevisiae Native Strain». Chemical Engineering Transactions 43 (mayo): 223-28. https://doi.org/10.3303/CET1543038
Larochelle, M., S. Drouin, F. Robert, y B. Turcotte. 2006. «Oxidative stress-activated Zinc Cluster protein Stb5 has dual Activator/Repressor functions required for pentose phosphate pathway regulation and NADPH production». Molecular and Cellular Biology 26 (17): 6690-6701. https://doi.org/10.1128/MCB.02450-05
Leão, Cecília, y N. van Uden. 1985. «Effects of ethanol and other alkanols on the temperature relations of glucose transport and fermentation in Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 22 (5): 359-63. https://doi.org/10.1007/BF00582420
Lee, Hung. 1998. «Review: The structure and function of yeast xylose (aldose) reductases». Yeast 14 (11): 977-84. https://doi.org/10.1002/(SICI)1097- 0061(199808)14:11<977::AID-YEA302>3.0.CO;2-J
Lee, T.-H., M.-D. Kim, Y.-C. Park, S.-M. Bae, Y.-W. Ryu, y J.-H. Seo. 2003. «effects of xylulokinase activity on ethanol production from d-xylulose by recombinant Saccharomyces cerevisiae». Journal of Applied Microbiology 95 (4): 847-52
Lee, W.-J., M.-D. Kim, Y.-W. Ryu, L. F. Bisson, y J.-H. Seo. 2002. «Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 60 (1-2): 186-91. https://doi.org/10.1007/s00253-002-1085-6
Li, Hongxing, Yu Shen, Meiling Wu, Jin Hou, Chunlei Jiao, Zailu Li, Xinli Liu, y Xiaoming Bao. 2016. «Engineering a wild-type diploid Saccharomyces cerevisiae strain for secondgeneration bioethanol production». Bioresources and Bioprocessing 3 (1). https://doi.org/10.1186/s40643-016-0126-4
Li, Hongxing, Meiling Wu, Lili Xu, Jin Hou, Ting Guo, Xiaoming Bao, y Yu Shen. 2015. «Evaluation of Industrial Saccharomyces cerevisiae strains as the chassis cell for secondgeneration bioethanol production». Microbial Biotechnology 8 (2): 266-74. https://doi.org/10.1111/1751-7915.12245
Lin, Yan, y Shuzo Tanaka. 2006. «Ethanol fermentation from biomass resources: current state and prospects». Applied Microbiology and Biotechnology 69 (6): 627-42. https://doi.org/10.1007/s00253-005-0229-x
Lin, Zhenguo, y Wen-Hsiung Li. 2011. «Expansion of Hexose Transporter genes was associated with the evolution of aerobic fermentation in yeasts». Molecular Biology and Evolution 28 (1): 131-42. https://doi.org/10.1093/molbev/msq184
Lindén, Torbjörn, y Bärbel Hahn-Hägerdal. 1989. «Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase». Enzyme and Microbial Technology 11 (9): 583-89. https://doi.org/10.1016/0141-0229(89)90086-0
Lohr, D. 1997. «Nucleosome transactions on the promoters of the yeast GAL and PHO genes». The Journal of Biological Chemistry 272 (43): 26795-98
Lõoke, M., K. Kristjuhan, y A. Kristjuhan. 2011. «Extraction of genomic DNA from yeasts for PCR-Based applications». BioTechniques 50 (5): 325-28. https://doi.org/10.2144/000113672
Ma, Jun, y Mark Ptashne. 1987. «The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80». Cell 50 (1): 137-42. https://doi.org/10.1016/0092-8674(87)90670- 2
Maier, Andreas, Bernhard Völker, Eckhard Boles, y Günter Fred Fuhrmann. 2002. «Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 Transporters». FEMS Yeast Research 2 (4): 539-50. https://doi.org/10.1111/j.1567-1364.2002.tb00121.x
Malakar, Pushkar, y Kareenhalli V. Venkatesh. 2014. «GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose». FEMS Yeast Research 14 (2): 346-56. https://doi.org/10.1111/1567-1364.12109
Maleszka, R., y H. Schneider. 1984. «Involvement of oxygen and mitochondrial function in the metabolism of D-Xylulose by Saccharomyces cerevisiae». Archives of Biochemistry and Biophysics 228 (1): 22-30
Maniatis, T., E. F. Fritsch, y J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. 2nd ed. New York, NY: Cold Spring Harbor Laboratory Press
Maqueda, Matilde, Emiliano Zamora, Nieves Rodríguez-Cousiño, y Manuel Ramírez. 2010. «Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus DsRNA». Food Microbiology 27 (2): 205-9. https://doi.org/10.1016/j.fm.2009.10.004
Marsit, Souhir, Adriana Mena, Frédéric Bigey, François-Xavier Sauvage, Arnaud Couloux, Julie Guy, Jean-Luc Legras, Eladio Barrio, Sylvie Dequin, y Virginie Galeote. 2015. «evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts». Molecular Biology and Evolution 32 (7): 1695-1707. https://doi.org/10.1093/molbev/msv057
Matsushika, A., T. Goshima, y T. Hoshino. 2014. «Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose». Microbial Cell Factories 13: 16. https://doi.org/10.1186/1475-2859-13-16
Matsushika, A., H. Inoue, T. Kodaki, y S. Sawayama. 2009. «Ethanol production from xylose in engineered Saccharomyces cerevisiae Strains: current state and perspectives». Applied Microbiology and Biotechnology 84 (1): 37-53. https://doi.org/10.1007/s00253- 009-2101-x
Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, H. Inoue, K. Murakami, O. Takimura, y S. Sawayama. 2008. «Expression of protein engineered NADP+ -dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 81 (2): 243-55. https://doi.org/10.1007/s00253-008-1649-1
Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, y S. Sawayama. 2008. «Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase». Journal of Bioscience and Bioengineering 105 (3): 296-99. https://doi.org/10.1263/jbb.105.296
McClellan, C. J., y L. F. Bisson. 1988. «Glucose Uptake in Saccharomyces cerevisiae Grown under Anaerobic Conditions: effect of null mutations in the hexokinase and glucokinase structural genes». Journal of Bacteriology 170 (11): 5396-5400. https://doi.org/10.1128/jb.170.11.5396-5400.1988
McIlwain, Sean J., David Peris, Maria Sardi, Oleg V. Moskvin, Fujie Zhan, Kevin S. Myers, Nicholas M. Riley, et al. 2016. «Genome sequence and analysis of a stresstolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research». G3: Genes|Genomes|Genetics 6 (6): 1757-66. https://doi.org/10.1534/g3.116.029389
Michael, Drew G., Ezekiel J. Maier, Holly Brown, Stacey R. Gish, Christopher Fiore, Randall H. Brown, y Michael R. Brent. 2016. «Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast». Proceedings of the National Academy of Sciences 113 (47): E7428-37. https://doi.org/10.1073/pnas.1603577113
Milessi, Thais Suzane, Patricia M. Aquino, Cláudia R. Silva, Guilherme S. Moraes, Teresa C. Zangirolami, Roberto C. Giordano, y Raquel L. C. Giordano. 2018. «Influence of key variables on the simultaneous isomerization and fermentation (SIF) of xylose by a native Saccharomyces cerevisiae strain co-encapsulated with xylose isomerase for 2G ethanol production». Biomass and Bioenergy 119 (diciembre): 277-83. https://doi.org/10.1016/j.biombioe.2018.09.016
Mittelman, Karin, y Naama Barkai. 2017. «the genetic requirements for pentose fermentation in budding yeast». G3 (Bethesda, Md.) 7 (6): 1743-52. https://doi.org/10.1534/g3.117.039610
Monošík, R., P. Magdolen, M. Stredanský, y E. Šturdík. 2013. «Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry». Food Chemistry 138 (1): 220-26. https://doi.org/10.1016/j.foodchem.2012.10.039
Moreno, Fernando, Montserrat Vega, y Pilar Herrero. 2016. «The nuclear Hexokinase 2 acts as a glucose sensor in Saccharomyces cerevisiae». The Journal of Biological Chemistry 291 (32): 16478. https://doi.org/10.1074/jbc.L116.738237
Mortimer, R. K., y J. R. Johnston. 1986. «Genealogy of principal strains of the yeast genetic stock center». Genetics 113 (1): 35-43
Moysés, Danuza Nogueira, Viviane Castelo Branco Reis, João Ricardo Moreira de Almeida, Lidia Maria Pepe de Moraes, y Fernando Araripe Gonçalves Torres. 2016. «Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects». International Journal of Molecular Sciences 17 (3). https://doi.org/10.3390/ijms17030207
Muir, Alastair, Elizabeth Harrison, y Alan Wheals. 2011. «A multiplex set of speciesspecific primers for rapid identification of members of the genus Saccharomyces». FEMS Yeast Research 11 (7): 552-63. https://doi.org/10.1111/j.1567-1364.2011.00745.x
Nakano, Kazunori, Ryosuke Katsu, Kiyoshi Tada, y Masatoshi Matsumura. 2000. «production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control». Journal of Bioscience and Bioengineering 89 (4): 372-76. https://doi.org/10.1016/S1389-1723(00)88961-6
Nasir, Armanul, Shafkat Shamim Rahman, Md Mahboob Hossain, y Naiyyum Choudhury. 2017. «Isolation of Saccharomyces cerevisiae from pineapple and orange and study of metal’s effectiveness on ethanol production». European Journal of Microbiology & Immunology 7 (1): 76-91. https://doi.org/10.1556/1886.2016.00035
NEB. 2017. «PCR Using Q5® High-Fidelity DNA Polymerase (M0491) | NEB». 2017. https://www.neb.com/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerasem0491
Ni, H., J. M. Laplaza, y T. W. Jeffries. 2007. «Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on d-Xylose». Applied and Environmental Microbiology 73 (7): 2061-66. https://doi.org/10.1128/AEM.02564-06
Nijland, Jeroen G., Hyun Yong Shin, Leonie G. M. Boender, Paul P. de Waal, Paul Klaassen, y Arnold J. M. Driessen. 2017. «Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae». Appl. Environ. Microbiol. 83 (11): e00095-17. https://doi.org/10.1128/AEM.00095-17
Nijland, Jeroen G., Erwin Vos, Hyun Yong Shin, Paul P. de Waal, Paul Klaassen, y Arnold J. M. Driessen. 2016. «Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 158. https://doi.org/10.1186/s13068-016-0573-3
Novo, Maite, Frédéric Bigey, Emmanuelle Beyne, Virginie Galeote, Frédérick Gavory, Sandrine Mallet, Brigitte Cambon, et al. 2009. «Eukaryote-to-Eukaryote Gene Transfer Events Revealed by the Genome Sequence of the Wine Yeast Saccharomyces cerevisiae EC1118». Proceedings of the National Academy of Sciences 106 (38): 16333-38. https://doi.org/10.1073/pnas.0904673106
Novy, Vera, Bernd Brunner, Gerdt Müller, y Bernd Nidetzky. 2017. «Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient L -Lactate dehydrogenase within Pdc1 - Pdc5 deletion background: L - lactic acid production from glucose and xylose». Biotechnology and Bioengineering 114 (1): 163-71. https://doi.org/10.1002/bit.26048
Osiro, Karen O., Daniel P. Brink, Celina Borgström, Lisa Wasserstrom, Magnus Carlquist, y Marie F. Gorwa-Grauslund. 2018. «Assessing the effect of D-Xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation». FEMS Yeast Research 18 (1). https://doi.org/10.1093/femsyr/fox096
Özcan, Sabire, y Mark Johnston. 1999. «Function and regulation of yeast Hexose Transporters». Microbiology and Molecular Biology Reviews 63 (3): 554-69
Panchal, Chandra J., Lynda Bast, Inge Russell, y Graham G. Stewart. 1988. «Repression of xylose utilization by glucose in xylose-fermenting yeasts». Canadian Journal of Microbiology 34: 1316-20. https://doi.org/10.1139/m88-230
Parachin, Nádia S., Oskar Bengtsson, Bärbel Hahn‐Hägerdal, y Marie-F. Gorwa‐ Grauslund. 2010. «The Deletion of YLR042c Improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae». Yeast 27 (9): 741-51. https://doi.org/10.1002/yea.1777
Patiño, M. A. 2015. «Engenharia evolutiva e genômica de leveduras Saccharomyces cerevisiae recombinantes fermentadoras de xilose». Dissertação (Mestrado em Biotecnologia e Biociências), Florianópolis - SC: Universidade Federal de Santa Catarina
Patiño, M. A., J. P. Ortiz, M. Velásquez, y B. U. Stambuk. 2019. «D-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A Review». Yeast (Chichester, England), junio. https://doi.org/10.1002/yea.3429
Peng, Gang, y James E. Hopper. 2002. «Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein». Proceedings of the National Academy of Sciences 99 (13): 8548-53. https://doi.org/10.1073/pnas.142100099
Petit, T., J. A. Diderich, A. L. Kruckeberg, C. Gancedo, y K. Van Dam. 2000. «Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae». Journal of Bacteriology 182 (23): 6815-18. https://doi.org/10.1128/jb.182.23.6815-6818.2000
Petracek, M. E., y M. S. Longtine. 2002. «PCR-based engineering of yeast genome». Methods in Enzymology 350: 445-69
Postma, E., W. A. Scheffers, y J. P. van Dijken. 1989. «Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces Cerevisiae CBS 8066». Yeast (Chichester, England) 5 (3): 159-65. https://doi.org/10.1002/yea.320050305
Preez, J. C. du, S. H. de Kock, S. G. Kilian, y D. Litthauer. 2000. «The relationship between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures». Antonie Van Leeuwenhoek 77 (4): 379-88. https://doi.org/10.1023/a:1002744100953
Ramos, J, K Szkutnicka, y V P Cirillo. 1988. «Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae». Journal of Bacteriology 170 (11): 5375-77
Rao, Kripa, Silpa Chelikani, Patricia Relue, y Sasidhar Varanasi. 2008. «A Novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose». Applied Biochemistry and Biotechnology 146 (1-3): 101-17. https://doi.org/10.1007/s12010-007-8122-y
Reifenberger, E., E. Boles, y M. Ciriacy. 1997. «Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression». European Journal of Biochemistry 245 (2): 324-33
Reifenberger, E., K. Freidel, y M. Ciriacy. 1995. «Identification of Novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual Hexose Transporters on Glycolytic Flux». Molecular Microbiology 16 (1): 157-67
Reis, V. C. B. 2012. «Modificações genéticas em linhagem industrial de Saccharomyces cerevisiae para a fermentação de xilose». Tese (Doutorado em Biologia Molecular), Universidade de Brasília. http://repositorio.unb.br/handle/10482/13119
Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, et al. 2000. «Genome-wide location and function of DNA binding proteins». Science (New York, N.Y.) 290 (5500): 2306-9. https://doi.org/10.1126/science.290.5500.2306
Richard, P., M. H. Toivari, y M. Penttilä. 1999. «Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase». FEBS Letters 457 (1): 135- 38
Richard, P., M. H. Toivari, y M. Penttilä. 2000. «The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism». FEMS Microbiology Letters 190 (1): 39-43. https://doi.org/10.1111/j.1574-6968.2000.tb09259.x
Rodriguez-Peña, J. M., V. J. Cid, J. Arroyo, y C. Nombela. 1998. «The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae». FEMS Microbiology Letters 162 (1): 155-60
Roy, Adhiraj, Yong-Bae Kim, Kyu Hong Cho, y Jeong-Ho Kim. 2014. «Glucose starvationinduced turnover of the yeast glucose transporter Hxt1». Biochimica et biophysica acta 1840 (9): 2878-85. https://doi.org/10.1016/j.bbagen.2014.05.004
Sabatinos, SarahA., y SusanL. Forsburg. 2009. «Measuring DNA content by flow cytometry in fission yeast». En DNA Replication, editado por Sonya Vengrova y Jacob Z. Dalgaard, 449-61. Methods in Molecular Biology 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_25
Sá-Correia, I., y N. van Uden. 1983. «Effect of ethanol on the fructose transport system of Kluyveromyces fragilis». Biotechnology Letters 5 (6): 413-18. https://doi.org/10.1007/BF00131283
Sales, B. de, B. Scheid, D. Gonçalves, M. Knychala, A. Matsushika, E. Bon, y Boris U. Stambuk. 2015. «Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae». Biotechnology Letters 37 (10): 1973-82. https://doi.org/10.1007/s10529-015-1893-2
Saloheimo, A., J. Rauta, O. V. Stasyk, A. A. Sibirny, M. Penttilä, y L. Ruohonen. 2007. «Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases». Applied Microbiology and Biotechnology 74 (5): 1041-52. https://doi.org/10.1007/s00253-006-0747-1
Sambrook, J., y D. W. Russell. 2001. Molecular Cloning: A laboratory manual. CSHL Press
Sánchez, Sebastián, Vicente Bravo, Eulogio Castro, Alberto J. Moya, y Fernando Camacho. 2002. «The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to Produce Ethanol». Journal of Chemical Technology & Biotechnology 77 (6): 641-48. https://doi.org/10.1002/jctb.622
Sato, Trey K., Mary Tremaine, Lucas S. Parreiras, Alexander S. Hebert, Kevin S. Myers, Alan J. Higbee, Maria Sardi, et al. 2016. «Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae». PLoS Genetics 12 (10): e1006372. https://doi.org/10.1371/journal.pgen.1006372
Scalcinati, Gionata, José Manuel Otero, Jennifer R. H. Van Vleet, Thomas W. Jeffries, Lisbeth Olsson, y Jens Nielsen. 2012. «Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption». FEMS Yeast Research 12 (5): 582- 97. https://doi.org/10.1111/j.1567-1364.2012.00808.x
Schiestl, R. H., y R. D. Gietz. 1989. «High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier». Current Genetics 16 (5-6): 339-46. https://doi.org/10.1007/BF00340712
Schuddemat, J., P. J. Van den Broek, y J. Van Steveninck. 1986. «Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae». Biochimica Et Biophysica Acta 861 (3): 489-93. https://doi.org/10.1016/0005-2736(86)90459-1
Sedlak, M., y N. W. Y. Ho. 2004. «Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces Yeast Capable of cofermenting glucose and xylose». Applied Biochemistry and Biotechnology 113-116: 403-16. 10.1385/abab:114:1-3:403
Serrano, R., y G. Delafuente. 1974. «Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae». Molecular and Cellular Biochemistry 5 (3): 161-71. https://doi.org/10.1007/BF01731379
SGD. 2017. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2017. http://www.yeastgenome.org/
SGD. 2018. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2018. https://www.yeastgenome.org/locus/S000003920
Sharma, Shalley, Eldho Varghese, Anju Arora, K. N. Singh, Surender Singh, Lata Nain, y Debarati Paul. 2018. «Augmenting pentose utilization and ethanol production of native Saccharomyces cerevisiae LN using medium engineering and response surface methodology». Frontiers in Bioengineering and Biotechnology 6: 132. https://doi.org/10.3389/fbioe.2018.00132
Shen, Y., X. Chen, B. Peng, L. Chen, J. Hou, y X. Bao. 2012. «An efficient xylosefermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile». Applied Microbiology and Biotechnology 96 (4): 1079-91. https://doi.org/10.1007/s00253-012-4418-0
Shoham, M., y T. A. Steitz. 1982. «The 6-Hydroxymethyl group of a hexose is essential for the substrate-induced closure of the cleft in hexokinase». Biochimica Et Biophysica Acta 705 (3): 380-84. https://doi.org/10.1016/0167-4838(82)90260-6
Smiley, Karl L., y Paul L. Bolen. 1982. «Demonstration of D-xylose reductase and Dxylitol dehydrogenase in Pachysolen tannophilus». Biotechnology Letters 4 (9): 607-10. https://doi.org/10.1007/BF00127793
Smith, J., E. van Rensbeurg, y J. F. Görgens. 2014. «Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase». BMC Biotechnology 14: 41. https://doi.org/10.1186/1472-6750-14-41
Sonderegger, M., y U. Sauer. 2003. «Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose». Applied and Environmental Microbiology 69 (4): 1990-98
Stambuk, B. U., B. Dunn, S. L. Alves, E. H. Duval, y G. Sherlock. 2009. «Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis». Genome Research 19 (12): 2271-78. https://doi.org/10.1101/gr.094276.109
Stambuk, B. U., E. C. A. Eleutherio, L. M. Florez-pardo, A. M. Souto-maior, y E. P. S. Bon. 2008. «Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains», 2008, sec. 67
Stambuk, Boris U., Mary Ann Franden, Arjun Singh, y Min Zhang. 2003. «D-Xylose transport by Candida succiphila and Kluyveromyces marxianus». Applied Biochemistry and Biotechnology 105-108: 255-63. https://doi.org/10.1385/abab:106:1-3:255
Subtil, T., y E. Boles. 2012. «Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae». Biotechnology for Biofuels 5: 14. https://doi.org/10.1186/1754-6834-5-14
Suihko, M.-L., y K. Poutanen. 1984. «D-xylulose fermentation by free and immobilized Saccharomyces cerevisiae cells». Biotechnology Letters 6 (3): 189-94. https://doi.org/10.1007/BF00127037
Tamari, Zvi, Dalia Rosin, Yoav Voichek, y Naama Barkai. 2014. «Coordination of gene expression and growth-rate in natural populations of budding yeast». PloS One 9 (2): e88801. https://doi.org/10.1371/journal.pone.0088801
Tamari, Zvi, Avihu H. Yona, Yitzhak Pilpel, y Naama Barkai. 2016. «Rapid evolutionary adaptation to growth on an “unfamiliar” carbon source». BMC Genomics 17: 674. https://doi.org/10.1186/s12864-016-3010-x
Thompson, J. R., E. Register, J. Curotto, M. Kurtz, y R. Kelly. 1998. «An improved protocol for the preparation of yeast cells for transformation by electroporation». Yeast (Chichester, England) 14 (6): 565-71. https://doi.org/10.1002/(SICI)1097- 0061(19980430)14:6<565::AID-YEA251>3.0.CO;2-B
Timson, David J., Helen C. Ross, y Richard J. Reece. 2002. «Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry». The Biochemical Journal 363 (Pt 3): 515-20
Toivari, Mervi H., Laura Salusjärvi, Laura Ruohonen, y Merja Penttilä. 2004. «Endogenous xylose pathway in Saccharomyces cerevisiae». Applied and Environmental Microbiology 70 (6): 3681-86. https://doi.org/10.1128/AEM.70.6.3681-3686.2004
Träff K. L., Jönsson L. J., y Hahn‐Hägerdal B. 2002. «Putative xylose and arabinose reductases in Saccharomyces cerevisiae». Yeast 19 (14): 1233-41. https://doi.org/10.1002/yea.913
Trumbly, R. J. 1992. «Glucose repression in the yeast Saccharomyces cerevisiae». Molecular Microbiology 6 (1): 15-21
Turner, Timothy L., Heejin Kim, In Iok Kong, Jing-Jing Liu, Guo-Chang Zhang, y Yong-Su Jin. 2016. «Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals». Advances in Biochemical Engineering/Biotechnology, diciembre. https://doi.org/10.1007/10_2016_22
Van Vleet, J. H., T. W. Jeffries, y L. Olsson. 2008. «Deleting the para-nitrophenyl phosphatase (PNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose». Metabolic Engineering 10 (6): 360-69. https://doi.org/10.1016/j.ymben.2007.12.002
Van Zyl, C. V., B. A. Prior, S. G. Kilian, y J. L. F. Kock. 1989. «D-Xylose Utilization by Saccharomyces cerevisiae». Journal of General Microbiology 135 (11): 2791-98. https://doi.org/10.1099/00221287-135-11-2791
Velásquez, Mario, y Grupo de Investigación en Procesos Químicos y Bioquímicos. 2015. «Informe técnico final Producción de etanol de segunda generación a partir de hidrolizado de bagazo de caña por levaduras y bacterias nativas»
Verduyn, C., E. Postma, W. A. Scheffers, y J. P. Van Dijken. 1992. «Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation». Yeast (Chichester, England) 8 (7): 501-17. https://doi.org/10.1002/yea.320080703
Wahlbom, C. Fredrik, Ricardo R. Cordero Otero, Willem H. van Zyl, Bärbel HahnHägerdal, y Leif J. Jönsson. 2003. «Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the Pentose Phosphate Pathway». Applied and Environmental Microbiology 69 (2): 740-46. https://doi.org/10.1128/aem.69.2.740-746.2003
Wang, P. Y., y H. Schneider. 1980. «Growth of Yeasts on D-Xylulose 1». Canadian Journal of Microbiology 26 (9): 1165-68
Wang, Patrick Y., Charles Shopsis, y Henry Schneider. 1980. «Fermentation of a pentose by yeasts». Biochemical and Biophysical Research Communications 94 (1): 248-54. https://doi.org/10.1016/S0006-291X(80)80213-0
Webb, S. R., y H. Lee. 1990. «Regulation of D-Xylose utilization by hexoses in pentosefermenting yeasts». Biotechnology Advances 8 (4): 685-97
Wei, N., H. Xu, S. R. Kim, y Y-S. Jin. 2013. «Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae». Applied and Environmental Microbiology 79 (10): 3193-3201. https://doi.org/10.1128/AEM.00490-13
Wei, Shan, Yanan Liu, Meiling Wu, Tiantai Ma, Xiangzheng Bai, Jin Hou, Yu Shen, y Xiaoming Bao. 2018. «Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae». Biotechnology for Biofuels 11 (1): 112. https://doi.org/10.1186/s13068-018-1112-1
Wenger, Jared W., Katja Schwartz, y Gavin Sherlock. 2010. «Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae». PLoS Genetics 6 (5): e1000942. https://doi.org/10.1371/journal.pgen.1000942
Westergaard, S. L., A. P. Oliveira, C. Bro, L. Olsson, y J. Nielsen. 2007. «A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae». Biotechnology and Bioengineering 96 (1): 134-45. https://doi.org/10.1002/bit.21135
White, T. J., T. Bruns, S. Lee, y J. Taylor. 1990. «38 - Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics». En PCR Protocols, editado por Michael A. Innis, David H. Gelfand, John J. Sninsky, y Thomas J. White, 315-22. San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C. P. Hollenberg, y E. Boles. 1999. «Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae». FEBS Letters 464 (3): 123-28. https://doi.org/10.1016/s0014-5793(99)01698-1
Xu, Haiqing, Sooah Kim, Hagit Sorek, Youngsuk Lee, Deokyeol Jeong, Jungyeon Kim, Eun Joong Oh, et al. 2016. «PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae». Metabolic Engineering 34 (marzo): 88-96. https://doi.org/10.1016/j.ymben.2015.12.007
Yablochkova, E. N., O. I. Bolotnikova, N. P. Mikhailova, N. N. Nemova, y A. I. Ginak. 2003. «The activity of xylose reductase and xylitol dehydrogenase in yeasts». Microbiology 72 (4): 414-17. https://doi.org/10.1023/A:1025032404238
Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, y T. L. Madden. 2012. «Primer-BLAST: A tool to design target-specific primers for Polymerase Chain Reaction». BMC Bioinformatics 13: 134. https://doi.org/10.1186/1471-2105-13-134
Young, E., A. Poucher, A. Comer, A. Bailey, y H. Alper. 2011. «Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a Host». Applied and Environmental Microbiology 77 (10): 3311-19. https://doi.org/10.1128/AEM.02651-10
Young, E., A. Tong, H. Bui, C. Spofford, y H. Alper. 2014. «Rewiring yeast sugar transporter preference through modifying a conserved protein motif». Proceedings of the National Academy of Sciences of the United States of America 111 (1): 131-36. https://doi.org/10.1073/pnas.1311970111
Yu, S., H. Jeppsson, y B. Hahn-Hägerdal. 1995. «Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains». Applied Microbiology and Biotechnology 44 (3): 314-20. https://doi.org/10.1007/BF00169922
Yuan, Dawei, Kripa Rao, Patricia Relue, y Sasidhar Varanasi. 2011. «Fermentation of biomass sugars to ethanol using native industrial yeast strains». Bioresource Technology 102 (3): 3246-53. https://doi.org/10.1016/j.biortech.2010.11.034
Yuan, Dawei, Kripa Rao, Sasidhar Varanasi, y Patricia Relue. 2012. «A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae». Bioresource Technology 117 (agosto): 92-98. https://doi.org/10.1016/j.biortech.2012.04.005
Zeng, Wei-Yi, Yue-Qin Tang, Min Gou, Zhao-Yong Sun, Zi-Yuan Xia, y Kenji Kida. 2017. «Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with Improved xylose utilization capability». Applied Microbiology and Biotechnology 101 (4): 1753-67. https://doi.org/10.1007/s00253-016- 8046-y
Zha, J., B-Z. Li, M-H. Shen, M-L. Hu, H. Song, y A. H. Yuan. 2013. «Optimization of CDT- 1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae», 2013, sec. 8(7): e68317
Zha, Jian, Minghua Shen, Menglong Hu, Hao Song, y Yingjin Yuan. 2014. «Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering». Journal of Industrial Microbiology & Biotechnology 41 (1): 27- 39. https://doi.org/10.1007/s10295-013-1350-y
Zhang, F., S. Rodriguez, y J. D. Keasling. 2011. «Metabolic engineering of microbial pathways for advanced biofuels production». Current Opinion in Biotechnology 22 (6): 775-83. https://doi.org/10.1016/j.copbio.2011.04.024
Zhong, C., M. W. Lau, V. Balan, B. E. Dale, y Y-J. Yuan. 2009. «Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw». Applied Microbiology and Biotechnology 84 (4): 667-76. https://doi.org/10.1007/s00253-009-2001-0
Zyl, C. van, B. A. Prior, S. G. Kilian, y E. V. Brandt. 1993. «Role of D-ribose as a cometabolite in D-Xylose metabolism by Saccharomyces cerevisiae». Applied and Environmental Microbiology 59 (5): 1487-94. https://doi.org/10.1128/AEM.59.5.1487-1494.1993
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxviii, 163 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81969/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81969/3/1093752481.2021.2.pdf
https://repositorio.unal.edu.co/bitstream/unal/81969/4/1093752481.2021.2.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
5b6f1124b86e26bbfd663330bac951a4
7f12907cc422a700430f928445eec442
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089352721989632
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Lozano, Mario Enrique544472077e578088ab8dec69fe1e11bfUgarte Stambuk, Boris Juan Carlos93d8cc9e2976aa7904c509656c793a51Patiño Lagos, Margareth Andrea3063f3c1c18955548411911109657db6Grupo de Investigación en Procesos Químicos y Bioquímicos2022-08-18T21:27:34Z2022-08-18T21:27:34Z2021-04-19https://repositorio.unal.edu.co/handle/unal/81969Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías a color, ilustraciones, gráficas, tablasSaccharomyces cerevisiae es la principal levadura utilizada en biotecnología en todo el mundo, gracias a que su metabolismo y fisiología son conocidos permitiendo su aprovechamiento en diversos procesos industriales. Este microorganismo es excelente en la fermentación de azúcares como las hexosas, sin embargo, ha sido considerado como incapaz de metabolizar pentosas como la arabinosa y la xilosa presentes en la biomasa lignocelulósica. Esta biomasa es una materia prima ampliamente disponible que contiene xilosa, el segundo azúcar más abundante de la naturaleza, en aproximadamente el 35% de los azúcares totales. Esta fracción de azúcar podría ser aprovechada para la obtención de productos químicos de alto valor agregado como el xilitol. Utilizando ingeniería genética algunos investigadores han obtenido cepas recombinantes de S. cerevisiae con capacidad reducida de fermentar xilosa. El Grupo de Investigación en Procesos Químicos y Bioquímicos de la Universidad Nacional de Colombia realizó el aislamiento de algunos microorganismos obtenidos en Colombia, donde se identificó una cepa de S. cerevisiae, denominada como 202-3, que en presencia de hidrolizados lignocelulósicos mostró un consumo de xilosa del 2 % al 5%, característica que no se encuentra asociada a la especie. En esta investigación se confirmó mediante tres enfoques distintos que la cepa 202-3 efectivamente corresponde a una S. cerevisiae: mediante observación morfológica de la cepa por microscopía óptica y de barrido, por amplificación de un fragmento de 150 pb con iniciadores específicos para la especie, y por secuenciación de la región ITS. Su secuencia consenso mostró una similitud superior al 99 % respecto a las secuencias de S. cerevisiae reportadas en la base de datos genómica Blastn del NCBI. Experimentalmente, la cepa 202-3 no mostró un mejor consumo de xilosa que otras especies de levaduras analizadas consumidoras de esa pentosa, pero sí una metabolización significativa con un consumo del 9,8 %, lo cual hasta ahora no había sido reportado para ninguna cepa de S. cerevisiae. Sin embargo, para mejorar esa capacidad e intentar producir etanol a partir de la xilosa, la cepa 202-3 fue sometida a ingeniería genética y evolutiva. Determinada la ploidía de la cepa, se procedió a silenciar el gen GAL80 implicado en la represión de los genes GAL para que sean expresados continuamente y mejorar la captación y asimilación de esa pentosa. Para las recombinantes obtenidas los consumos de xilosa fueron de hasta el 18% con rendimiento de xilitol de hasta 0,407 g/g y no se obtuvo valores significativos de etanol. Mediante ingeniería evolutiva a la cepa parental y a dos recombinantes se obtuvo cepas mejoradas después de ocho inóculos sucesivos de 144 horas cada uno. De la cepa parental 202-3 que consumió 7% de xilosa, se obtuvo otra cepa que consumió 14% de xilosa y la producción de xilitol aumentó en 345% desde 0,236 g en el inóculo inicial a 1,050 g en el final. Con la cepa obtenida de la recombinante R2-MAPL (202-3, GAL80/gal80Δ::KanMX) el consumo de xilosa fue de 20% y la producción de xilitol aumentó 196% de 0,996 g inicial a 2,951 g final. Con la cepa obtenida de la recombinante B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) el consumo final de xilosa fue de 28% y la producción de xilitol pasó de 1,115 g inicial a 4,876 g final representando un incremento de 337%. Estos resultados muestran que las estrategias utilizadas mejoraron el fenotipo de la cepa nativa 202-3 frente al consumo de xilosa y la producción de xilitol. (Texto tomado de la fuente)Saccharomyces cerevisiae is the most used yeast in biotechnology throughout the world because its metabolism, and physiology are well known, and it has been widely used in various industrial processes. This microorganism is excellent in the fermentation of sugars such as hexoses. However, it does not metabolize pentoses such as arabinose and xylose which are present in lignocellulosic biomass. This biomass constitutes a widely available raw material, with xylose content, the second most abundant sugar in nature, corresponding to approximately 35% of total sugars. This sugar fraction could be used to obtain high added value chemical products such as xylitol. Through genetic engineering some researchers have obtained recombinant yeast strains of S. cerevisiae with reduced xylose fermentation capability. The research group in Chemical and Biochemical Processes of the Universidad Nacional de Colombia performed the isolation of some microorganisms obtained in Colombia, where a S. cerevisiae strain called 202-3 was identified. This strain showed a xylose consumption between 2% and 5% in presence of lignocellulosic hydrolysates, characteristic that is not associated with the lineage. In this research, it was confirmed through three different approaches that the 202-3 strain is indeed a S. cerevisiae: morphologic strain observation by optical and SEM microscopy, amplification of a 150 bp fragment with species-specific primers, and sequencing its ITS region, whose consensus sequence showed similarity greater than 99% with the S. cerevisiae sequences reported in the NCBI Blastn genomic database. Experimentally, strain 202-3 did not show to be better than other yeast species with the capability to consume xylose, but it did show a significant metabolization of that pentose with a consumption of 9,8%, which until now had not been reported for S. cerevisiae. However, to improve that ability and try to produce ethanol from xylose, the strain was subjected to genetic and evolutionary engineering. Once the ploidy of the strain was determined, the GAL80 gene involved in the repression of the GAL genes was deleted so that they are continuously expressed and improve the uptake and assimilation of the pentose. For the recombinant strains obtained, the xylose consumptions were up to 18% with a xylitol yield of up to 0,407 g/g and no significant ethanol values were obtained. By evolutionary engineering to the parental strain and to two recombinants, improved stains were obtained after eight successive inoculum of 144 hours each. From the parental strain 202-3 that consumed 7% of xylose, another strain was obtained that consumed 14% of xylose and the xylitol production increased 345%, from 0,236 g in the initial inoculum to 1,050 g in the final one. With the strain obtained from recombinant R2-MAPL (202-3, GAL80/gal80Δ::KanMX), the xylose consumption was 20% and xylitol production increase 196%, from 0,996 g initial to 2,951 g final. With the strain obtained from recombinant B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) the final xylose consumption was 28% and xylitol production went from 1,115 g initial to 4,876 g final, representing a 337% increase. These results show that the strategies used improved the phenotype of the native strain 202-3 against the consumption of xylose and the production of xylitol.DoctoradoDoctor en BiotecnologíaBioprocesos y Bioprospecciónxxviii, 163 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología620 - Ingeniería y operaciones afines660 - Ingeniería química540 - Química y ciencias afines500 - Ciencias naturales y matemáticas600 - Tecnología (Ciencias aplicadas)GeneticsPlant biotechnologyGenéticaBiotecnología vegetalSaccharomyces cerevisiaeXilosaProducción de xilitolRecombinantesSilenciamiento génicoingeniería evolutivaSaccharomyces cerevisiaexylosexylitol productionRecombinantGene silencingEvolutionary engineeringMejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosaGenetic improvement of a yeast Saccharomyces cerevisiae isolated in Colombia for xylose fermentationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAhmad, Irshad, Woo Yong Shim, y Jung-Hoe Kim. 2012. «Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway». Bioprocess and Biosystems Engineering 36 (9): 1279-84. https://doi.org/10.1007/s00449-012-0872-4Alonso, A., y A. Kotyk. 1978. «Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae». Folia Microbiologica 23 (2): 118-25. https://doi.org/10.1007/BF02915311Arora, Anju, Shweta Priya, Pankhuri Sharma, Shalley Sharma, y Lata Nain. 2016. «Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw». Biocatalysis and Agricultural Biotechnology 8 (octubre): 66-72. https://doi.org/10.1016/j.bcab.2016.08.006Attfield, Paul V., y Philip J. L. Bell. 2006. «Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source». FEMS Yeast Research 6 (6): 862-68. https://doi.org/10.1111/j.1567- 1364.2006.00098.xAusubel, F. M., R. Brent, R. E. Kingston, D. D Moore, J. G. Seidman, J. A. Smith, y K. Struhl. 1992. Short Protocols in Molecular Biology. 2nd ed. John Wiley & SonsBamba, Takahiro, Tomohisa Hasunuma, y Akihiko Kondo. 2016. «Disruption of PHO13 improves ethanol production via the xylose isomerase pathway». AMB Express 6 (1): 4. https://doi.org/10.1186/s13568-015-0175-7Barnett, J. A., R. W Payne, y D Yarrow. 1990. Yeasts : Characteristics and Identification. 2nd ed. Cambridge ; New York : Cambridge University Press. https://trove.nla.gov.au/version/6557753Basso, L. C., H. V. de Amorim, A. J. de Oliveira, y M. L. Lopes. 2008. «Yeast selection for fuel ethanol production in Brazil». FEMS Yeast Research 8 (7): 1155-63. https://doi.org/10.1111/j.1567-1364.2008.00428.xBatt, C. A., S. Carvallo, D. D. Easson, M. Akedo, y A. J. Sinskey. 1986. «Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae». Biotechnology and Bioengineering 28 (4): 549-53. https://doi.org/10.1002/bit.260280411Belinchón, Mónica M., y Juana M. Gancedo. 2003. «Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae». Archives of Microbiology 180 (4): 293-97. https://doi.org/10.1007/s00203-003-0593-9Bengtsson, Oskar, Marie Jeppsson, Marco Sonderegger, Nadia Skorupa Parachin, Uwe Sauer, Bärbel Hahn-Hägerdal, y Marie-F. Gorwa-Grauslund. 2008. «Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering». Yeast (Chichester, England) 25 (11): 835-47. https://doi.org/10.1002/yea.1638Benson, Dennis A., Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, y David L. Wheeler. 2003. «GenBank». Nucleic Acids Research 31 (1): 23-27Bergdahl, Basti, Anders G. Sandström, Celina Borgström, Tarinee Boonyawan, Ed W. J. van Niel, y Marie F. Gorwa-Grauslund. 2013. «Engineering yeast Hexokinase 2 for improved tolerance toward xylose-induced inactivation». PLoS ONE 8 (9). https://doi.org/10.1371/journal.pone.0075055Berttilsson, M., J. Andersson, y G. Lidén. 2008. «Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters». Bioprocess and Biosystems Engineering 31 (4): 369-77. https://doi.org/10.1007/s00449-007-0169-1Bhukya, Bhima, Srinivas Banoth, y Archana Anthappagudem. 2019. «Chapter 5 - Saccharomyces cerevisiae as potential probiotic: strategies for isolation and selection». En Applied Microbiology and Bioengineering, editado por Pratyoosh Shukla, 71-85. Academic Press. https://doi.org/10.1016/B978-0-12-815407-6.00005-8Bisson, L. F., y D. G. Fraenkel. 1983. «Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae». Proceedings of the National Academy of Sciences of the United States of America 80 (6): 1730-34. https://doi.org/10.1073/pnas.80.6.1730Bisson, Linda F., Qingwen Fan, y Gordon A. Walker. 2016. «Sugar and glycerol transport in Saccharomyces cerevisiae». Advances in Experimental Medicine and Biology 892: 125-68. https://doi.org/10.1007/978-3-319-25304-6_6Boles, E., y C. P. Hollenberg. 1997. «The Molecular genetics of hexose transport in yeasts». FEMS Microbiology Reviews 21 (1): 85-111. https://doi.org/10.1111/j.1574- 6976.1997.tb00346.xBorneman, Anthony R., Brian A. Desany, David Riches, Jason P. Affourtit, Angus H. Forgan, Isak S. Pretorius, Michael Egholm, y Paul J. Chambers. 2012. «The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii Origins». FEMS Yeast Research 12 (1): 88-96. https://doi.org/10.1111/j.1567-1364.2011.00773.xBradbury, John E., Keith D. Richards, Heather A. Niederer, Soon A. Lee, P. Rod Dunbar, y Richard C. Gardner. 2006. «A homozygous diploid subset of commercial wine yeast strains». Antonie Van Leeuwenhoek 89 (1): 27-37. https://doi.org/10.1007/s10482-005- 9006-1Brink, Daniel P., Celina Borgström, Felipe G. Tueros, y Marie F. Gorwa-Grauslund. 2016. «Real-Time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling». Microbial Cell Factories 15 (1): 183. https://doi.org/10.1186/s12934-016-0580-xBruinenberg, P. M., P. H. M. de Bot, J. Dijken, y W. A. Scheffers. 1984. «NADH-Linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts». Applied Microbiology and Biotechnology 19 (4): 256-60. https://doi.org/10.1007/BF00251847Buziol, Stefan, Jessica Becker, Anja Baumeister, Susanne Jung, Klaus Mauch, Matthias Reuss, y Eckhard Boles. 2002. «Determination of in vivo kinetics of the starvation-induced Hxt5 Glucose Transporter of Saccharomyces cerevisiae». FEMS Yeast Research 2 (3): 283-91. https://doi.org/10.1016/S1567-1356(02)00113-7Cadete, Raquel M., Alejandro M. de Las Heras, Anders G. Sandström, Carla Ferreira, Francisco Gírio, Marie-Françoise Gorwa-Grauslund, Carlos A. Rosa, y César Fonseca. 2016. «Exploring xylose metabolism in Spathaspora Species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 167. https://doi.org/10.1186/s13068-016-0570-6Carlson, M. 1999. «Glucose repression in yeast». Current Opinion in Microbiology 2 (2): 202-7. https://doi.org/10.1016/S1369-5274(99)80035-6Carvalho, Walter, Marcio A. Batista, Larissa Canilha, Julio C. Santos, Attilio Converti, y Silvio S. Silva. 2004. «Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production». Journal of Chemical Technology & Biotechnology 79 (11): 1308-12. https://doi.org/10.1002/jctb.1131Chang, Sue-Feng, y Nancy W. Y. Ho. 1988. «Cloning the yeast xylulokinase gene for the improvement of xylose fermentation». Applied Biochemistry and Biotechnology 17 (1): 313-18. https://doi.org/10.1007/BF02779165Cheng, Cheng, Rui-Qi Tang, Liang Xiong, Ronald E. Hector, Feng-Wu Bai, y Xin-Qing Zhao. 2018. «Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae». Biotechnology for Biofuels 11: 28. https://doi.org/10.1186/s13068-018-1018-yChiang, C., y S. G. Knight. 1959. «D-xylose metabolism by cell-free extracts of Penicillium chrysogenum». Biochimica Et Biophysica Acta 35: 454-63Chiang, Lin-Chang, Cheng-Shung Gong, Li-Fu Chen, y George T. Tsao. 1981. «Dxylulose fermentation to ethanol by Saccharomyces cerevisiae». Applied and Environmental Microbiology 42 (2): 284-89Cid, Angel, Carlos Gancedo, y Rosario Lagunas. 1987. «Inactivation of the glucose transport system in sporulating yeast». FEMS Microbiology Letters 41 (1): 59-61Cifuentes, Y. A. 2016. «Secuenciación y caracterización del genoma de la cepa Saccharomyces cerevisiae 202-3 con potencial para la producción de etanol de segunda generación». Universidad Nacional de ColombiaCifuentes, Yina, Sergio Latorre, Andrés Pinzón, y Mario Velásquez. 2015. «Draft genome sequence of a natural isolated Saccharomyces cerevisiae from Colombia». En 2015 IEEE 5th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), 1-2. https://doi.org/10.1109/ICCABS.2015.7344727Coelho, Marco A., Carla Gonçalves, José Paulo Sampaio, y Paula Gonçalves. 2013. «Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene». PLOS Genetics 9 (6): e1003587. https://doi.org/10.1371/journal.pgen.1003587Dário, M. G. 2012. «Efeito da alteração na captação de sacarose ao metabolismo de Saccharomyces cerevisiae.» Text, Universidade de São Paulo. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-04062012-114632/De Bari, Isabella, Daniela Cuna, Vincenzo Di Matteo, y Federico Liuzzi. 2014. «Bioethanol production from steam-pretreated corn stover through an isomerase mediated process». New Biotechnology 31 (2): 185-95. https://doi.org/10.1016/j.nbt.2013.12.003DelaFuente, G. 1970. «Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate». European Journal of Biochemistry 16 (2): 240-43. https://doi.org/10.1111/j.1432-1033.1970.tb01077.xDella-Bianca, Bianca Eli, Thiago Olitta Basso, Boris Ugarte Stambuk, Luiz Carlos Basso, y Andreas Karoly Gombert. 2013. «What do we know about the yeast strains from the brazilian fuel ethanol industry? ». Applied Microbiology and Biotechnology 97 (3): 979-91. https://doi.org/10.1007/s00253-012-4631-xDeng, X. X., y N. W. Ho. 1990. «Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific Note». Applied Biochemistry and Biotechnology 24-25: 193-99Devadas, Suganthi Martena, Mamatha Ballal, Peralam Yegneswaran Prakash, Manjunath H. Hande, Geetha V. Bhat, y Vinitha Mohandas. 2017. «Auxanographic carbohydrate assimilation method for large scale yeast identification». Journal of Clinical and Diagnostic Research: JCDR 11 (4): DC01-3. https://doi.org/10.7860/JCDR/2017/25967.9653Diderich, J. A., J. A., J. M. Schuurmans, M. C. van Gaalen, A. L. Kruckerberg, y K. van Dam. 2001. «Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae». Yeast (Chichester, England) 18 (16): 1515-24. https://doi.org/10.1002/yea.779Diderich, J. A., M. Schepper, P. van Hoek, M. A. Luttik, J. P. van Dijken, J. T. Pronk, P. Klaassen, et al., 1999. «Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae». The Journal of Biological Chemistry 274 (22): 15350-59. https://doi.org/10.1074/jbc.274.22.15350Does, A. L., y L. F. Bisson. 1989. «Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis». Applied and Environmental Microbiology 55 (1): 159-64. https://doi.org/10.1128/AEM.55.1.159-164.1989Elbing, Karin, Christer Larsson, Roslyn M. Bill, Eva Albers, Jacky L. Snoep, Eckhard Boles, Stefan Hohmann, y Lena Gustafsson. 2004. «Role of Hexose Transport in control of glycolytic flux in Saccharomyces cerevisiae». Applied and Environmental Microbiology 70 (9): 5323-30. https://doi.org/10.1128/AEM.70.9.5323-5330.2004Eliasson, A., E. Boles, B. Johansson, M. Osterberg, J. M. Thevelein, I. Spencer-Martins, H. Juhnke, y B. Hahn-Hägerdal. 2000. «Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 53 (4): 376-82Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2018. «A semi-synthetic regulon enables rapid growth of yeast on xylose». Nature Communications 9 (1): 1233. https://doi.org/10.1038/s41467-018-03645-7Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2019. «Pentose metabolism in Saccharomyces cerevisiae: The need to engineer global regulatory systems». Biotechnology Journal 14 (1): e1800364. https://doi.org/10.1002/biot.201800364Espinoza-Acosta, José Luis. 2020. «Biotechnological production of xylitol from agricultural waste». Biotecnia 22 (1): 126-34. https://doi.org/10.18633/biotecnia.v22i1.1160Farwick, A., S. Bruder, V. Schadeweg, M. Oreb, y E. Boles. 2014. «Engineering of yeast Hexose Transporters to transport D-Xylose without Inhibition by D-Glucose». Proceedings of the National Academy of Sciences 111 (14): 5159-64. https://doi.org/10.1073/pnas.1323464111Fernández, R., P. Herrero, S. Gascón, y F. Moreno. 1984. «Xylose induced decrease in Hexokinase PII activity confers resistance to carbon catabolite repression of invertase synthesis in Saccharomyces carlsbergensis». Archives of Microbiology 139 (2): 139-42. https://doi.org/10.1007/BF00401988Fukuda, Akira, Yuki Kuriya, Jin Konishi, Kozue Mutaguchi, Takeshi Uemura, Daisuke Miura, y Masahiro Okamoto. 2018. «Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae». Journal of Bioscience and Bioengineering 127 (5): 563-69. https://doi.org/10.1016/j.jbiosc.2018.10.020Garcia Sanchez, Rosa, Kaisa Karhumaa, César Fonseca, Violeta Sànchez Nogué, João RM Almeida, Christer U. Larsson, Oskar Bengtsson, Maurizio Bettiga, Bärbel HahnHägerdal, y Marie F. Gorwa-Grauslund. 2010. «Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering». Biotechnology for Biofuels 3 (1): 13. https://doi.org/10.1186/1754-6834-3-13Gietz, R. D., A. ST Jean, R. A. Woods, y R. H. Schiestl. 1992. «Improved method for high efficiency transformation of intact yeast cells.» Nucleic Acids Research 20 (6): 1425Gietz, R. D., y R. A. Woods. 2002. «Transformation of yeast by Lithium Acetate/singlestranded carrier DNA/Polyethylene Glycol method». Methods in Enzymology 350: 87-96Gietz, R. Daniel, y Robert H. Schiestl. 2007. «High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method». Nature Protocols 2 (1): 31-34. https://doi.org/10.1038/nprot.2007.13Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, et al., 1996. «Life with 6000 Genes». Science (New York, N.Y.) 274 (5287): 546, 563-67Gonçalves, D. L. 2014. «Influência dos transportadores de açúcares na fermentação de xilose por linhagens recombinantes de Saccharomyces cerevisiae». Tese (Doutorado em Bioquímica), Florianópolis - SC: Universidade Federal de Santa CatarinaGonçalves, D. L., A. Matsushika, B. B. de Sales, T. Goshima, E. P. S. Bon, y B. U. Stambuk. 2014. «Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual Hexose Transporters». Enzyme and Microbial Technology 63: 13-20. https://doi.org/10.1016/j.enzmictec.2014.05.003Gong, C. S., T. A. Claypool, L. D. McCracken, C. M. Maun, P. P. Ueng, y G. T. Tsao. 1983. «Conversion of pentoses by yeasts». Biotechnology and Bioengineering 25 (1): 85- 102. https://doi.org/10.1002/bit.260250108Gong, Cheng-Shung, Li-Fu Chen, Michael C. Flickinger, Lin-Chang Chiang, y George T. Tsao. 1981. «Production of ethanol from D-Xylose by using D-xylose isomerase and yeasts». Applied and Environmental Microbiology 41 (2): 430-36Granström, Tom Birger, Goro Takata, Masaaki Tokuda, y Ken Izumori. 2004. «Izumoring: A novel and complete strategy for bioproduction of rare sugars». Journal of Bioscience and Bioengineering 97 (2): 89-94. https://doi.org/10.1016/S1389-1723(04)70173-5Grunstein, Michael, y Susan M. Gasser. 2013. «Epigenetics in Saccharomyces cerevisiae». Cold Spring Harbor Perspectives in Biology 5 (7). https://doi.org/10.1101/cshperspect.a017491Gueldener, U., J. Heinisch, G. J. Koehler, D. Voss, y J. H. Hegemann. 2002. «A second set of LoxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast». Nucleic Acids Research 30 (6): e23Güldener, Ulrich, Susanne Heck, Thomas Fiedler, Jens Beinhauer, y Johannes H. Hegemann. 1996. «A new efficient gene disruption cassette for repeated use in budding yeast». Nucleic Acids Research 24 (13): 2519-24. https://doi.org/10.1093/nar/24.13.2519Hahn-hägerdal, B., T. Lindén, T. Senac, y K. Skoog. 1991. «Ethanolic fermentation of pentoses in lignocellulose hydrolysates». Applied Biochemistry and Biotechnology 28-29 (1): 131-44. https://doi.org/10.1007/BF02922595Hahn-Hägerdal, Bärbel, Sissi Berner, y Kerstin Skoog. 1986. «Improved ethanol production from xylose with glucose isomerase and Saccharomyces cerevisiae Using the respiratory inhibitor azide». Applied Microbiology and Biotechnology 24 (4): 287-93. https://doi.org/10.1007/BF00257051Hamacher, Tanja, Jessica Becker, Márk Gárdonyi, Bärbel Hahn-Hägerdal, y Eckhard Boles. 2002. «Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization». Microbiology (Reading, England) 148 (Pt 9): 2783-88. https://doi.org/10.1099/00221287-148-9-2783Hammond, John R. M. 2003. «Yeast Genetics». En Brewing Microbiology, editado por Fergus G. Priest y Iain Campbell, 67-112. Springer US. https://doi.org/10.1007/978-1- 4419-9250-5_3Han, Ji-Hye, Ju-Yong Park, Hyun Woo Kang, Gi-Wook Choi, Bong-Woo Chung, y Jiho Min. 2010. «Specific Expression Patterns of Xyl1, Xyl2 and Xyl3 in Response to different sugars in Pichia stipitis». Journal of Microbiology and Biotechnology 20 (5): 946-49. https://doi.org/10.4014/jmb.0912.12028Hanly, T. J., y M. A. Henson. 2013. «Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures.», 2013, sec. 6:44Harju, S., H. Fedosyuk, y K. R. Peterson. 2004. «Rapid Isolation of Yeast Genomic DNA: Bust n’ Grab». BMC Biotechnology 4 (abril): 8. https://doi.org/10.1186/1472-6750-4-8Hector, R. E., J. A. Mertens, M. J. Bowman, N. N. Nichols, M. A. Cotta, y S. R. Hughes. 2011. «Saccharomyces cerevisiae Engineered for Xylose Metabolism Requires Gluconeogenesis and the Oxidative Branch of the Pentose Phosphate Pathway for Aerobic Xylose Assimilation». Yeast (Chichester, England) 28 (9): 645-60. https://doi.org/10.1002/yea.1893Heredia, C. F., A. Sols, y G. Dela Fuente. 1968. «Specificity of the constitutive hexose transport in yeast». European Journal of Biochemistry 5 (3): 321-29. https://doi.org/10.1111/j.1432-1033.1968.tb00373.xHo, Nancy W. Y., y Sue-Fen Chang. 1989. «Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations». Enzyme and Microbial Technology 11 (7): 417-21. https://doi.org/10.1016/0141-0229(89)90136-1Hofer, M., y F. R. Nassar. 1987. «Aerobic and anaerobic uptake of sugars in Schizosaccharomyces pombe». Microbiology 133 (8): 2163-72. https://doi.org/10.1099/00221287-133-8-2163Hohenschuh, William, Ronald Hector, y Ganti S. Murthy. 2015. «A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae». Bioresource Technology 188: 153-60. https://doi.org/10.1016/j.biortech.2015.02.015Hou, Jin, Chenxi Qiu, Yu Shen, Hongxing Li, y Xiaoming Bao. 2017. «Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose». FEMS Yeast Research 17 (4). https://doi.org/10.1093/femsyr/fox034Hou, X. 2012. «anaerobic xylose fermentation by Spathaspora passalidarum». Applied Microbiology and Biotechnology 94 (1): 205-14. https://doi.org/10.1007/s00253-011-3694- 4Hovsepian, Junie, Quentin Defenouillère, Véronique Albanèse, Libuše Váchová, Camille Garcia, Zdena Palková, y Sébastien Léon. 2017. «multilevel regulation of an α-arrestin by glucose depletion controls Hexose Transporter endocytosis». The Journal of Cell Biology 216 (6): 1811-31. https://doi.org/10.1083/jcb.201610094Howard, R. L., E. Abotsi, EL Jansen van Rensburg, y S. Howard. 2003. «Lignocellulose biotechnology: issues of bioconversion and enzyme production». African Journal of Biotechnology 2 (12): 602-19. https://doi.org/10.4314/ajb.v2i12.14892Hsiao, H Y, L C Chiang, P P Ueng, y G T Tsao. 1982. «Sequential utilization of mixed monosaccharides by yeasts». Applied and Environmental Microbiology 43 (4): 840-45Huxley, C., E. D. Green, y I. Dunham. 1990. «Rapid Assessment of S. cerevisiae Mating Type by PCR». Trends in Genetics: TIG 6 (8): 236Ito, Keisuke, Sohei Ito, Tatsuro Shimamura, Yasuaki Kawarasaki, Keiko Abe, Takumi Misaka, Takuya Kobayashi, y So Iwata. 2010. «Crystallization and preliminary X-ray analysis of a glucansucrase from the dental caries pathogen Streptococcus mutans». Acta Crystallographica Section F: Structural Biology and Crystallization Communications 66 (Pt 9): 1086-88. https://doi.org/10.1107/S1744309110029714Jeffries, T. W., y N. Q. SHI. 1999. «Genetic engineering for improved xylose fermentation by yeasts». Advances in Biochemical Engineering/Biotechnology 65: 117-61Jeffries, Thomas W., Igor V. Grigoriev, Jane Grimwood, José M. Laplaza, Andrea Aerts, Asaf Salamov, Jeremy Schmutz, et al. 2007. «Genome sequence of the lignocellulosebioconverting and xylose-fermenting yeast Pichia Stipitis». Nature Biotechnology 25 (3): 319-26. https://doi.org/10.1038/nbt1290Jeppsson, H, S Yu, y B Hahn-Hägerdal. 1996. «Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture.» Applied and Environmental Microbiology 62 (5): 1705-9Johansson, Björn, y Bärbel Hahn-Hägerdal. 2002. «the non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001». FEMS Yeast Research 2 (3): 277-82. https://doi.org/10.1016/S1567-1356(02)00114-9Jönsson, Leif J, Björn Alriksson, y Nils-Olof Nilvebrant. 2013. «Bioconversion of lignocellulose: inhibitors and detoxification». Biotechnology for Biofuels 6 (enero): 16. https://doi.org/10.1186/1754-6834-6-16Jordan, Paulina, Jun-Yong Choe, Eckhard Boles, y Mislav Oreb. 2016. «Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters». Scientific Reports 6 (1): 23502. https://doi.org/10.1038/srep23502Kahar, Prihardi, Kazuo Taku, y Shuzo Tanaka. 2011. «Enhancement of Xylose Uptake in 2-Deoxyglucose tolerant mutant of Saccharomyces cerevisiae». Journal of Bioscience and Bioengineering 111 (5): 557-63. https://doi.org/10.1016/j.jbiosc.2010.12.020Kilian, S. G., B. A. Prior, y J. C. du Preez. 1993. «The kinetics and regulation of M-xylose transport in Candida Utilis». World Journal of Microbiology and Biotechnology 9 (3): 357- 60. https://doi.org/10.1007/BF00383080Kim, S. R., H. Xu, A. Lesmana, U. Kuzmanovic, M. AU, C. Florencia, E. J. Oh, G. Zhang, K. H. Kim, y Y-S. Jin. 2015. «Deletion of PHO13, encoding haloacid dehalogenase type iia phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae». Applied and Environmental Microbiology 81 (5): 1601-9. https://doi.org/10.1128/AEM.03474-14Kim, Soo Rin, Jeffrey M. Skerker, Wei Kang, Anastashia Lesmana, Na Wei, Adam P. Arkin, y Yong-Su Jin. 2013. «Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae». PLOS ONE 8 (2): e57048. https://doi.org/10.1371/journal.pone.0057048Kobayashi, Yosuke, Takehiko Sahara, Satoru Ohgiya, Yoichi Kamagata, y Kazuhiro E. Fujimori. 2018. «Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae». AMB Express 8 (1): 139. https://doi.org/10.1186/s13568-018-0670-8Konishi, Jin, Akira Fukuda, Kozue Mutaguchi, y Takeshi Uemura. 2015. «Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes». Biotechnology Letters 37 (8): 1623-30. https://doi.org/10.1007/s10529-015-1840- 2Korabecna, M. 2007. «The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 S rRNA Gene): Its biological meaning and application». En in Medical Mycology. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Méndez-VilasKötter, P., y M. Ciriacy. 1993. «Xylose Fermentation by Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 38 (6): 776-83. https://doi.org/10.1007/BF00167144Kotyk, A. 1967. «Properties of the sugar carrier in baker’s yeast. II. Specificity of Transport». Folia Microbiologica 12 (2): 121-31. https://doi.org/10.1007/BF02896872Kotyk, A., y A. Kleinzeller. 1963. «Transport of D-Xylose and sugar space in baker’s yeast». Folia Microbiologica 8 (mayo): 156-64. https://doi.org/10.1007/BF02894974Kruckeberg, A. L. 1996. «The Hexose Transporter Family of Saccharomyces cerevisiae». Archives of Microbiology 166 (5): 283-92. https://doi.org/10.1007/s002030050385Kurtzman, Cletus, J. W. Fell, y Teun Boekhout. 2011. The Yeasts: A Taxonomic Study. 5.a ed. ElsevierKuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, y J. T. Pronk. 2005. «Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain». FEMS Yeast Research 5 (10): 925-34. https://doi.org/10.1016/j.femsyr.2005.04.004Kwolek-Mirek, Magdalena, y Renata Zadrag-Tecza. 2014. «Comparison of methods used for assessing the viability and vitality of yeast cells». FEMS Yeast Research 14 (7): 1068- 79. https://doi.org/10.1111/1567-1364.12202Lagunas, R., C. Dominguez, A. Busturia, y M. J. Sáez. 1982. «Mechanisms of appearance of the pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems». Journal of Bacteriology 152 (1): 19-25Lancheros-Castaneda, S., D. Morales Fonseca, y M. Velásquez Lozano. 2015. «Increase in second generation ethanol production by different nutritional conditions from sugarcane bagasse hydrolysate using a Saccharomyces cerevisiae Native Strain». Chemical Engineering Transactions 43 (mayo): 223-28. https://doi.org/10.3303/CET1543038Larochelle, M., S. Drouin, F. Robert, y B. Turcotte. 2006. «Oxidative stress-activated Zinc Cluster protein Stb5 has dual Activator/Repressor functions required for pentose phosphate pathway regulation and NADPH production». Molecular and Cellular Biology 26 (17): 6690-6701. https://doi.org/10.1128/MCB.02450-05Leão, Cecília, y N. van Uden. 1985. «Effects of ethanol and other alkanols on the temperature relations of glucose transport and fermentation in Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 22 (5): 359-63. https://doi.org/10.1007/BF00582420Lee, Hung. 1998. «Review: The structure and function of yeast xylose (aldose) reductases». Yeast 14 (11): 977-84. https://doi.org/10.1002/(SICI)1097- 0061(199808)14:11<977::AID-YEA302>3.0.CO;2-JLee, T.-H., M.-D. Kim, Y.-C. Park, S.-M. Bae, Y.-W. Ryu, y J.-H. Seo. 2003. «effects of xylulokinase activity on ethanol production from d-xylulose by recombinant Saccharomyces cerevisiae». Journal of Applied Microbiology 95 (4): 847-52Lee, W.-J., M.-D. Kim, Y.-W. Ryu, L. F. Bisson, y J.-H. Seo. 2002. «Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 60 (1-2): 186-91. https://doi.org/10.1007/s00253-002-1085-6Li, Hongxing, Yu Shen, Meiling Wu, Jin Hou, Chunlei Jiao, Zailu Li, Xinli Liu, y Xiaoming Bao. 2016. «Engineering a wild-type diploid Saccharomyces cerevisiae strain for secondgeneration bioethanol production». Bioresources and Bioprocessing 3 (1). https://doi.org/10.1186/s40643-016-0126-4Li, Hongxing, Meiling Wu, Lili Xu, Jin Hou, Ting Guo, Xiaoming Bao, y Yu Shen. 2015. «Evaluation of Industrial Saccharomyces cerevisiae strains as the chassis cell for secondgeneration bioethanol production». Microbial Biotechnology 8 (2): 266-74. https://doi.org/10.1111/1751-7915.12245Lin, Yan, y Shuzo Tanaka. 2006. «Ethanol fermentation from biomass resources: current state and prospects». Applied Microbiology and Biotechnology 69 (6): 627-42. https://doi.org/10.1007/s00253-005-0229-xLin, Zhenguo, y Wen-Hsiung Li. 2011. «Expansion of Hexose Transporter genes was associated with the evolution of aerobic fermentation in yeasts». Molecular Biology and Evolution 28 (1): 131-42. https://doi.org/10.1093/molbev/msq184Lindén, Torbjörn, y Bärbel Hahn-Hägerdal. 1989. «Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase». Enzyme and Microbial Technology 11 (9): 583-89. https://doi.org/10.1016/0141-0229(89)90086-0Lohr, D. 1997. «Nucleosome transactions on the promoters of the yeast GAL and PHO genes». The Journal of Biological Chemistry 272 (43): 26795-98Lõoke, M., K. Kristjuhan, y A. Kristjuhan. 2011. «Extraction of genomic DNA from yeasts for PCR-Based applications». BioTechniques 50 (5): 325-28. https://doi.org/10.2144/000113672Ma, Jun, y Mark Ptashne. 1987. «The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80». Cell 50 (1): 137-42. https://doi.org/10.1016/0092-8674(87)90670- 2Maier, Andreas, Bernhard Völker, Eckhard Boles, y Günter Fred Fuhrmann. 2002. «Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 Transporters». FEMS Yeast Research 2 (4): 539-50. https://doi.org/10.1111/j.1567-1364.2002.tb00121.xMalakar, Pushkar, y Kareenhalli V. Venkatesh. 2014. «GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose». FEMS Yeast Research 14 (2): 346-56. https://doi.org/10.1111/1567-1364.12109Maleszka, R., y H. Schneider. 1984. «Involvement of oxygen and mitochondrial function in the metabolism of D-Xylulose by Saccharomyces cerevisiae». Archives of Biochemistry and Biophysics 228 (1): 22-30Maniatis, T., E. F. Fritsch, y J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. 2nd ed. New York, NY: Cold Spring Harbor Laboratory PressMaqueda, Matilde, Emiliano Zamora, Nieves Rodríguez-Cousiño, y Manuel Ramírez. 2010. «Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus DsRNA». Food Microbiology 27 (2): 205-9. https://doi.org/10.1016/j.fm.2009.10.004Marsit, Souhir, Adriana Mena, Frédéric Bigey, François-Xavier Sauvage, Arnaud Couloux, Julie Guy, Jean-Luc Legras, Eladio Barrio, Sylvie Dequin, y Virginie Galeote. 2015. «evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts». Molecular Biology and Evolution 32 (7): 1695-1707. https://doi.org/10.1093/molbev/msv057Matsushika, A., T. Goshima, y T. Hoshino. 2014. «Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose». Microbial Cell Factories 13: 16. https://doi.org/10.1186/1475-2859-13-16Matsushika, A., H. Inoue, T. Kodaki, y S. Sawayama. 2009. «Ethanol production from xylose in engineered Saccharomyces cerevisiae Strains: current state and perspectives». Applied Microbiology and Biotechnology 84 (1): 37-53. https://doi.org/10.1007/s00253- 009-2101-xMatsushika, A., S. Watanabe, T. Kodaki, K. Makino, H. Inoue, K. Murakami, O. Takimura, y S. Sawayama. 2008. «Expression of protein engineered NADP+ -dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 81 (2): 243-55. https://doi.org/10.1007/s00253-008-1649-1Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, y S. Sawayama. 2008. «Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase». Journal of Bioscience and Bioengineering 105 (3): 296-99. https://doi.org/10.1263/jbb.105.296McClellan, C. J., y L. F. Bisson. 1988. «Glucose Uptake in Saccharomyces cerevisiae Grown under Anaerobic Conditions: effect of null mutations in the hexokinase and glucokinase structural genes». Journal of Bacteriology 170 (11): 5396-5400. https://doi.org/10.1128/jb.170.11.5396-5400.1988McIlwain, Sean J., David Peris, Maria Sardi, Oleg V. Moskvin, Fujie Zhan, Kevin S. Myers, Nicholas M. Riley, et al. 2016. «Genome sequence and analysis of a stresstolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research». G3: Genes|Genomes|Genetics 6 (6): 1757-66. https://doi.org/10.1534/g3.116.029389Michael, Drew G., Ezekiel J. Maier, Holly Brown, Stacey R. Gish, Christopher Fiore, Randall H. Brown, y Michael R. Brent. 2016. «Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast». Proceedings of the National Academy of Sciences 113 (47): E7428-37. https://doi.org/10.1073/pnas.1603577113Milessi, Thais Suzane, Patricia M. Aquino, Cláudia R. Silva, Guilherme S. Moraes, Teresa C. Zangirolami, Roberto C. Giordano, y Raquel L. C. Giordano. 2018. «Influence of key variables on the simultaneous isomerization and fermentation (SIF) of xylose by a native Saccharomyces cerevisiae strain co-encapsulated with xylose isomerase for 2G ethanol production». Biomass and Bioenergy 119 (diciembre): 277-83. https://doi.org/10.1016/j.biombioe.2018.09.016Mittelman, Karin, y Naama Barkai. 2017. «the genetic requirements for pentose fermentation in budding yeast». G3 (Bethesda, Md.) 7 (6): 1743-52. https://doi.org/10.1534/g3.117.039610Monošík, R., P. Magdolen, M. Stredanský, y E. Šturdík. 2013. «Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry». Food Chemistry 138 (1): 220-26. https://doi.org/10.1016/j.foodchem.2012.10.039Moreno, Fernando, Montserrat Vega, y Pilar Herrero. 2016. «The nuclear Hexokinase 2 acts as a glucose sensor in Saccharomyces cerevisiae». The Journal of Biological Chemistry 291 (32): 16478. https://doi.org/10.1074/jbc.L116.738237Mortimer, R. K., y J. R. Johnston. 1986. «Genealogy of principal strains of the yeast genetic stock center». Genetics 113 (1): 35-43Moysés, Danuza Nogueira, Viviane Castelo Branco Reis, João Ricardo Moreira de Almeida, Lidia Maria Pepe de Moraes, y Fernando Araripe Gonçalves Torres. 2016. «Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects». International Journal of Molecular Sciences 17 (3). https://doi.org/10.3390/ijms17030207Muir, Alastair, Elizabeth Harrison, y Alan Wheals. 2011. «A multiplex set of speciesspecific primers for rapid identification of members of the genus Saccharomyces». FEMS Yeast Research 11 (7): 552-63. https://doi.org/10.1111/j.1567-1364.2011.00745.xNakano, Kazunori, Ryosuke Katsu, Kiyoshi Tada, y Masatoshi Matsumura. 2000. «production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control». Journal of Bioscience and Bioengineering 89 (4): 372-76. https://doi.org/10.1016/S1389-1723(00)88961-6Nasir, Armanul, Shafkat Shamim Rahman, Md Mahboob Hossain, y Naiyyum Choudhury. 2017. «Isolation of Saccharomyces cerevisiae from pineapple and orange and study of metal’s effectiveness on ethanol production». European Journal of Microbiology & Immunology 7 (1): 76-91. https://doi.org/10.1556/1886.2016.00035NEB. 2017. «PCR Using Q5® High-Fidelity DNA Polymerase (M0491) | NEB». 2017. https://www.neb.com/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerasem0491Ni, H., J. M. Laplaza, y T. W. Jeffries. 2007. «Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on d-Xylose». Applied and Environmental Microbiology 73 (7): 2061-66. https://doi.org/10.1128/AEM.02564-06Nijland, Jeroen G., Hyun Yong Shin, Leonie G. M. Boender, Paul P. de Waal, Paul Klaassen, y Arnold J. M. Driessen. 2017. «Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae». Appl. Environ. Microbiol. 83 (11): e00095-17. https://doi.org/10.1128/AEM.00095-17Nijland, Jeroen G., Erwin Vos, Hyun Yong Shin, Paul P. de Waal, Paul Klaassen, y Arnold J. M. Driessen. 2016. «Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 158. https://doi.org/10.1186/s13068-016-0573-3Novo, Maite, Frédéric Bigey, Emmanuelle Beyne, Virginie Galeote, Frédérick Gavory, Sandrine Mallet, Brigitte Cambon, et al. 2009. «Eukaryote-to-Eukaryote Gene Transfer Events Revealed by the Genome Sequence of the Wine Yeast Saccharomyces cerevisiae EC1118». Proceedings of the National Academy of Sciences 106 (38): 16333-38. https://doi.org/10.1073/pnas.0904673106Novy, Vera, Bernd Brunner, Gerdt Müller, y Bernd Nidetzky. 2017. «Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient L -Lactate dehydrogenase within Pdc1 - Pdc5 deletion background: L - lactic acid production from glucose and xylose». Biotechnology and Bioengineering 114 (1): 163-71. https://doi.org/10.1002/bit.26048Osiro, Karen O., Daniel P. Brink, Celina Borgström, Lisa Wasserstrom, Magnus Carlquist, y Marie F. Gorwa-Grauslund. 2018. «Assessing the effect of D-Xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation». FEMS Yeast Research 18 (1). https://doi.org/10.1093/femsyr/fox096Özcan, Sabire, y Mark Johnston. 1999. «Function and regulation of yeast Hexose Transporters». Microbiology and Molecular Biology Reviews 63 (3): 554-69Panchal, Chandra J., Lynda Bast, Inge Russell, y Graham G. Stewart. 1988. «Repression of xylose utilization by glucose in xylose-fermenting yeasts». Canadian Journal of Microbiology 34: 1316-20. https://doi.org/10.1139/m88-230Parachin, Nádia S., Oskar Bengtsson, Bärbel Hahn‐Hägerdal, y Marie-F. Gorwa‐ Grauslund. 2010. «The Deletion of YLR042c Improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae». Yeast 27 (9): 741-51. https://doi.org/10.1002/yea.1777Patiño, M. A. 2015. «Engenharia evolutiva e genômica de leveduras Saccharomyces cerevisiae recombinantes fermentadoras de xilose». Dissertação (Mestrado em Biotecnologia e Biociências), Florianópolis - SC: Universidade Federal de Santa CatarinaPatiño, M. A., J. P. Ortiz, M. Velásquez, y B. U. Stambuk. 2019. «D-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A Review». Yeast (Chichester, England), junio. https://doi.org/10.1002/yea.3429Peng, Gang, y James E. Hopper. 2002. «Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein». Proceedings of the National Academy of Sciences 99 (13): 8548-53. https://doi.org/10.1073/pnas.142100099Petit, T., J. A. Diderich, A. L. Kruckeberg, C. Gancedo, y K. Van Dam. 2000. «Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae». Journal of Bacteriology 182 (23): 6815-18. https://doi.org/10.1128/jb.182.23.6815-6818.2000Petracek, M. E., y M. S. Longtine. 2002. «PCR-based engineering of yeast genome». Methods in Enzymology 350: 445-69Postma, E., W. A. Scheffers, y J. P. van Dijken. 1989. «Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces Cerevisiae CBS 8066». Yeast (Chichester, England) 5 (3): 159-65. https://doi.org/10.1002/yea.320050305Preez, J. C. du, S. H. de Kock, S. G. Kilian, y D. Litthauer. 2000. «The relationship between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures». Antonie Van Leeuwenhoek 77 (4): 379-88. https://doi.org/10.1023/a:1002744100953Ramos, J, K Szkutnicka, y V P Cirillo. 1988. «Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae». Journal of Bacteriology 170 (11): 5375-77Rao, Kripa, Silpa Chelikani, Patricia Relue, y Sasidhar Varanasi. 2008. «A Novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose». Applied Biochemistry and Biotechnology 146 (1-3): 101-17. https://doi.org/10.1007/s12010-007-8122-yReifenberger, E., E. Boles, y M. Ciriacy. 1997. «Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression». European Journal of Biochemistry 245 (2): 324-33Reifenberger, E., K. Freidel, y M. Ciriacy. 1995. «Identification of Novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual Hexose Transporters on Glycolytic Flux». Molecular Microbiology 16 (1): 157-67Reis, V. C. B. 2012. «Modificações genéticas em linhagem industrial de Saccharomyces cerevisiae para a fermentação de xilose». Tese (Doutorado em Biologia Molecular), Universidade de Brasília. http://repositorio.unb.br/handle/10482/13119Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, et al. 2000. «Genome-wide location and function of DNA binding proteins». Science (New York, N.Y.) 290 (5500): 2306-9. https://doi.org/10.1126/science.290.5500.2306Richard, P., M. H. Toivari, y M. Penttilä. 1999. «Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase». FEBS Letters 457 (1): 135- 38Richard, P., M. H. Toivari, y M. Penttilä. 2000. «The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism». FEMS Microbiology Letters 190 (1): 39-43. https://doi.org/10.1111/j.1574-6968.2000.tb09259.xRodriguez-Peña, J. M., V. J. Cid, J. Arroyo, y C. Nombela. 1998. «The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae». FEMS Microbiology Letters 162 (1): 155-60Roy, Adhiraj, Yong-Bae Kim, Kyu Hong Cho, y Jeong-Ho Kim. 2014. «Glucose starvationinduced turnover of the yeast glucose transporter Hxt1». Biochimica et biophysica acta 1840 (9): 2878-85. https://doi.org/10.1016/j.bbagen.2014.05.004Sabatinos, SarahA., y SusanL. Forsburg. 2009. «Measuring DNA content by flow cytometry in fission yeast». En DNA Replication, editado por Sonya Vengrova y Jacob Z. Dalgaard, 449-61. Methods in Molecular Biology 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_25Sá-Correia, I., y N. van Uden. 1983. «Effect of ethanol on the fructose transport system of Kluyveromyces fragilis». Biotechnology Letters 5 (6): 413-18. https://doi.org/10.1007/BF00131283Sales, B. de, B. Scheid, D. Gonçalves, M. Knychala, A. Matsushika, E. Bon, y Boris U. Stambuk. 2015. «Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae». Biotechnology Letters 37 (10): 1973-82. https://doi.org/10.1007/s10529-015-1893-2Saloheimo, A., J. Rauta, O. V. Stasyk, A. A. Sibirny, M. Penttilä, y L. Ruohonen. 2007. «Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases». Applied Microbiology and Biotechnology 74 (5): 1041-52. https://doi.org/10.1007/s00253-006-0747-1Sambrook, J., y D. W. Russell. 2001. Molecular Cloning: A laboratory manual. CSHL PressSánchez, Sebastián, Vicente Bravo, Eulogio Castro, Alberto J. Moya, y Fernando Camacho. 2002. «The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to Produce Ethanol». Journal of Chemical Technology & Biotechnology 77 (6): 641-48. https://doi.org/10.1002/jctb.622Sato, Trey K., Mary Tremaine, Lucas S. Parreiras, Alexander S. Hebert, Kevin S. Myers, Alan J. Higbee, Maria Sardi, et al. 2016. «Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae». PLoS Genetics 12 (10): e1006372. https://doi.org/10.1371/journal.pgen.1006372Scalcinati, Gionata, José Manuel Otero, Jennifer R. H. Van Vleet, Thomas W. Jeffries, Lisbeth Olsson, y Jens Nielsen. 2012. «Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption». FEMS Yeast Research 12 (5): 582- 97. https://doi.org/10.1111/j.1567-1364.2012.00808.xSchiestl, R. H., y R. D. Gietz. 1989. «High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier». Current Genetics 16 (5-6): 339-46. https://doi.org/10.1007/BF00340712Schuddemat, J., P. J. Van den Broek, y J. Van Steveninck. 1986. «Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae». Biochimica Et Biophysica Acta 861 (3): 489-93. https://doi.org/10.1016/0005-2736(86)90459-1Sedlak, M., y N. W. Y. Ho. 2004. «Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces Yeast Capable of cofermenting glucose and xylose». Applied Biochemistry and Biotechnology 113-116: 403-16. 10.1385/abab:114:1-3:403Serrano, R., y G. Delafuente. 1974. «Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae». Molecular and Cellular Biochemistry 5 (3): 161-71. https://doi.org/10.1007/BF01731379SGD. 2017. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2017. http://www.yeastgenome.org/SGD. 2018. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2018. https://www.yeastgenome.org/locus/S000003920Sharma, Shalley, Eldho Varghese, Anju Arora, K. N. Singh, Surender Singh, Lata Nain, y Debarati Paul. 2018. «Augmenting pentose utilization and ethanol production of native Saccharomyces cerevisiae LN using medium engineering and response surface methodology». Frontiers in Bioengineering and Biotechnology 6: 132. https://doi.org/10.3389/fbioe.2018.00132Shen, Y., X. Chen, B. Peng, L. Chen, J. Hou, y X. Bao. 2012. «An efficient xylosefermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile». Applied Microbiology and Biotechnology 96 (4): 1079-91. https://doi.org/10.1007/s00253-012-4418-0Shoham, M., y T. A. Steitz. 1982. «The 6-Hydroxymethyl group of a hexose is essential for the substrate-induced closure of the cleft in hexokinase». Biochimica Et Biophysica Acta 705 (3): 380-84. https://doi.org/10.1016/0167-4838(82)90260-6Smiley, Karl L., y Paul L. Bolen. 1982. «Demonstration of D-xylose reductase and Dxylitol dehydrogenase in Pachysolen tannophilus». Biotechnology Letters 4 (9): 607-10. https://doi.org/10.1007/BF00127793Smith, J., E. van Rensbeurg, y J. F. Görgens. 2014. «Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase». BMC Biotechnology 14: 41. https://doi.org/10.1186/1472-6750-14-41Sonderegger, M., y U. Sauer. 2003. «Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose». Applied and Environmental Microbiology 69 (4): 1990-98Stambuk, B. U., B. Dunn, S. L. Alves, E. H. Duval, y G. Sherlock. 2009. «Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis». Genome Research 19 (12): 2271-78. https://doi.org/10.1101/gr.094276.109Stambuk, B. U., E. C. A. Eleutherio, L. M. Florez-pardo, A. M. Souto-maior, y E. P. S. Bon. 2008. «Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains», 2008, sec. 67Stambuk, Boris U., Mary Ann Franden, Arjun Singh, y Min Zhang. 2003. «D-Xylose transport by Candida succiphila and Kluyveromyces marxianus». Applied Biochemistry and Biotechnology 105-108: 255-63. https://doi.org/10.1385/abab:106:1-3:255Subtil, T., y E. Boles. 2012. «Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae». Biotechnology for Biofuels 5: 14. https://doi.org/10.1186/1754-6834-5-14Suihko, M.-L., y K. Poutanen. 1984. «D-xylulose fermentation by free and immobilized Saccharomyces cerevisiae cells». Biotechnology Letters 6 (3): 189-94. https://doi.org/10.1007/BF00127037Tamari, Zvi, Dalia Rosin, Yoav Voichek, y Naama Barkai. 2014. «Coordination of gene expression and growth-rate in natural populations of budding yeast». PloS One 9 (2): e88801. https://doi.org/10.1371/journal.pone.0088801Tamari, Zvi, Avihu H. Yona, Yitzhak Pilpel, y Naama Barkai. 2016. «Rapid evolutionary adaptation to growth on an “unfamiliar” carbon source». BMC Genomics 17: 674. https://doi.org/10.1186/s12864-016-3010-xThompson, J. R., E. Register, J. Curotto, M. Kurtz, y R. Kelly. 1998. «An improved protocol for the preparation of yeast cells for transformation by electroporation». Yeast (Chichester, England) 14 (6): 565-71. https://doi.org/10.1002/(SICI)1097- 0061(19980430)14:6<565::AID-YEA251>3.0.CO;2-BTimson, David J., Helen C. Ross, y Richard J. Reece. 2002. «Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry». The Biochemical Journal 363 (Pt 3): 515-20Toivari, Mervi H., Laura Salusjärvi, Laura Ruohonen, y Merja Penttilä. 2004. «Endogenous xylose pathway in Saccharomyces cerevisiae». Applied and Environmental Microbiology 70 (6): 3681-86. https://doi.org/10.1128/AEM.70.6.3681-3686.2004Träff K. L., Jönsson L. J., y Hahn‐Hägerdal B. 2002. «Putative xylose and arabinose reductases in Saccharomyces cerevisiae». Yeast 19 (14): 1233-41. https://doi.org/10.1002/yea.913Trumbly, R. J. 1992. «Glucose repression in the yeast Saccharomyces cerevisiae». Molecular Microbiology 6 (1): 15-21Turner, Timothy L., Heejin Kim, In Iok Kong, Jing-Jing Liu, Guo-Chang Zhang, y Yong-Su Jin. 2016. «Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals». Advances in Biochemical Engineering/Biotechnology, diciembre. https://doi.org/10.1007/10_2016_22Van Vleet, J. H., T. W. Jeffries, y L. Olsson. 2008. «Deleting the para-nitrophenyl phosphatase (PNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose». Metabolic Engineering 10 (6): 360-69. https://doi.org/10.1016/j.ymben.2007.12.002Van Zyl, C. V., B. A. Prior, S. G. Kilian, y J. L. F. Kock. 1989. «D-Xylose Utilization by Saccharomyces cerevisiae». Journal of General Microbiology 135 (11): 2791-98. https://doi.org/10.1099/00221287-135-11-2791Velásquez, Mario, y Grupo de Investigación en Procesos Químicos y Bioquímicos. 2015. «Informe técnico final Producción de etanol de segunda generación a partir de hidrolizado de bagazo de caña por levaduras y bacterias nativas»Verduyn, C., E. Postma, W. A. Scheffers, y J. P. Van Dijken. 1992. «Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation». Yeast (Chichester, England) 8 (7): 501-17. https://doi.org/10.1002/yea.320080703Wahlbom, C. Fredrik, Ricardo R. Cordero Otero, Willem H. van Zyl, Bärbel HahnHägerdal, y Leif J. Jönsson. 2003. «Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the Pentose Phosphate Pathway». Applied and Environmental Microbiology 69 (2): 740-46. https://doi.org/10.1128/aem.69.2.740-746.2003Wang, P. Y., y H. Schneider. 1980. «Growth of Yeasts on D-Xylulose 1». Canadian Journal of Microbiology 26 (9): 1165-68Wang, Patrick Y., Charles Shopsis, y Henry Schneider. 1980. «Fermentation of a pentose by yeasts». Biochemical and Biophysical Research Communications 94 (1): 248-54. https://doi.org/10.1016/S0006-291X(80)80213-0Webb, S. R., y H. Lee. 1990. «Regulation of D-Xylose utilization by hexoses in pentosefermenting yeasts». Biotechnology Advances 8 (4): 685-97Wei, N., H. Xu, S. R. Kim, y Y-S. Jin. 2013. «Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae». Applied and Environmental Microbiology 79 (10): 3193-3201. https://doi.org/10.1128/AEM.00490-13Wei, Shan, Yanan Liu, Meiling Wu, Tiantai Ma, Xiangzheng Bai, Jin Hou, Yu Shen, y Xiaoming Bao. 2018. «Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae». Biotechnology for Biofuels 11 (1): 112. https://doi.org/10.1186/s13068-018-1112-1Wenger, Jared W., Katja Schwartz, y Gavin Sherlock. 2010. «Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae». PLoS Genetics 6 (5): e1000942. https://doi.org/10.1371/journal.pgen.1000942Westergaard, S. L., A. P. Oliveira, C. Bro, L. Olsson, y J. Nielsen. 2007. «A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae». Biotechnology and Bioengineering 96 (1): 134-45. https://doi.org/10.1002/bit.21135White, T. J., T. Bruns, S. Lee, y J. Taylor. 1990. «38 - Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics». En PCR Protocols, editado por Michael A. Innis, David H. Gelfand, John J. Sninsky, y Thomas J. White, 315-22. San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C. P. Hollenberg, y E. Boles. 1999. «Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae». FEBS Letters 464 (3): 123-28. https://doi.org/10.1016/s0014-5793(99)01698-1Xu, Haiqing, Sooah Kim, Hagit Sorek, Youngsuk Lee, Deokyeol Jeong, Jungyeon Kim, Eun Joong Oh, et al. 2016. «PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae». Metabolic Engineering 34 (marzo): 88-96. https://doi.org/10.1016/j.ymben.2015.12.007Yablochkova, E. N., O. I. Bolotnikova, N. P. Mikhailova, N. N. Nemova, y A. I. Ginak. 2003. «The activity of xylose reductase and xylitol dehydrogenase in yeasts». Microbiology 72 (4): 414-17. https://doi.org/10.1023/A:1025032404238Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, y T. L. Madden. 2012. «Primer-BLAST: A tool to design target-specific primers for Polymerase Chain Reaction». BMC Bioinformatics 13: 134. https://doi.org/10.1186/1471-2105-13-134Young, E., A. Poucher, A. Comer, A. Bailey, y H. Alper. 2011. «Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a Host». Applied and Environmental Microbiology 77 (10): 3311-19. https://doi.org/10.1128/AEM.02651-10Young, E., A. Tong, H. Bui, C. Spofford, y H. Alper. 2014. «Rewiring yeast sugar transporter preference through modifying a conserved protein motif». Proceedings of the National Academy of Sciences of the United States of America 111 (1): 131-36. https://doi.org/10.1073/pnas.1311970111Yu, S., H. Jeppsson, y B. Hahn-Hägerdal. 1995. «Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains». Applied Microbiology and Biotechnology 44 (3): 314-20. https://doi.org/10.1007/BF00169922Yuan, Dawei, Kripa Rao, Patricia Relue, y Sasidhar Varanasi. 2011. «Fermentation of biomass sugars to ethanol using native industrial yeast strains». Bioresource Technology 102 (3): 3246-53. https://doi.org/10.1016/j.biortech.2010.11.034Yuan, Dawei, Kripa Rao, Sasidhar Varanasi, y Patricia Relue. 2012. «A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae». Bioresource Technology 117 (agosto): 92-98. https://doi.org/10.1016/j.biortech.2012.04.005Zeng, Wei-Yi, Yue-Qin Tang, Min Gou, Zhao-Yong Sun, Zi-Yuan Xia, y Kenji Kida. 2017. «Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with Improved xylose utilization capability». Applied Microbiology and Biotechnology 101 (4): 1753-67. https://doi.org/10.1007/s00253-016- 8046-yZha, J., B-Z. Li, M-H. Shen, M-L. Hu, H. Song, y A. H. Yuan. 2013. «Optimization of CDT- 1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae», 2013, sec. 8(7): e68317Zha, Jian, Minghua Shen, Menglong Hu, Hao Song, y Yingjin Yuan. 2014. «Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering». Journal of Industrial Microbiology & Biotechnology 41 (1): 27- 39. https://doi.org/10.1007/s10295-013-1350-yZhang, F., S. Rodriguez, y J. D. Keasling. 2011. «Metabolic engineering of microbial pathways for advanced biofuels production». Current Opinion in Biotechnology 22 (6): 775-83. https://doi.org/10.1016/j.copbio.2011.04.024Zhong, C., M. W. Lau, V. Balan, B. E. Dale, y Y-J. Yuan. 2009. «Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw». Applied Microbiology and Biotechnology 84 (4): 667-76. https://doi.org/10.1007/s00253-009-2001-0Zyl, C. van, B. A. Prior, S. G. Kilian, y E. V. Brandt. 1993. «Role of D-ribose as a cometabolite in D-Xylose metabolism by Saccharomyces cerevisiae». Applied and Environmental Microbiology 59 (5): 1487-94. https://doi.org/10.1128/AEM.59.5.1487-1494.1993EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81969/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINAL1093752481.2021.2.pdf1093752481.2021.2.pdfTesis de Doctorado en Biotecnologíaapplication/pdf6519561https://repositorio.unal.edu.co/bitstream/unal/81969/3/1093752481.2021.2.pdf5b6f1124b86e26bbfd663330bac951a4MD53THUMBNAIL1093752481.2021.2.pdf.jpg1093752481.2021.2.pdf.jpgGenerated Thumbnailimage/jpeg5359https://repositorio.unal.edu.co/bitstream/unal/81969/4/1093752481.2021.2.pdf.jpg7f12907cc422a700430f928445eec442MD54unal/81969oai:repositorio.unal.edu.co:unal/819692024-08-08 23:12:01.508Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK