Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro

Ilustraciones, fotografías, tablas

Autores:
Escobar Escobar, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80380
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80380
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Recursos genéticos
Genetic resources
Criopreservación
Cryopreservation
Desarrollo embrionario
Embryonic development
Resveratrol
Biotecnología
Bovinos Criollos
Atemperado
Estrés Oxidativo
Vitrificación
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_1f36fc27971a93122f8649005c1b451a
oai_identifier_str oai:repositorio.unal.edu.co:unal/80380
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
dc.title.translated.eng.fl_str_mv Evaluation of the antioxidant effect of Resveratrol on the cryotolerance of bovine embryos of the Hartón del Valle breed produced in vitro
title Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
spellingShingle Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Recursos genéticos
Genetic resources
Criopreservación
Cryopreservation
Desarrollo embrionario
Embryonic development
Resveratrol
Biotecnología
Bovinos Criollos
Atemperado
Estrés Oxidativo
Vitrificación
title_short Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
title_full Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
title_fullStr Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
title_full_unstemmed Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
title_sort Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro
dc.creator.fl_str_mv Escobar Escobar, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Torres Osorio, Viviana
Campos Gaona, Rómulo
dc.contributor.author.none.fl_str_mv Escobar Escobar, Juan Camilo
dc.contributor.educationalvalidator.none.fl_str_mv Maturana Mena, Diana Milena
dc.contributor.researchgroup.spa.fl_str_mv Conservación, mejoramiento y utilización del ganado criollo Hartón del Valle y otros recursos genéticos animales en el suroccidente colombiano
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
topic 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Recursos genéticos
Genetic resources
Criopreservación
Cryopreservation
Desarrollo embrionario
Embryonic development
Resveratrol
Biotecnología
Bovinos Criollos
Atemperado
Estrés Oxidativo
Vitrificación
dc.subject.agrovoc.none.fl_str_mv Recursos genéticos
Genetic resources
Criopreservación
Cryopreservation
Desarrollo embrionario
Embryonic development
Resveratrol
dc.subject.proposal.spa.fl_str_mv Biotecnología
Bovinos Criollos
Atemperado
Estrés Oxidativo
Vitrificación
description Ilustraciones, fotografías, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-05T03:48:29Z
dc.date.available.none.fl_str_mv 2021-10-05T03:48:29Z
dc.date.issued.none.fl_str_mv 2021-07-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80380
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80380
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelatty, A.M., Iwaniuk, M.E., Potts, S.B., Gad, A., 2018. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int. J. Vet. Sci. Med. 6, S1–S5. https://doi.org/https://doi.org/10.1016/j.ijvsm.2018.01.005
Abe, T., Kawahara-Miki, R., Hara, T., Noguchi, T., Hayashi, T., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by Resveratrol. J. Reprod. Dev. 63, 455–461.
Abeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN., 1998. Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev.; 51: 395-401.
Agarwal, A., Durairajanayagam, D., du Plessis, S.S., 2014a. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 1–19. https://doi.org/10.1186/1477-7827-12-112
Agarwal, A., Virk, G., Ong, C., du Plessis, S.S., 2014b. Effect of oxidative stress on male reproduction. World J Men’s Heal. 32, 1–17.
Agarwal, A., Aponte-mellado, A., Premkumar, B.J., Shaman, A., Gupta, S., 2012. The effects of oxidative stress on female reproduction : a review 1–31.
Agarwal, A., Gupta, S., Sharma, R.K., 2005. No Title. Reprod Biol Endocrinol 3, 28.
Agarwal, A., 2004. Oxidants and antioxidants in human fertility. Middle East Soc Fertil J 9, 187–197.
Agarwal, A., Allamaneni, S.S., 2004. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9, 338–347.
Agarwal, A., Saleh, R.A., Bedaiwy, M.A., 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79, 829–843.
Agarwal, A., Saleh, R.A., 2002. Role of oxidants in male infertility: rationale, significance, and treatment. Urol. Clin. North Am. Philadelphia 29, 817–827.
Al Gubory, K.H., Fowler, P.A., Garrel, C., 2010. The role of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol 42, 1634–1650.
Almiñana, C., Cuello, C., 2015. What is new in the cryopreservation of embryos? Anim. Reprod. Brazilian Coll. Anim. Reprod. 12, 418–427.
Alvarenga, M.A., Fernandes, C.B., Landim-Alvarenga, F.C., 2007. Criopreservation of equine embryos._Acta_Scientiae_Veterinariae._ 35(Supl_3):_799-809. Acta Sci. Vet. 35, 799–809.
Alvarez, A., 1999. Potencial Genetico Y Productivo Del Ganado Criollo Harton Del Valle 94–103.
Álvarez, L., Vera, V., Cárdena, H., Barreto, G., Muñoz, J., 2011. Assessing the genetic diversity and ancestry of Hartón del Valle cattle using mitochondrial DNA. Rev. Colomb. Ciencias Pecu. 25, 14–26.
Ambrogi, M., Dall’Acqua, P.C., Rocha- Frigoni, N., Leao, B., Mingoti, G.Z., 2017. Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: effects on nuclear and cytoplasmic maturation and embryonic development in vitro. Reprod. Domest. Anim. Linköping 52, 409–421.
Anzola, H.J., 2005. Criollas Y Colombianas Para El Desarrollo Rural. Arch. Zootec. 54, 141–144.
Arav, A., Natan, Y., Kalo, D., Komsky-Elbaz, A., Roth, Z., Levi-Setti, P.E., Leong, M., Patrizio, P., 2018. A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. J. Assist. Reprod. Genet. 35, 1161–1168. https://doi.org/10.1007/s10815-018-1210-9
Asamblea de Valle del Cauca, 2017. ORDENANZA No. 451 del 4 de mayo de 2017. Proyecto de Ordenanza No. 013 de abril 18 de 2017, "POR MEDIO DE LA CUAL SE DECLARA PATRIMONIO GENÉTICO, SOCIAL Y ECONÓMICO DEL DEPARTAMENTO DEL VALLE DEL CAUCA LA RAZA CRIOLLA DE GANADO BOVINO “HARTÓN DEL VALLE.”
Asocriollo, 2003. Razas Criollas Colombianas Puras. Convenio 135-01.
Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., 2009. A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640. https://doi.org/https://doi.org/10.1016/j.foodhyd.2009.01.001
Ávila-Portillo, M.U., Madero, J.I., López, C., Fernanda León, M., Acosta, L., Gómez, Claudia, Gabriela Delgado, L., Gómez, Claudio, Manuel Lozano, J., Reguero, M.T., 2006. Revisión de tema FUNDAMENTOS DE CRIOPRESERVACIÓN Basic points in cryopreservation. Rev. Colomb. Obstet. Ginecol. 57, 291–300.
Aye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., Courbiere, B., 2010. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: Dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912. https://doi.org/10.1016/j.fct.2010.04.032
Bajagai, Y.S., 2013. Multiple Ovulation and Non-Surgical Embryo Transfer in Cattle by Using Intravaginal Controlled Internal Drug Release (CIDR) Progesterone Inserts. Nepal J. Sci. Technol. 14, 15–22. https://doi.org/10.3126/njst.v14i1.8872
Bajo, A., Coroleu, L., 2009. Fundamentos de la reproducción. panamericana,España 270–272.
Baldoceda, L., Gilbert, I., Gagné, D., Vigneault, C., Blondin, P., Ferreira, C.R., Robert, C., 2016. Breed-specific factors influence embryonic lipid composition: comparison between Jersey and Holstein. Reprod. Fertil. Dev. 28, 1185–1196.
Baldoceda, L., Vigneault, C., Gilbert, I., Gagné, D., Blondin, P., Robert, C., 2014. Influence of cattle breed on gene expression and phenotype of Holstein and Jersey embryos. Anim. Reprod. Sci. 149, 100–101. https://doi.org/10.1016/j.anireprosci.2014.06.016
Battin, E.E., Brumaghim, J.L., 2009. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55, 1–23.
Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 87(4):1620-1624. doi: 10.1073/pnas.87.4.1620. PMID: 2154753
Behrman, H.R., Kodaman, P.H., Preston, S.L., Gao, S., 2001. Oxidative stress and the ovary. J Soc Gynecol Investig 8, 40–42.
Bhattacharya, S., 2018. Cryoprotectants and Their Usage in Cryopreservation Process, in: Biomedical and Biological Sciences. Intechopen, p. 19.
Bolaños, I., Hernández, D., Álvarez, L., 2017. Asociación de los alelos del gen BoLA-DRB3 con la infección natural de Babesia spp en el ganado criollo Hartón del Valle. Arch. Zootec. 53, 113–120.
Boni, R., 2012. Origins and Effects of Oocyte Quality in Cattle. Anim. Reprod. 9, 333–340.
Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Al., E., 2004. Stress- dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (80-. ). 303, 2011–2015.
Calabrese, E.J., Mattson, M.P., Calabrese, V., 2010. Resveratrol commonly displays hormesis: occurrence and biomedical significance,. Hum. Exp. Toxicol. 29, 980–1015.
Campos, R., Vélez, M., Hernández, E., García, K., Molina, R., Sánchez, H., Durán, C., Gitaldo, L., 2015. El mejoramiento genético y la producción de leche. La esencia de una realidad de producción animal. Acta Agronómica 64, 372–382.
Campos, R., Giraldo, L., 2008. Efecto de la raza y la edad sobre las concentraciones de hormonas tiroideas T3 y T4 de bovinos en condiciones tropicales. Acta Agronómica 57, 137–141.
Campos, R., González, F.H., Rodas, A., Cruz, C., 2004. Thyroid hormones in native colombian bovine breeds. Rev Bras Ci Vet 11, 174–177.
Carrocera, S., CAAMAÑO, J.N., TRIGAL, B., MARTÍN, D., DÍEZ, C., 2016. Developmental kinetics of in vitro-produced bovine embryos: an aid for making decisions. Theriogenology, New York 85, 822–827.
Casas, A., Casas, I., 1982. Métodos propuestos para medir la eficiencia reproductiva de los hatos lecheros con base en las variables numero de servicios por concepción e intervalo de parto a concepción. Acta Agronómica 32, 85–107.
Casas, I., Valderrama, M., 1998. El Bovino Criollo “HARTÓN DEL VALLE.” Rev. Despertar Leche. 15, 37–62.
Castedo M, Ferri K, Roumier T, M_etivier D, Zamzami N, Kroemer G., 2002. Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods. 265:39e47. https://doi.org/10.1016/S0022-1759(02)00069-8.
Castillo-Martín, M., Bonet, S., Morato, R., Yeste, M., 2014a. Comparative effects of adding b -mercaptoethanol or L -ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Reprod. Fertil. Dev. 26, 875–882. https://doi.org/http://dx.doi.org/10.1071/RD13116
Castillo-Martín, M., Bonet, S., Morató, R., Yeste, M., 2014b. Supplementing culture and vitrification-warming media with L -ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression q. Cryobiology 68, 451–458. https://doi.org/10.1016/j.cryobiol.2014.03.001
Chaube, S.K., Prasad, P. V, Thakur, S.C., Shrivastav, T.G., 2005. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis 10, 863–874. https://doi.org/10.1007/s10495-005-0367-8
Chen, H., Zhang, L., Wang, Z., Chang, H., Xie, X., Fu, L., Zhang, Y., Quan, F., 2019. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 1–9. https://doi.org/10.1002/mrd.23161
Chi, H.J., Kim, J.H., Ryu, C.S., Al, E., 2008. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum. Reprod. 23, 1023–1028.
Chinen, S., Yamanaka, T., Hirabayashi, M., Hochi, S., 2020. Rescue of vitrified-warmed bovine mature oocytes by short-term recovery culture with Resveratrol. Cryobiology. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.03.004
Choe, C., Shin, Y., Kim, E., Cho, S., Kim, H., Choi, S., Al, E., 2010. Synergistic effects of glutathione and B-mercaptoethanol traetment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev 56, 575–582.
Chung, I.M., Park, M.R., Chun, J.C., Yun, S.J., 2003. Resveratrol accumulation and Resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164, 103–109.
Clark JH, Markaverich BM. Actions of ovarian steroid hormones. In: Knobil E, Neil JD, Ewing LL, Greenwald GS, Markert CL, Pfaff DW (eds.), The Physiology of Reproduction. New York: Raven Press; 1988: 675-724.
Coello, A., Campos, P., Remohí, J., Meseguer, M., Cobo, A., 2016. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J. Assist. Reprod. Genet. 33, 413–421. https://doi.org/10.1007/s10815-015-0633-9
Colica, C., Aiello, V., Lorenzo, A. De, Abenavoli, L., 2018. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat. Prod. Commun. 13, 1195–1203. https://doi.org/10.1177/1934578X1801300923
Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., Castro-Obregón, S., 2008. Function of reactive oxygen species during animal development: Passive or active? . Dev Biol 320, 1–11.
Cryotech®, 2019. El método Crytech Manual de uso “Para Oocitos y Embriones.” Cutaia, L.E., Bó, G.A., 2007. Cattle embryo production and trade in Argentina. Acta Sci. Vet 35, 931–944.
D’Occhio, M.J., Baruselli, P.S., Campanile, G., 2019. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 125, 277–284. https://doi.org/https://doi.org/10.1016/j.theriogenology.2018.11.010
Dangles, O., 2012. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biologica Significance. Curr. Org. Chem. 16, 697–714. https://doi.org/1875-5348/12 $58.00+.00
De Alba, J., 1985. El criollo lechero en Turrialba. Costa Rica.
De Matos, D. G., Gasparrini, B., Pasqualini, S. R., & Thompson, J. G. 2002. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 57(5), 1443–1451. https://doi.org/10.1016/S0093-691X(02)00643-X
de Matos, D.G., Furnus, C.C., Moses, D.F., 1997. Glutathione Synthesis During in Vitro Maturation of Bovine Oocytes: Role of Cumulus Cells1. Biol. Reprod. 57, 1420–1425. https://doi.org/10.1095/biolreprod57.6.1420
Devine, P.J., Perreault, S.D., Luderer, U., 2012. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86, 27.
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba. Argentina. URL http://www.infostat.com.ar.
Dickinson, B.C., Chang, C.J., 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Bio. 7, 504–511.
Dinnyes, A., Nedambale, T.L., 2009. Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod. Fertil. Dev. 21, 45–59.
du Plessis, S.S., Makker, K., Desai, N.R., Agarwal, A., 2008. Impact of oxidative stress on IVF. Expet Rev Obs. Gynecol 3, 539–554.
Edgar, D.H., Gook, D.A., 2012. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum. Reprod. Update 18, 536–554. https://doi.org/10.1093/humupd/dms016
El-Shahat, K.H., Hammam, A.M., 2014. Effect of different types of cryoprotectants on developmental capacity of vitrified-thawed immature buffalo oocytes. Anim. Reprod. 11, 543–548.
El-Shalofy, A.S., Moawad, A.R., Darwish, G.M., Ismail, S.T., Badawy, A.B.A., Badr, M.R., 2017. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cryobiology 74, 86–92. https://doi.org/10.1016/j.cryobiol.2016.11.010
El Mouatassim, S., Guérin, P., Ménézo, Y., 1999. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 5, 720–725. https://doi.org/10.1093/molehr/5.8.720
Fahy, G.M., Wowk, B., Wu, J., Paynter, S., 2004. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35.
Fahy, G.M., Macfarlane, D.R., Angell, C.A., Meryman, H.T., 1984. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426.
Fan, Z., Yang, M., Regouski, M., Polejaeva, I.A., 2017. Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Rumin. Resveratrol. 147, 106–114. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.12.041
Fang, C., Wei, X., Zhang, Z., Li, X., Zhang, X., 2017. Effects of Vitrified Cryopreservation on GSH Content and Mitochondrial ATPase Activity in Oocytes of Zebrafish. Fish. Sci. 36, 773–777.
FAO, 2012. Cryconservation of animal genetic resources. Food Agric. Organ. United Nations Section 7, 85–94.
Ferre, L., Cattaneo, L., 2013. Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet. 94, 28–36.
Finkel, T., Deng, C.-X., Mostoslavsky, R., 2009. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591. https://doi.org/10.1038/nature08197
Formigari, A., Irato, P., Santon, A., 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146, 443–459.
Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. 2009. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009 Feb-Apr;30(1-2):86-98. doi: 10.1016/j.mam.2008.08.009.
Fujii, J., Iuchi, Y., Okada, F., 2005. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3, 43.
Fujikawa, T., Gen, Y., Hyon, S.-H., Kubota, C., 2018. 22 Vitrification of bovine embryo using antifreeze polyamino acid. Reprod. Fertil. Dev. 31, 137–137.
Fukai, T., Ushio Fukai, M., 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 15, 1583–1606.
Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., Vina, J., Borras, C., 2015. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 837042. https://doi.org/10.1155/2015/837042
Gambini, J., López, R., Gonzáles, G., Inglés, M., Abdelazid, K., Alami, M., Costa, V., Borrás, C., Viña, J., 2013. Resveratrol: distribución, propiedades y perspectivas. Rev. Esp. Geriatr. Gerontol. 48, 79–88.
Gao, C., Han, H.-B., Tian, X.-Z., Tan, D.-X., Wang, L., Zhou, G.-B., Zhu, S.-E., Liu1, G.-S., 2012. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Resveratrol. 52, 305–311. https://doi.org/10.1111/j.1600-079X.2011.00944.x
Gehm, B.D., McAndrews, J.M., Chien, P.Y., Jameson, J.L., 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist forthe estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 94, 14138–14143.
Giraldo, J.J.G., Oquendo, J.G., Araque, N.V., 2012. Efecto de la Dimetilformamida sobre la viabilidad posvitrificación de embriones bovinos producidos in vitro. Rev. Lasallista Investig. 9, 13–20.
Gomes, A., Fernandes, E., Lima, J. L. F. C, 2006. Use of fluorescence probes for detection of reactive oxygen species: a review. J. Fluoresc. 16, 119–139. doi:10.1007/S10895-005-0030-3
Gonçalves, P.B.D., Visitin, J.A., Oliveira, M.A.L., 2008. Produção in vitro de embriões. Biotécnicas Apl. à reprodução Anim. São Paulo:, 261–301.
Gonçalves, P.B.D., Visintin, J.A., Oliveira, M.A.., Montagner, M.M., Costa, L.F.S., 2001. Produção in vitro de Embriões. Biotecnias Apl. á Reprod. Anim. En: Gonça, 195–226.
Gonzalez, N., Reichenbach, M., Zerbe, H., Scherzer, J., 2019. Comparison of survival rates of vitrified biopsied in vitro-produced bovine blastocysts using the VitTrans- or the Cryotop device..
González, M., Arango, H., 1974. Estudio del ganado criollo "harton" del Valle del Cauca. Acta Agronómica 24, 1–15.
Gospodaryov, L.L.E.-V.I.L.E.-D. V, 2012. The Role of Oxidative Stress in Female Reproduction and Pregnancy. IntechOpen, Rijeka, p. Ch. 14. https://doi.org/10.5772/32515
Goud, A.P., Goud, P.T., Diamond, M.P., Gonik, B., Abu-Soud, H.M., 2008. Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44, 1295–1304. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2007.11.014
Griffith, O.W. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic.Biol. Med. 27(9–10):922–935. [PubMed: 10569625]
Griffith, O.W., Mulcahy, R.T. 1999. The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73:209–267. [PubMed: 10218110]
[PubMed: 10218110] Guemra, S., Monzani, P.S., Santos, E.S., Zanin, R., Ohashi, O.M., Miranda, M.S., Adona, P.R., 2013. In vitro maturation of bovine oocytes in medium supplemented with quercetin, and its effect on embryonic development. Arq. Bras. Med. Veterinária e Zootec. Belo Horiz. 65, 1616–1624.
Guerin, P., El Mouatassim, S., Menezo, Y., 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Updat. 7, 175–189.
Gupta, M.K., Uhm, S.J., Lee, H.T., 2010. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 93, 2602–2607. https://doi.org/10.1016/j.fertnstert.2010.01.043
Gupta, S., Malhotra, N., Sharma, D., Chandra, A., Agarwal, A., 2009. Oxidative stress and its role in female infertility and assisted reproduction: clinical implications. Int J Fertil Steril 2, 147–164.
Gutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., Cetica, P., 2020. Morphological , biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037
Gutnisky, C., Alvarez, G.M., Cetica, P.D., Dalvit, G.C., 2013. Cryobiology Evaluation of the Cryotech Vitrification Kit for bovine embryos. Cryobiology 67, 391–393. https://doi.org/10.1016/j.cryobiol.2013.08.006
Ha, A.N., Lee, S.R., Jeon, J.S., Park, H.S., Lee, S.H., Jin, J.I., Sessions, B.R., Wang, Z., White, K.L., Kong, I.K., 2014a. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology 68, 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007
Ha, A.N., Park, H.S., Jin, J.I., Lee, S.H., Ko, D.H., Lee, D.S., White, K.L., Kong, I.K., 2014b. Postthaw survival of invitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw. Theriogenology 81, 467–473. https://doi.org/10.1016/j.theriogenology.2013.10.024
Habibi, A., Farrokhi, N., Moreira da Silva, F., Bettencourt, B.F., Bruges-Armas, J., Amidi, F., Hosseini, A., 2010. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet 27, 599–604.
Haley, R. M., Zuckerman, S. T., Dakhlallah, H., Capadona, J. R., von Recum, H. A., Ereifej, E. S., 2020. Resveratrol Delivery from Implanted Cyclodextrin Polymers Provides Sustained Antioxidant Effect on Implanted Neural Probes. International journal of molecular sciences, 21(10), 3579. https://doi.org/10.3390/ijms21103579
Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., Iwata, H., 2018. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrifiedwarmed bovine embryos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0204571
Hara H, Yamane I, Noto I, Kagawa N, Kuwayama M, Hirabayashi M & Hochi S. 2014. Microtubule assembly and in vitro development of bovine oocytes with intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote 22 476–482. (doi:10.1017/ S0967199413000105)
Hayashi, T., Kansaku, K., Abe, T., Ueda, S., Iwata, H., 2019. Effects of Resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryopreserved by slow freezing. Anim. Sci. J. 90, 849–856. https://doi.org/10.1111/asj.13219
Hayashi, T., Ueda, S., Mori, M., Baba, T., Abe, T., Iwata, H., 2018. Influence of Resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology 106, 271–278. https://doi.org/10.1016/j.theriogenology.2017.10.022
He, X., Park, E.Y.H., Fowler, A., Yarmush, M.L., Toner, M., 2008. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: A study using murine embryonic stem cells. Cryobiology 56, 223–232.
Hernandez, D., Muñoz, J., Álvarez, L., 2016. Dynamics of Bovine leukosis in creole cattle Hartón del Valle in natural infection. Arch. Zootec. 65, 365–373.
Hernández, D.Y., Muñoz, J.E., Álvarez, L.A., 2015. Diversidad genética del gen BoLA-DRB3 en el ganado criollo colombiano Hartón del Valle. Rev CES Med Zootec 10, 18–30.
Hernández, E.A., Campos, R., Giraldo, L., 2011. Comportamiento metabólico en el periparto de vacas Hartón del Valle, bajo condiciones de trópico bajo. ACTA AGRONÓMICA 60, 13–26.
Hernández, G., 1996. Razas bovinas criollas y colombianas, 4th ed. Unidad de divulgación y prensa Banco Ganadero, Bogotá, Colombia.
Hlavicová, J., Lopatářová, M., Čech, S., 2010. Vliv dvoustupňové vitrifikace na vývojovou kompetenci bovinních embryí získaných in vitro a in vivo. Acta Vet. Brno 79, 55–61. https://doi.org/10.2754/avb201079S9S055
Holm, P., Booth, P.J., Scsmidt, M.H., Greve, T., Callesen, H., 1999. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
Hong, H., Lee, E., Lee, I.H., Lee, S.-R., 2019. Effects of transport stress on physiological responses and milk production in lactating dairy cows. Asian-Australasian J. Anim. Sci. 32, 442–451. https://doi.org/10.5713/ajas.18.0108
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature.; 425: 191-196.
Hussein, M.A., 2011. A convenient mechanism for the free radical scavenging activity of Resveratrol. Int. J. Phytomed 3, 459–469.
Inoue, F., 2014. Efficiency of a Closed Vitrification System with Oocytes and Blastocysts. Low Temp. Med. 40, 53–59.
Ito, J., Shirasuna, K., Kuwayama, T., Iwata, H., 2020. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology 93, 37–43. https://doi.org/10.1016/j.cryobiol.2020.02.014
Iwasaki, S., Yoshiba, N., Ushijima, H., Watanabe, S., & Nakahara, T. (1990). Morphology and proportion of inner cell mass of bovine blastocysts fertilized in vitro and in vivo. Journal of Reproduction and Fertility, 90, 279-284.
Izaguirre, E., 2012. Adaptación de un método de vitrificación-Calentamiento en fibreplug para la transferencia directa de blastocistos bovinos producidos in vitro.
Izquierdo, A., Eulogio, J., Liera, G., Mancera, A.V., Olivares Pérez, J., Arroyo, G.C., De Lourdes, M., Mosaqueda, J., Félix, J., Gutiérrez, P., 2015. Congelación De Embriones Bovinos. Rev. Complut. Ciencias Vet. 9, 22–40. https://doi.org/10.5209/rev_RCCV.2015.v9.n2.51041
Jana, S.K., K, N.B., Chattopadhyay, R., Chakravarty, B., Chaudhury, K., 2010. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod. Toxicol. 29, 447–451. https://doi.org/https://doi.org/10.1016/j.reprotox.2010.04.002
Jang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R., Han, J., 2017. Cryopreservation and its clinical applications. Integr. Med. Resveratrol. 6, 12–18. https://doi.org/10.1016/j.imr.2016.12.001
Jaramillo, N., Arzuaga, J.M., Giraldo, J.J., Vásquez, N.A., 2019. Parámetros metabólicos, antioxidantes y competencia para el desarrollo embrionario de ovocitos bovinos madurados in vitro con L-Carnitina. Rev. Investig. Vet. del Perú 30, 265–275. https://doi.org/10.15381/rivep.v30i1.15703
Jeandet, P., Delaunois, B., Aziz, A., Donnez, D., Vasserot, Y., Cordelier, S., Courot, E., 2012. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, Resveratrol. J Biomed Biotechnol 2012: 579089.
Jiang, W., Li, Y., Zhao, Y., Gao, Q., Jin, Q., Yan, C., Xu, Y., 2020. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology 143, 64–73. https://doi.org/10.1016/j.theriogenology.2019.11.036
Jin, B., Mazur, P., 2015. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci Rep 5, 9271. https://doi.org/10.1038/srep09271
Juliarena, M.A., Poli, M., Ceriani, C., Sala, L., Rodriguez, E., Gutierrez, E., Dolcini, G. et al., 2009. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J Dairy Sci. 92(1): 375-381.
Khazaei, M., Ph, D., Aghaz, F., Sc, M., 2017. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes 11, 63–70. https://doi.org/10.22074/ijfs.2017.4995.Introduction
Khosla, K., Zhan, L., Bhati, A., Carley-Clopton, A., Hagedorn, M., & Bischof, J., 2019. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir : the ACS journal of surfaces and colloids, 35(23), 7364–7375. https://doi.org/10.1021/acs.langmuir.8b03011
Kim, Y.M., Uhm, S.J., Gupta, M.K., Yang, J.S., Lim, J.G., Das, Z.C., Heo, Y.T., Chung, H.J., Kong, I.K., Kim, N.H., Lee, H.T., Ko, D.H., 2012. Successful vitrification of bovine blastocysts on paper container. Theriogenology 78, 1085–1093. https://doi.org/10.1016/j.theriogenology.2012.05.004
King, N., Korolchuk, S., McGivan, J.D., Suleiman, M.-S., 2004. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. J. Pharmacol. Toxicol. Methods 50, 215–222. https://doi.org/https://doi.org/10.1016/j.vascn.2004.05.003
Kitazato®, 2020. Vitrification Cryotop®. Kitazato Corp.
Kobayashi, T., Miyazaki, T., Natori, M., Nozawa, S., 1991. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod 6, 987–991.
Kondo, S., Imai, K., Dochi, O., 2014. 44 The effect of sucrose concentration for single-step dilution on the viability of cryotop-vitrified in vitro-produced bovine embryos. Reprod. Fertil. Dev. 27, 115–115.
Kordowitzki, P., Bernal, S.M., Herrmann, D., Aldag, P., Niemann, H., 2017. 198 Resveratrol supplementation during in vitro maturation and fertilisation enhances developmental competence of bovine oocytes. Reprod. Fertil. Dev. 28, 230–230. https://doi.org/https://doi.org/10.1071/RDv28n2Ab198
Krisher, R.L., Prather, R.S., 2012. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
Kumar, R., Kaur, K., Uppal, S., Mehta, S.K., 2017. Ultrasound processed nanoemulsion: A comparative approach between Resveratrol and Resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrason. Sonochem. 37, 478–489. https://doi.org/https://doi.org/10.1016/j.ultsonch.2017.02.004
Kundu JK, Surh YJ. 2008. Cancer chemopreventive and therapeutic potential of Resveratrol: mechanistic perspectives. Cancer Lett. 269: 243-261.
Kuwajerwala, N., Cifuentes, E., Gautam, S., Menon, M., Barrack, E.R., Reddy,G.P., 2002. Resveratrol induces prostate cancer cell entry into s phaseand inhibits DNA synthesis. Cancer Res. 62 (9), 2488–2492.
Kwak, S., Cheong, S., Jeon, Y., Lee, E., Choi, K., 2012. The effectsof Resveratrol on porcine oocyte in vitro maturation and subsequentembryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86–101.
Lafleur, M. V, Hoorweg, J. J., Joenje, H., Westmijze, E. J., & Retèl, J., 1994. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radical Research, 21(1), 9–17. http://www.ncbi.nlm.nih.gov/pubmed/7951911
Lampiao, F., 2012. Free radicals generation in an in vitro fertilization setting and how to minimize them. World J Obs. Gynecol 1, 29–34.
Lawson, A., Ahmad, H., Sambanis, A., 2011. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology 62.
Ledda, S., Kelly, J.M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., Arav, A., 2019. High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. J. Anim. Sci. Biotechnol. 10, 90. https://doi.org/10.1186/s40104-019-0390-1
Ledda, S., Kelly, J.M., Walker, S.K., Natan, Y., Arav, A., 2018. 47 A New Device and Method for Successful Vitrification of In Vitro-Produced Ovine Embryos. Reprod. Fertil. Dev. 30, 163.
Lee, S., Jung, E., Ho, J., Jin, S., Song, K., Chun, B., 2015. Sequential treatment with Resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology xxx, 1–10. https://doi.org/10.1016/j.theriogenology.2015.02.021
Lee, M.H., Thomas, J., Wang, H.Y., Chang, C.C., Lin, C.C., Lin, H.Y., 2012. Extraction of Resveratrol from polygonum cuspidatum with magnetic orcinol-imprinted poly(ethylene-co-vinyl alcohol) composite particles and their in vitro suppression of human osteogenic sarcoma (HOS) cell line. J Mater Chem 22, 24644–24651.
Lee, K., Wang, C., Chaille, J.M., Machaty, Z., 2010. Effect of Resveratrol onthe development of porcine embryos produced in vitro. J. Reprod. Dev.56 (3), 330–335.
Lee, I., Cao, L., Mostoslavsky, R., Lombard, D., Liu, J., Bruns, N., Al., E., 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105, 3374–3379. https://doi.org/https://doi. org/10.1073/pnas.0712145105
Lee, J.A., Parrett, B.M., Conejero, J.A., Laser, J., Chen, J., Kogon, A.J., Al., E., 2003. Biological alchemy: engineering bone and fat from fat derived stem cells. Ann Plast Surg 50, 610–7.
Len, J.S., Koh, W.S.D., Tan, S.X., 2019. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 39. https://doi.org/10.1042/BSR20191601
Leopoldini, M., Marino, T., Russo, N., Marirosa, T., 2004. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 108, 4916–4922. https://doi.org/10.1021/jp037247d CCC: $27.50
Lestari, S.W., Ilato, K.F., Pratama, M.I.A., Fitriyah, N.N., Pangestu, M., Pratama, G., Margiana, R., 2018. Sucrose ‘Versus’ Trehalose Cryoprotectant Modification in Oocyte Vitrification : A Study of Embryo Development. Biomed. Pharmacol. J. 11, 97–104. https://doi.org/10.13005/bpj/1351
Li, B., He, X., Zhuang, M., Niu, B., Wu, C., Mu, H., Al., E., 2018. Melatonin ameliorates busulfan- induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxid. Redox Signal 28, 385–400.
Li, D., Liu, Q., Gong, Y., Huang, Y., Han, X., 2009. Cytotoxicity and oxidative stress study in cultured rat Sertoli cells with methyl tert-butyl ether (MTBE) exposure. Reprod. Toxicol. 27, 170–176. https://doi.org/10.1016/j.reprotox.2008.12.004
Li, D., Yin, D., Han, X., 2007. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells. J. Appl. Toxicol. 27, 10–17. https://doi.org/10.1002/jat.1178
Liang, S., Yuan, B., Jin, Y.-X., Zhang, J.-B., Bang, J.K., Kim, N.-H., 2017. Effects of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the in vitro developmental capacity of expanded bovine blastocysts. Reprod. Fertil. Dev. 29, 2140–2148.
Liebermann, J., Dietl, J., Vanderzwalmen, P., Tucker, M., 2003. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7, 623–633.
Liu, F., Lai, S., Tong, H., Lakey, P.S.J., Shiraiwa, M., Weller, M.G., Al., E., 2017. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 409, 2411–2420.
Liu, M., Yin, Y., Ye, X., Zeng, M., Zhao, Q., Keefe, D.L., Liu, L., 2013. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 28, 707–717. https://doi.org/10.1093/humrep/des437
Lobo, R.A., 1995. Benefits and risks of estrogen replacement therapy. Am.J. Obstet. Gynecol. 173, 982–989.
Longobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., Puzio, M.V., Neglia, G., Gasparrini, B., 2017. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 88, 1–8. https://doi.org/10.1016/j.theriogenology.2016.09.046
Loren, P., Sánchez, R., Arias, M.E., Felmer, R., Risopatrón, J., Cheuquemán, C., 2017. Melatonin scavenger properties against oxidative and nitrosative stress: Impact on gamete handling and in vitro embryo production in humans and other mammals. int J Mol Sci 18, 1–17.
Luster, S.M., 2004. Cryopreservation of bovine and caprine oocytes by vitrificaction. Interdepartamental Progr. Anim. Sci.
Lykkesfeldt, J., Svendsen, O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. Journal, London 173, 502–511.
Maddipati, K.R., Marnett, L.J., 1987. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J. Biol. Chem. 262, 17398–17403. https://doi.org/https://doi.org/10.1016/S0021-9258(18)45392-6
Madeira, E.M., Mion, B., Silva, J.F., Pegoraro, L.M.C., Vieira, A.D., Lucia Jr, T., 2015. Use of ethyleneglycol monomethyl ether as cryoprotectant in vitrification of IVP bovine embryos. Anim. Reprod. 12, 847–847.
Madrid, S., López, A., Restrepo, G., Urrego, R., Julián, J., Zuluaga, E., 2019a. Supplementation with Resveratrol during culture improves the quality of in vitro produced bovine embryos. Livest. Sci. 221, 139–143. https://doi.org/10.1016/j.livsci.2019.01.025
Madrid, S., López, A.H., Urrego, R., Restrepo, G.B., Echeverri, J.J., 2019b. Effect of Resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology 89, 42–50.
Madrid, S.G., A.B., M., López, A.H., Restrepo, G.B., Urrego, R.Á., Echeverri, J.Z., Cética, P., 2018. Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reprod. Fertil. Dev. 31, 521–528.
Maleki, E.M., Eimani, H., Bigdeli, M.R., Ebrahimi, B., Shahverdi, A.H., Narenji, A.G., Abedi, R., 2014. A comparative study of saffron aqueous extract and its active ingredient, crocin on the in vitro maturation, in vitro fertilization, and in vitro culture of mouse oocytes. Taiwan. J. Obstet. Gynecol. 53, 21–25.
Manjunatha, B.M., Gupta, P.S.P., Ravindra, J.P., Devaraj, M., Nandi, S., 2008. In vitro embryo development and blastocyst hatching rates following vitrification of river buffalo embryos produced from oocytes recovered from slaughterhouse ovaries or live animals by ovum pick-up. Anim. Reprod. Sci. 104, 419–426. https://doi.org/https://doi.org/10.1016/j.anireprosci.2007.06.030
Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., Vicente, J.S., 2016. Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method 11, e0148661. https://doi.org/https://doi.org/10.1371/journal.pone.0148661
Mariaca, C.J., Zapata, M., Uribe, P., 2016. Oxidación y antioxidantes: hechos y controversias. Rev. la Asoc. Colomb. Dermatología y Cirugía Dermatológica 24, 162–173. https://doi.org/10.29176/2590843x.292
Marques, C.C., Santos-Silva, C., Rodrigues, C., Matos, J.E., Moura, T., Baptista, M.C., Horta, A.E.M., Bessa, R.J.B., Alves, S.P., Soveral, G., Pereira, R.M.L.N., 2018. Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media. Cryobiology 81, 4–11. https://doi.org/10.1016/j.cryobiol.2018.03.003
Marsico, T., de Camargo, J., Valente, R., & Sudano, M., 2019. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 16. 423-439. 10.21451/1984-3143-AR2019-0072.
Martín-Romero, F.J., Miguel-Lasobras, E.M., Domínguez-Arroyo, J.A., González-Carrera, E., Álvarez, I.S., 2008. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online 17, 652–661. https://doi.org/https://doi.org/10.1016/S1472-6483(10)60312-4
Martínez, R., Ávila, O., Pérez, J., Gallego, J., Onofre, H., 2005a. Estructura y función del banco de germoplasma in vitro en Colombia. Arch. Zootec. 54, 545–550.
Martínez, R., Toro, T., Montoya, F., Burbano, M., Tobón, J., Ariza, F. 2005b. Caracterización del locus BoLA-DRB3 en ganado criollo colombiano y asociación con resistencia a enfermedades. Arch Zootec. 54(206-207): 349-356.
Martínez, G., 2004a. Poblaciones actuales y estrategicas para la conservación de los bovinos criollos colombianos. II Foro Nac. las razas Bov. criollas y Colomb. 2, 112–127.
Martínez, G., 2004b. Razas bovinas criollas y colombianas, primera ed. ed. Corpoica C.I. La libertad, Villavicencio.
Martínez, G.C., 1999. Censo y caracterización de los sistemas de producción del ganado criollo y colombia.
Matos, L., Stevenson, D., Gomes, F., Silva-Carvalho, J.L., Almeida, H., 2009. Superoxide dismutase expression in human cumulus oophorus cells. Mol. Hum. Reprod. 15, 411–419. https://doi.org/10.1093/molehr/gap034
McCormack, D., McFadden, D., 2013. A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longe 2013, 575482.
Mehaisen, G.M.K., Saeed, A.M., Gad, A., Abass, A.O., Arafa, M., El-Sayed, A., 2015. Antioxidant Capacity of melatonin on preimplantation development of fresh and vitrified rabbit embryos: Morphological and molecular aspects. Fraidenraich D, Ed. PLoS One 10, e0139814.
Mendes, T.B., Paccola, C.C., De Oliveira Neves, F.M., Simas, J.N., Da Costa Vaz, A., Cabral, R.E.L., Vendramini, V., Miraglia, S.M., 2016. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty. Reproduction 152, 23–35. https://doi.org/10.1530/REP-16-0025
Menéndez-Blanco, I., Soto-Heras, S., Catalá, M.G., Piras, A.-R., Izquierdo, D., Paramio, M.-T., 2020. Effect of vitrification of in vitro matured prepubertal goat oocytes on embryo development after parthenogenic activation and intracytoplasmic sperm injection. Cryobiology 93, 56–61. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.02.011
Merton, J.S., Knijn, H.M., Flapper, H., Dotinga, F., Roelen, B.A.J., Vos, P.L.A.M., Mullaart, E., 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology 80, 365–371. https://doi.org/https://doi.org/10.1016/j.theriogenology.2013.04.025
Michan, S., Sinclair, D., 2007. Sirtuins in mammals: insights into their biological function. Biochem J 404, 1–13.
Middleton Jr, E., Kandaswami, C., Theoharides, T.C., 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation. Hear. Dis. cancer, Pharmacol. Rev. 52, 673–839.
Mohana Kumar B, Song HJ, Cho SK, Balasubramanian S, Choe SY, Rho GJ., 2007. Effect of histone acetylation modification with sodium butyrate, a histone deacetylase inhibitor, on cell cycle, apoptosis, ploidy and gene expression in porcine fetal fibroblasts. J Reprod Dev.; 53: 903-913.
Momozawa, K., Matsuzawa, A., Tokunaga, Y., Ohi, N., Harada, M., 2019. A new vitrification device that absorbs excess vitrification solution adaptable to a closed system for the cryopreservation of mouse embryos. Cryobiology 88, 9–14. https://doi.org/10.1016/j.cryobiol.2019.04.008
Morado, S., Cetica, P., Beconi, M., Thompson, J.G., Dalvit, G., 2013. Reactive oxygen species production and redox state in parthenogenetic and spem-mediated bovine oocyte activation. Reproduction 145, 471–478.
Morado, S.A., Cetica, P.D., Beconi, M.T., Dalvit, G.C., 2009. Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fert. Dev. 21, 608–614.
Moreno, F., Derr, J.N., Bermúdez G., N., Ossa L., J., Estrada L, L., Scott, D., Bedoya B., G., Carvajal, L.G., Zuluaga, F.N., Berdugo, J., Barrera, J., Ruíz Linares, A., 2001. Diversidad genética y relaciones filogenéticas del ganado criollo colombiano. Corpoica Cienc. y Tecnol. Agropecu. 3, 17. https://doi.org/10.21930/rcta.vol3_num2_art:183
Mori, C., Yabuuchi, A., Ezoe, K., Murata, N., Takayama, Y., Okimura, T., Uchiyama, K., Takakura, K., Abe, H., Wada, K., Okuno, T., Kobayashi, T., Kato, K., 2015. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod. Biomed. Online 30, 613–621. https://doi.org/10.1016/j.rbmo.2015.02.004
Moulavi, F., Soto-Rodriguez, S., Kuwayama, M., Asadi-Moghaddam, B., Hosseini, S.M., 2019. Survival, re-expansion, and pregnancy outcome following vitrification of dromedary camel cloned blastocysts: A possible role of vitrification in improving clone pregnancy rate by weeding out poor competent embryos. Cryobiology. 2019 Oct;90:75-82. doi: 10.1016/j.cryobiol.2019.08.002
Moussa, M., Shu, J., Zhang, X.H., Zeng, F., 2015. Maternal control of oocyte quality in cattle “a review.” Anim. Reprod. Sci. 155, 11–27. https://doi.org/10.1016/j.anireprosci.2015.01.011
Mukherjee, A., Malik, H., Saha, A.P., Dubey, A., Singhal, D.K., Boateng, S., Saugandhika, S., Kumar, S., De, S., Guha, S.K., Malakar, D., 2014. Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J. Assist. Reprod. Genet. 31, 229–239. https://doi.org/10.1007/s10815-013-0116-9
Mullaart, E., Verbrugge, A., Aerts, B., Merton, J.S., 1999. Optimization of OPU procedure, in: Proceedings of the 15th Scientific Meeting of European Embryo Transfer Association. pp. 10–11.
Mumbengegwi, D.R., Li, Q., Li, C., Bear, C.E., Engelhardt, J.F., 2008. Evidence for a superoxide permeability pathway in endosomal membranes. Mol. Cell Biol. 28, 3700–3712.
Nakamura, B., Fielder, T., Hoang, Y., Lim, J., Al, E., 2011. Lack of maternal glutamate cysteine ligase modifer subunit (Gclm) decreases oocyte glutathione concentrationes and disrupts preimplantation development in mice. Endocrinology 152, 2806–2815.
Nohalez, A., Martinez, C.A., Parrilla, I., Roca, J., Gil, M.A., Rodriguez-, H., Martinez, E.A., Cuello, C., 2018. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 113, 113–119.
Núñez, R., Ramírez, R., Saavedra, L.A., García, J.G., 2016. La adaptabilidad de los recursos zoogenéticos Criollos, base para enfrentar los desafíos de la producción animal. Arch. Zootec. 65, 461–468.
Onofre, G., Parra, J., Martínez, R., Cassalett, E., Velásquez, H., 2015. Productive Potential and Milk Quality of Native Cattle Breeds - Blanco Orejinegro, Hartón Del Valle and Sanmartinero in the Piedmont Plains of Colombia. Actas Iberoam. Conserv. Anim. 5, 15–17.
Ossa, G.S., 2004. Influencia de factores genéticos y ambientales en caracteres productivos de la raza criolla Romosinuana. Universidad Agraria de la Habana-Cuba.
Ourique, G.M., Finamor, I.A., Saccol, E.M.H., Riffel, A.P.K., Pês, T.S., Al., E., 2013. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. reprod toxicol 37, 31–39.
Panei, C., Suzuki, K., Echeverria, M., Serena, M., Metz, G., Gonzales, E., 2009. Association of BoLA-DRB3.2 alleles with resistance and susceptibility to persistent lymphocytosis in BLV infected Cattle Argentina. Int J Dairy Sci. 4(3): 123-128.
Pangeni, R., Sahni, J.K., Ali, J., Sharma, S., Baboota, S., 2014. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11.
Papuc, C., Goran, G.V., Predescu, C.N., Nicorescu, V., Stefan, G., 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16, 1243–1268.
Park, S.P., Kim, E.Y., Kim, D.I., Park, N.H., Won, Y.S., Yoon, S.H., Chung, K.S., Lim, J.H., 1999. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids. Hum. Reprod. 14, 2838–2843. https://doi.org/10.1093/humrep/14.11.2838
Parris, J., 2014. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81, 67–73.
Pastore, A.G., Federici, E., Bertini, F., Piemonte, 2003. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333, 19–39.
Pereira, B.A., Zangeronimo, M.G., Castillo-Martín, M., Gadani, B., Chaves, B.R., Rodríguez-Gil, J.E., Bonet, S., Yeste, M., 2019. Supplementing Maturation Medium With Insulin Growth Factor I and Vitrification-Warming Solutions With Reduced Glutathione Enhances Survival Rates and Development Ability of in vitro Matured Vitrified-Warmed Pig Oocytes. Front. Physiol. 9, 1–13. https://doi.org/10.3389/fphys.2018.01894
Pervaiz, S., Holme, A.L., 2009. Resveratrol: Its biologic targets and functional activity. Antioxidants & Redox Signaling 11, 2851–2897.
Phillips, P., Jahnke, M., 2016. Embryo Transfer (Techniques, donors, and recipients). Vet. Clin. North Am. Food Anim. Pract. 32, 365–385.
Pinzón, M.E., 1984. Historia de la ganadería bovina en Colombia. Supl. Ganad. Banco Ganad. 4, 208.
Pinzón, M.E., 1991. Historia de Colombia. Supl. Ganad. 8, 1.
Piras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., Paramio, M.T., Bogliolo, L., 2020. Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4 °C in the domestic cat model. Theriogenology 144, 152–157. https://doi.org/10.1016/j.theriogenology.2020.01.009
Piras, A.R., 2019. Resveratrol Supplementation During In Vitro Maturation: Effect On The Quality Of Oocytes In Species Of Veterinary Interest. UNIVERSITAT AUTÒNOMA DE BARCELONA FACULTAT DE VETERINÀRIA.
Piras, A.R., Menéndez, I., Soto-Heras, S., Catalá, M.G., Izquierdo, D., Bogliolo, L., Paramio, M.T., 2019. Resveratrol supplementation during in vitro maturation improves embryo development of prepubertal goat oocytes selected by brilliant cresyl blue staining. J. Reprod. Dev. 65, 113–120. https://doi.org/10.1262/jrd.2018-077
Pirola, L., Fröjdö, S., 2008. Resveratrol: one molecule, many targets. IUBMB Life 60, 323–332.
Pontes, J.H.F., Melo Sterza, F.A., Basso, A.C., Ferreira, C.R., Sanches, B. V., Rubin, K.C.P., Seneda, M.M., 2011. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 75, 1640–1646. https://doi.org/10.1016/j.theriogenology.2010.12.026
Prasad, S., Tiwari, M., Pandey, A.N., Shrivastav, T.G., Chaube, S.K., 2016. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 23, 19–23. https://doi.org/10.1186/s12929-016-0253-4
Presicce, G.A., Neglia, G., Salzano, A., Padalino, B., Longobardi, V., Vecchio, D., De Carlo, E., Gasparrini, B., 2020. Efficacy of repeated ovum pick-up in Podolic cattle for preservation strategies: a pilot study. Ital. J. Anim. Sci. 19, 31–40. https://doi.org/10.1080/1828051X.2019.1684213
Price, N.L., Gomes, A.P., Ling, A.J.Y., Duarte, F.V., Martin-Montalvo, A., North, B.J., Al., E., 2012. SIRT1 is required for AMPK activation and the beneficial effects of Resveratrol on mitochondrial function. Cell Metab 15, 675–690.
Punyawai, K., Anakkul, N., Srirattana, K., Aikawa, Y., Sangsritavong, S., Nagai, T., Imai, K., Parnpai, R., 2015. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 61, 431–437. https://doi.org/10.1262/jrd.2014-163
Quintero, D., Ospina, S., 2017. Avances en la caracterización de la producción láctea y el crecimiento antes del destete en el banco de germoplasma de la raza criolla Hartón del Valle en el C.I Palmira (CORPOICA). Rev. Colomb. Zootec. RCZ 3, 38–44.
Quispe, C., G., E.A., A., J.S., P., I.U., S., E.M., 2018. Capacidad de desarrollo embrionario de ovocitos de bovino recuperados vía ultrasonografía y de ovarios de matadero. Rev. Investig. Vet. del Perú 29. https://doi.org/10.15381/rivep.v29i4.14418
Rakhit, M., Gokul, S.R., Agarwal, A., Plessis, S.S., 2013. Antioxidant Strategies to Overcome OS in IVF-Embryo Transfer 237–262. https://doi.org/10.1007/978-1-62703-041-0
Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at K196 8C by vitrification. Nature 313, 573–575.
Rastislav, M., Mangesh, B., 2012. BoLA-DRB3 exon 2 mutations associated with paratuberculosis in cattle. Vet J. 192(3): 517-519.
Restrepo, G., Gómez, J., Vasquez, N., 2011. Evaluación de la superestimulación ovárica y la calidad morfológica de occitos bovinos obtenidos por aspiración folicular. Rev. Politécnica 7, 16–21. https://doi.org/10.22507/jals.v6n1a2
Richter C., 1987. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids. 44:175e89. https://doi.org/10.1016/0009-3084(87) 90049-1.
Rimando, A., Kalt, W., Magee, J., Dewey, J., Ballington, J., 2004. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52, 4713–4719.
Rios, G.L., Mucci, N.C., Kaiser, G.G., Alberio, R.H., 2010. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos. Anim. Reprod. Sci. 118, 19–24. https://doi.org/10.1016/j.anireprosci.2009.06.015
Rodrigues-Cunha, M., Mesquita, L., Bressan, F., Collado, M., Balierio, J., Schwarz, K., Al, E., 2016. Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress and subsequent embryo development. Theriogenology 86, 1685–1694.
Rodrigues, J.P., Paraguassú-Braga, F.H., Carvalho, L., Abdelhay, E., Bouzas, L.F., Porto, L.C., 2008. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56, 144–151. https://doi.org/10.1016/j.cryobiol.2008.01.003
Rodriguez-Martinez, H., 2012. Assisted Reproductive Techniques for Cattle Breeding in Developing Coun- tries: A Critical Appraisal of Their Value and Limitations. Reprod. Domest. Anim. 47, 21–26.
Rodríguez, P., Jiménez, C., 2011. Criopreservación de embriones bovinos producidos 58, 107–119.
Rosero, J.A., Álvarez, L.A., Muñoz, J.E., Durán, C. V., Rodas, A.G., 2012. Allelic frequency of the Kap- pa–Casein gene in Colombian breeds. Rev Colomb Cienc Pecu 25, 173–182.
Rosero, J.A., Álvarez, L.A., Muñoz, J.E. (2011). Polimorfismo genético de beta-lactoglobulina y alphalactoalbúmina en el ganado criollo colombiano, mediante PCR-SSCP. Acta Agronómica, 60 (4), 339-346.
Roth, Z., 2017. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu. Rev. Anim. Biosci. 5, 151–170. https://doi.org/10.1146/annurev-animal-022516-022849
Rubiolo, J.A., Mithieux, G., Vega, F.V., Rubiolo, J.A., Mithieux, G., Vega, F.V., 2008. Resveratrol protects primary rat hepatocytes against oxidative stress damage:. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes,. Eur. J. Pharmacol 591, 66–72. https://doi.org/https://doi.org/10.1016/j.ejphar.
Ruiz, L., 2010. Determinación de la variabilidad genética en subpoblaciones comerciales de ganado criollo colombiano de raza romosinuano mediante marcadores moleculares tipo microsatélite. Pontificia Universidad Javeriana.
Saavedra, G.D., 2018. Conservación seminal en toros Cebú. Efecto de la retirada del plasma seminal y su posterior incorporación sobre la calidad espermática en los protocolos de criopreservación. UNIVERSIDAD DE ZARAGOZA.
Salazar, J.J., Cardozo, A., 1977. Conservación, mejoramiento y utilización de los recursos genéticos del bovino criollo. TOA 129.
Sales, J.N.S., Iguma, L.T., Batista, R.I.T.P., Quintão, C.C.R., Gama, M.A.S., Freitas, C., Pereira, M.M., Camargo, L.S.A., Viana, J.H.M., Souza, J.C., Baruselli, P.S., 2015. Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J. Dairy Sci. 98, 3086–3099. https://doi.org/10.3168/jds.2014-8858
Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., Zicarelli, L., Gasparrini, B., 2014. Effect of Resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim. Reprod. Sci. 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018
Sanchéz, C., 2005. Estudio Citogenético en Bovinos Criollos Colombianos. [tesis Maest. Universidad Nacional de Colombia.
Santos, M.V. de O., Borges, A.A., De, L.B., Neta, Q., Bertini, L.M., Pereira, A.F., 2018. Use of natural antioxidants in in vitro mammalian embryo production. Ciências Agrárias, Londrina 39, 431–444. https://doi.org/10.5433/1679-0359.2018v39n1p431
Saraiva, H.F.R.A., Batista, R.I.T.P., Alfradique, V.A.P., Pinto, P.H.N., Ribeiro, L.S., Oliveira, C.S., Souza-fabjan, J.M.G., Camargo, L.S.A., Fonseca, J.F., Brand, F.Z., 2018. L-carnitine supplementation during vitrification or warming of in vivo - produced ovine embryos does not affect embryonic survival rates , but alters CrAT and PRDX1 expression. Theriogenology 105, 150–157. https://doi.org/10.1016/j.theriogenology.2017.09.022
Saraswat, S., Kindal, S.K., Kharche, S.D., 2016. Antioxidant and spermatozoa: a complex story. Indian J. Anim. Sci. 86, 495–501.
Sayin O, Arslan N, Guner G., 2012. The protective effects of Resveratrol on human coronary artery endothelial cell damage induced by hydrogen peroxide in vitro. Acta Clin Croat. Jun;51(2):227-35. PMID: 23115947.
Seidel, G.E., 2010. Methods and comparative aspects of embryo cryopreservation in domestic animals. Equine Vet. J. 21, 77–79.
Seki, S., Mazur, P., 2012. Ultra-rapid warming yields high survival of mouse oocytes cooled to -196°c in dilutions of a standard vitrification solution. PLoS One. 7(4): e36058. doi: 10.1371/journal.pone.0036058.
Seki, S., Mazur, P., 2009. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology. 59 (1), 75-82.
Selivanov, V.A., Votyakova, T. V., Pivtoraiko, V.N., Zeak, J., Sukhomlin, T., Trucco, M., Al., E., 2011. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. Beard DA, Ed. PLoS Comput Biol 31, e1001115.
Shang, L., Zhou, H., Xia, Y., Wang, H., Gao, G., Chen, B., Al., E., 2009. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J Cell Mol Med 13, 4176–4184.
Shaw, J.M., Oranratnachai, A., Trounson, A.O., 2000. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 59–72.
Shi, L.Y., Jin, H., Kim, J., Mohana, K.B., Balasubramanian, S., Choe, S., Rho, G., 2007. Ultra-structural changes and developmental potential of porcine oocytes following vitrification. Anim Reprod Sci 100, 128–140.
Shkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D., Dekel, N., 2011. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A 108, 1462–1467.
Sikka, S.C., 2004. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl 25, 5–18.
Soliman, G.A., 2013. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 5, 2231–2257. https://doi.org/https://doi.org/10.3390/nu5062231
Solís, A., Guerra, R., Sandoya, G., De Armas, R., 2012. Efecto de sincronización de la onda folicular y de la frecuencia de aspiración de folículos en novillas de la raza Brahman. Rev. Electron. Vet. 13, 1–16.
Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N.W., Farhudin, M., Dinnye ́s, A., Nagai, T., Kikuchi, K., 2007. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Somoskoi, B., Martino, N.A., Cardone, R.A., Lacalandra, G.M., Aquila, M.E.D., Cseh, S., 2015. Different chromatin and energy / redox responses of mouse morulae and blastocysts to slow freezing and vitrification. Reprod. Biol. Endocrinol. 13, 1–16. https://doi.org/10.1186/s12958-015-0018-z
Soobrattee, M.A., Neergheen, V.S., Luximon-ramma, A., 2005. Phenolics as potential antioxidant therapeutic agents : Mechanism and actions. Mutat. Resveratrol. 579, 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
Souza, J., Oliveira, C., Lienou, L., Cavalcante, T., Alexandrino, E., Santos, R., Dias, F., 2018. Vitrification of bovine embryos followed by in vitro hatching and expansion. Zygote 26, 99–103.
Souza, J.F., Lienou, L.L., Rodrigues, A.P.R., Alexandrino, E., Cavalcante, T. V., Santos, R.R., Figueiredo, J.R., Dias, F.E.F., 2018. Cryosurvival after exposure of IVF-derived Nellore embryos to different cryoprotectants and exposure times during vitrification. Cryobiology 84, 95–97. https://doi.org/10.1016/j.cryobiol.2018.08.009
Sovernigo, T.C., Adona, P.R., Lopes, F.G., Leal, C.L. V, 2017. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod. Domest. Anim. 52, 561–569. https://doi.org/10.1111/rda.12946
Stroud, B., 2011. The year 2010 worldwide statistics of embryo transfer in domestic farm animals. Embryo Transf. Newsl. 29, 14–24.
Succu, S., Gadau, S.D., Serra, E., Zinellu, A., Carru, C., Porcu, C., Al., E., 2018. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology 2018;. Theriogenolgy 110, 18–26.
Sudano, M.J., Caixeta, E.S., Paschoal, D.M., Martins, A., Machado, R., Buratini, J., Landim-Alvarenga, F.D.C., 2014. Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reprod. Fertil. Dev. 26, 1129–1141.
Szende, B., Tyihák, E., Király-Véghely, Z., 2000. Dose-dependent effect of Resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp. Mol. Med. 32 (2), 88–92.
Tajimi, H., Yamazaki, T., Oike, S., Yoshida, T., Okada, K., Kuwayama, M., Ushijima, H., 2018. Vitrification for bovine embryos with low‐quality grade. Anim Sci J. 89, 1194– 1200. https://doi.org/10.1111/asj.13024
Takahashi, M., 2012. Oxidative Stress and Redox Regulation on In Vitro Development of. J. Reprod. Dev. 58, 1–9.
Takahashi, N., Harada, M., Oi, N., Izumi, G., Momozawa, K., Matsuzawa, A., Tokunaga, Y., Hirata, T., Fujii, T., Osuga, Y., 2020. Preclinical validation of the new vitrification device possessing a feature of absorbing excess vitrification solution for the cryopreservation of human embryos. J. Obstet. Gynaecol. Resveratrol. 46, 302–309. https://doi.org/10.1111/jog.14176
Takaoka, M., 1940. Phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). II. Synthesis of Resveratrol and its derivatives. Proc. Imp. Acad. 16, 405–407.
Takaya, Y., Yan, K.-X., Terashima, K., He, Y.-H., Niwa, M., 2002. Biogenic reactions on stilbene tetramers from Vitaceaeous plants. Tetrahedron 58, 9265–9271.
Takeo, S., Kimura, K., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod. Fertil. Dev. 29, 759–767.
Takeo, S., Sato, D., Kimura, K., Monji, Y., Kuwayama, T., 2014. Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes 60.
Tatone, C., Di Emidio, G., Vitt, i M., Di Carlo, M., Santini, S.J., D’Alessandro, A.M., Falone, S., Amicarelli, F., 2015. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev 2015, 659687.
Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG., 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol. ;26:563e7. https://doi.org/10.3109/09513591003686395.
Thomas, C., Mackey, M.M., Diaz, A.A., Cox, D.P., 2009. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14, 102–108.
Thompson, J.G., McNaughton, C., Gasparrini, B., McGowan, L.T., Tervit, H.R., 2000. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 118, 47–55.
Tiwari, M., Prasad, S., Tripathi, A., Pandey, A.N., Singh, A.K., Shrivastav, T.G., Chaube, S.K., 2016. Involvement of Reactive Oxygen Species in Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. React. Oxyg. Species 1, 110–116.
Tobar, C., Varela, G., 1989. Estudio de las curvas de crecimeinto y lactancia, fertilidad y rentabilidad en la raza Hartón del Valle. Universidad Nacional de Colombia, Sede Palmira.
Torres-Osorio, V., Urrego, R., Echeverri-Zuluaga, J.J., López-Herrera, A., 2019. Oxidative stress and antioxidant use during in vitro mammal embryo production. Review. Rev. mex. cienc. Pecu. 10, 433–459.
Torres, V., Hamdi, V., Millán de la Blanca, M., Urrego, J., Echeverri, J., Sánchez-calabuig, A., López-herrera, D., Rizos, A., Gutiérrez-adán, M.J., 2018. Resveratrol – cyclodextrin complex affects the expression of genes associated with lipid metabolism in bovine in vitro produced embryos. Reprod Dom Anim. 1–9. https://doi.org/10.1111/rda.13175
Torres, V., Muñoz, L., Urrego, R., Echeverry, J., Lopez, A., 2016. 181 Resveratrol during in vitro maturation improves the quality of bovine oocyte and enhances embryonic. Reprod. Fertil. Dev. 29, 199–209.
Trapphoff T, Heiligentag M, Simon J, Staubach N, Seidel T, Otte K, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U., 2016. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol Hum Reprod., Dec;22(12):867-881. doi: 10.1093/molehr/gaw059.
Tripathi, A., Premkumar, K.V., Pandey, A.N., Khatun, S., Mishra, S.K., Shrivastav, T.G., Al., E., 2011. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. eur j pharmacol 667, 419–424.
Tripathi, A., Khatun, S., Pandey, A.N., Mishra, S.K., Chaube, R., Shrivastav, T.G., Chaube, S.K., 2009. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic. Resveratrol. 43, 287–294. https://doi.org/10.1080/10715760802695985
Trujillo, B.E., Valderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.
Truong, V.L., Jun, M., Jeong, W.S., 2018. Role of Resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44, 36–49.
Valderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.
Tsantarliotou, M.P., Sapanidou, V.G., 2018. The importance of antioxidants in sperm quality and in vitro embryo production. J. Vet. Androl. 3, 1–12.
Vajta, G., Holm, P., Kuwayama, M., Booth, P.J., Jacobsen, H., Greve, T., 1998. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51, 53–58.
Valderrama, R.M., 2003. Ganado Hartón del Valle. Razas Criollas y Colombianas Puras. Mem. . Conv. 135. 01 109–118.
Van Houten, B., Woshner, V., Santos, J.H., 2006. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5, 145–152.
Vanderzwalmen, P., Zech, N., Ectors, F., Panagiotidis, Y., Papatheodorou, A., Yannis, P., Al., E., 2015. Vitrification of oocytes and embryos: Finally a recognized technique, but still a source of concern and debate. Vitr. Assist. Reprod. Tucker y L, 23–34.
Vermerris, W., Nicholson, R., 2006. Families of phenolic compounds and means of classification, in: In: Vermerris W, Nicholson R, E. (Ed.), Phenolic Compound Biochemistry. The Netherlands: Springer, pp. 1–34. https://doi.org/DOI: 10.1007/978-1-4020-5164-7_4
Versari, A., Parpinello, G.P., Tornielli, G.B., Ferrarini, R., Giulivo, C., 2001. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J. Agric. Food Chem. 49, 5531–5536.
Viana, J., 2019. 2018 Statistics of embryo production and transfer in domestic farm animals. Embryo Technol. Newsletter-IETS 36, 1–26.
Voelkel, S.A., Hu, Y.X., 1992. Use of ethylene glycol as a cryoprotectant for bovine embryos allowing direct transfer of frozen-thawed embryos to recipient females. Theriogenology 37, 687–697.
von Mengden, L., Klamt, F., Smitz, J., 2020. Redox Biology of Human Cumulus Cells: Basic Concepts, Impact on Oocyte Quality, and Potential Clinical Use. Antioxid. Redox Signal. 32, 522–535. https://doi.org/10.1089/ars.2019.7984
Wang, Y., Zhang, M., Chen, Z., Du, Y., 2018. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. Vitr. Cell. Dev. Biol. - Anim. 430–438. https://doi.org/https://doi.org/10.1007/s11626-018-0262-6
Wang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D., Liu, G., 2014. Beneficial effect of Resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 101, 577–586. https://doi.org/http://dx.doi.org/10.1016/j.fertnstert.2013.10.041
Woods, E.J., Benson, J.D., Agca, Y., Critser, J.K., 2004. Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.
Wowk, B., 2007. How Cryoprotectans Work. Cryonics 28, 3–7.
Wright, J.S., Johnson, E.R., Di Labio, G.A., 2001. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183.
Xia, N., Daiber, A., Förstermann, U., Li, H., 2017. Antioxidant effects of Resveratrol in the cardiovascular system. Br. J. Pharmacol. 174, 1633–1646. https://doi.org/https://doi.org/10.1111/bph.13492
Xiang, Y., Xu, J., Li, L., Lin, X., Chen, X., Zhang, X., Fu, Y., Luo, L., 2012. Calorie restriction increases primordial follicle reserve in mature female chemotherapy-treated rats. Gene 493, 77–82. https://doi.org/https://doi.org/10.1016/j.gene.2011.11.019
Yang, Z., Argenziano, M., Salamone, P. et al., 2016. Preclinical pharmacokinetics comparison between Resveratrol 2-hydroxypropyl-β-cyclodextrin complex and Resveratrol suspension after oral administration. J Incl Phenom Macrocycl Chem 86, 263–271, . https://doi.org/10.1007/s10847-016-0657-5
Yang, H.W., Hwang, K.J., Kwon, H.C., Kim, H.S., Choi, K.W., Oh, K.S., 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 4, 998– 1002.
Yao, J., Geng, L., Huang, R., Peng, W., Chen, X., Jiang, X., Yu, M., Li, M., Huang, Y., Yang, X., 2017. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 154, 197–205. https://doi.org/10.1530/REP-16-0480
Yashiro, I., Tagiri, M., Ogawa, H., Tashima, K., Takashima, S., Hara, H., Hirabayashi, M., Hochi, S., 2015. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with a -tocopherol. Reproduction 149, 347–355. https://doi.org/10.1530/REP-14-0594
Ying C, Hsu WL, Hong WF, Cheng WT, Yang Y., 2000. Estrogen receptor is expressed in pig embryos during preimplantation development. Mol Reprod Dev. 55: 83-88.
Yoon, J., Juhn, K.M., Jung, E.H., Park, H.J., Yoon, S.H., Ko, Y., Hur, C.Y., Lim, J.H., 2020. Effects of Resveratrol, granulocyte-macrophage colony-stimulating factor or dichloroacetic acid in the culture media on embryonic development and pregnancy rates in aged mice. Aging (Albany. NY). 12, 2659–2669. https://doi.org/10.18632/aging.102768
Yoshikawa, T., Takahashi, S., Tanigawa, T., Naito, Y., Ichikawa, H., Takano, H., Al., E., 1991. Investigation into the reactivity between various amino acids and oxygen-derived free radicals by use of the ESR spin trapping method. J. Clin. Biochem. Nutr. 11, 161–169.
You, J., Kim, J., Lim, J., Lee, E., 2010. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74, 777–785. https://doi.org/https://doi.org/10.1016/j.theriogenology.2010.04.002
Youm, J., Ki, S., Chul, B., Hyun, S., 2017. Embryonic survival , development and cryoinjury of repeatedly vitrified mouse preimplantation embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 66–70. https://doi.org/10.1016/j.ejogrb.2017.08.027
Yu, X.L., Deng, W., Liu, F.J., Li, Y.H., Li, X.X., Zhang, Y.L., Zan, L.S., 2010. Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology 73, 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004
Zabihi, A., Shabankareh, H.K., Hajarian, H., Foroutanifar, S., 2019. Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domest. Anim. Endocrinol. 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010
Zhang, L., Xue, X., Yan, J., Yan, L.Y., Jin, X.H., Zhu, X.H., He, Z.Z., Liu, J., Li, R., Qiao, J., 2016. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep26326
Zhao, X., Hao, H., Du, W., Zhao, S., Wang, H., Wang, N., Wang, D., Liu, Y., Qin, T., Zhu, H., 2016. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Resveratrol 60, 132–141.
Zhao, X.-M., Min, J.-T., Du, W.-H., Hao, H.-S., Liu, Y., Qin, T., Wang, D., Zhu, H.-B., 2015. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 23, 525–536. https://doi.org/DOI: 10.1017/S0967199414000161
Zhao, X., Wei-hua, D.U., Dong, W., Hai-sheng, H.A.O., Tong, Q.I.N., Yan, L.I.U., Hua-bin, Z.H.U., 2012. Controlled Freezing and Open-Pulled Straw ( OPS ) Vitrification of In vitro Produced Bovine Blastocysts Following Analysis of ATP Content and Reactive Oxygen Species ( ROS ) Level. J. Integr. Agric. 11, 446–455. https://doi.org/10.1016/S2095-3119(12)60030-6
Zhong, R., Zhou, D., 2013. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. J. Integr. Agric. Beijing 12, 1826–1838.
Zullo, G., Albero, G., Neglia, G., Canditiis, C., Bifulco, G., Campanile, G., Gasparrini, B., 2016. L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos. Theriogenology, New York 85, 688–697.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 141 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Valle del Cauca , Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80380/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80380/3/1114823584.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80380/4/1114823584.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
b03ce24efc170c9d28df7ca88d2220f9
8f3376e79427efa9d73f84f9c8c9d87a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090149328322560
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Osorio, Viviana8a0c9bca367e01ac8a0ea640c8eb7685Campos Gaona, Rómulof8816487732e56dd010acaeeb7d6bfdaEscobar Escobar, Juan Camilod31390ddca75eb31bc73e6f3ef93e089Maturana Mena, Diana MilenaConservación, mejoramiento y utilización del ganado criollo Hartón del Valle y otros recursos genéticos animales en el suroccidente colombiano2021-10-05T03:48:29Z2021-10-05T03:48:29Z2021-07-07https://repositorio.unal.edu.co/handle/unal/80380Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, tablasLa raza Hartón del Valle pertenece al conjunto de razas bovinas criollas colombianas adaptadas a las condiciones del trópico, la cual, ha sido sometida a constantes cruzamientos con razas introducidas, reduciendo la población pura y ubicándola en la categoría de “vulnerable”, es decir, que se está enfrentando a un riesgo de extinción alto. En consecuencia, se buscan alternativas para conservar el material genético de la raza. La criopreservación de embriones se ha convertido en un método altamente utilizado en embriones comerciales, debido a la similitud de supervivencia entre los embriones es frescos y los criopreservados (Shaw et al., 2000). La cualidad más relevante de la criopreservación de embriones, es lograr el almacenamiento en condiciones de bajas temperaturas (-196ºC), tratando de mantener la integridad general del embrión (Rodríguez & Jiménez, 2011). Para lograr esto, es necesario eliminar las dos causas principales de muerte celular asociada con la criopreservación, esto es, la formación de cristales de hielo y las concentraciones letales de solutos, mientras se mantiene la integridad de los orgánulos intracelulares (Edgar & Gook, 2012). La vitrificación es un método ideal para criopreservar oocitos y embriones de mamíferos, debido a las altas tasas de enfriamiento y, el corto tiempo de exposición de las células embrionarias a temperaturas críticas y a los crioprotectores, factores que minimizan los efectos tóxicos y el daño a la membrana de las células embrionarias. Lo anterior, perfila la técnica de vitrificación como una alternativa para criopreservar la variabilidad del material genético bovino, sin embargo, se conoce que tiene algunos efectos nocivos sobre la calidad de los embriones. El objetivo de este estudio fue evaluar el efecto de la suplementación del Resveratrol en los medios de cultivo in vitro (CIV) y de atemperado, sobre el desarrollo embrionario, criotolerancia y estado oxidativo de embriones producidos in vitro. Se realizó un primer estudio utilizando oocitos obtenidos de una planta de faenado, se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Posteriormente, ambos grupos fueron atemperados con Resveratrol 0.5 μM. (C-VR,CRVR) y sin Resveratrol (C-V-: control, CRV-) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión y eclosión. Finalmente, los embriones se sometieron a una doble tinción para medir los niveles de ROS y contenido de GSH intracelular utilizando la sonda 2,7- Diclorodihidrofluoresceina diacetato (H2DCFDA; Invitrogen®) y la sonda 4-clorometil-6,8-difluoro-7-hidroxicumarina (Cell Tracker Blue; CMF2HC; Invitrogen®) respectivamente. El contenido de GSH fue significativamente más alto (p <0.05) en el grupo CRVR en comparación con el grupo control (129.28 ± 8.46% y 100 ± 5.28%, respectivamente). Basados en estos resultados, se realizó un segundo estudio con oocitos obtenidos de aspiración folicular transvaginal guiada por ultrasonografía en hembras Hartón del Valle. Los oocitos se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Consecutivamente, el grupo cultivado sin Resveratrol se atempero sin Resveratrol (C-V-: control) y el grupo cultivado con Resveratrol se atempero con Resveratrol (CRVR) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión, eclosión, niveles de ROS y contenido de GSH intracelular. Los resultados mostraron un efecto significativo (p <0,05) del Resveratrol sobre las tasas de reexpansión y eclosión embrionaria comparado al grupo control (reexpansión: CRVR= 96.43  3.57% y C-V-= 60.91  4.18%; eclosión CRVR= 37.50  12.84% y C-V-= 17.05  8.51%). Además de una reducción significativa de los niveles de ROS (p <0,05) con respecto al control (CRVR= 73.15 ± 6.01% y C-V-= 100 ± 10.55%). En conclusión, la suplementación simultánea de 0.5 μM Resveratrol en el medio de cultivo in vitro y de atemperado de embriones Hartón del Valle, mejora la supervivencia, criotolerancia y el estado oxidativo de los embriones es producidos in vitro (Texto tomado de la fuente).The Hartón del Valle breed belongs to the set of Colombian Creole bovine breeds adapted to tropical conditions, which has been subjected to constant crossbreeding with introduced breeds, reducing the pure population and placing it in the category of "vulnerable", or facinga high risk of extinction. Consequently, alternatives are being sought to conserve the genetic material of the breed. Embryo cryopreservation has become a highly used method in commercial embryos, due to the survival similarity between fresh and cryopreserved embryos (Shaw et al., 2000). The most relevant attribute on embryo cryopreservation is to achieve storage in low temperature conditions (-196ºC), trying to maintain the general integrity of the embryo (Rodríguez & Jiménez, 2011). To achieve this, it is necessary to eliminate the two main causes of cell death associated with cryopreservation, that is, the formation of ice crystals and lethal concentrations of solutes, while maintaining the integrity of the intracellular organelles (Edgar & Gook, 2012). Vitrification is an ideal method to cryopreserve oocytes and mammalian embryos, due to the high cooling rates and the short time of exposure of embryonic cells to critical temperatures and to cryoprotectants, factors that minimize toxic effects and damage to the embryonic cell membrane. The foregoing outlines the vitrification technique as an alternative to cryopreserve the variability of the bovine genetic material, however, it is known to have some harmful effects on the quality of the embryos. The objective of this study was to evaluate the effect of resveratrol supplementation in in vitro culture (IVC) and tempering media on embryonic development, cryotolerance and oxidative state of in vitro produced embryos. A first study was carried out using oocytes obtained from a slaughter plant, they were matured and fertilized in vitro using a standardized process. The presumed zygotes were cultured in SOF medium supplemented with 0.5 μM of Resveratrol (CR) and without Resveratrol (C-). On day 7 post fertilization, blastocyst rates were evaluated and vitrified using the minimum volume method. Later, both groups were warmed with Resveratrol 0.5 μM. (C-VR, CRVR) and without Resveratrol (C-V-: control, CRV-) and were cultured for 48 hours to evaluate the re-expansion and hatching rates. Finally, the embryos were subjected to double staining to measure ROS levels and intracellular GSH content using the 2,7- Dichlorodihydrofluorescein diacetate probe (H2DCFDA; Invitrogen®) and the 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin probe (Cell Tracker Blue; CMF2HC; Invitrogen®), respectively. The GSH content was significantly higher (p <0.05) in the CRVR group compared to the control group (129.28 ± 8.46% and 100 ± 5.28%, respectively). Based on these results, a second study was carried out with oocytes obtained from transvaginal follicular aspiration guided by ultrasound in Hartón del Valle females. The oocytes were matured and fertilized in vitro using a standardized process. The presumed zygotes were cultured in SOF medium supplemented with 0.5 μM of Resveratrol (CR) and without Resveratrol (C-). On day 7 post fertilization, blastocyst rates were evaluated and vitrified using the minimum volume method. Consecutively, the group cultured without Resveratrol was warmed without Resveratrol (C-V-: control) and the group cultured with Resveratrol was warmed with Resveratrol (CRVR) and were cultured for 48 hours to evaluate the re-expansion rates, hatching rates, ROS levels and GSH content. The results showed a significant effect (p <0.05) of Resveratrol on re-expansion and embryo hatching rates compared to the control group (re-expansion: CRVR= 96.43 ± 3.57% y C-V-= 60.91± 4.18%; hatching = CRVR= 37.50 ± 12.84% y C-V-= 17.05 ± 8.51%). In addition to a significant reduction in ROS levels (p <0.05) with respect to the control (CRVR = 73.15 ±6.01% and C-V- = 100 ± 10.55%). In conclusion, the simultaneous supplementation of 0.5 μM Resveratrol in the in vitro culture medium and the warming medium of Hartón del Valle embryos improves survival, cryotolerance and the oxidative state of embryos produced in vitro.MaestríaMagister en Ciencias AgrariasSe realizó un primer estudio utilizando oocitos obtenidos de una planta de faenado, se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Posteriormente, ambos grupos fueron atemperados con Resveratrol 0.5 μM. (C-VR, CRVR) y sin Resveratrol (C-V-: control, CRV-) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión y eclosión. Finalmente, los embriones se sometieron a una doble tinción para medir los niveles de ROS y contenido de GSH intracelular utilizando la sonda 2,7- Diclorodihidrofluoresceina diacetato (H2DCFDA; Invitrogen®) y la sonda 4-clorometil6,8-difluoro-7-hidroxicumarina (Cell Tracker Blue; CMF2HC; Invitrogen®) respectivamente.Producción animal tropicalxiv, 141 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadas::636 - Producción animalRecursos genéticosGenetic resourcesCriopreservaciónCryopreservationDesarrollo embrionarioEmbryonic developmentResveratrolBiotecnologíaBovinos CriollosAtemperadoEstrés OxidativoVitrificaciónEvaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitroEvaluation of the antioxidant effect of Resveratrol on the cryotolerance of bovine embryos of the Hartón del Valle breed produced in vitroTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMValle del Cauca , ColombiaAbdelatty, A.M., Iwaniuk, M.E., Potts, S.B., Gad, A., 2018. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int. J. Vet. Sci. Med. 6, S1–S5. https://doi.org/https://doi.org/10.1016/j.ijvsm.2018.01.005Abe, T., Kawahara-Miki, R., Hara, T., Noguchi, T., Hayashi, T., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by Resveratrol. J. Reprod. Dev. 63, 455–461.Abeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN., 1998. Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev.; 51: 395-401.Agarwal, A., Durairajanayagam, D., du Plessis, S.S., 2014a. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 1–19. https://doi.org/10.1186/1477-7827-12-112Agarwal, A., Virk, G., Ong, C., du Plessis, S.S., 2014b. Effect of oxidative stress on male reproduction. World J Men’s Heal. 32, 1–17.Agarwal, A., Aponte-mellado, A., Premkumar, B.J., Shaman, A., Gupta, S., 2012. The effects of oxidative stress on female reproduction : a review 1–31.Agarwal, A., Gupta, S., Sharma, R.K., 2005. No Title. Reprod Biol Endocrinol 3, 28.Agarwal, A., 2004. Oxidants and antioxidants in human fertility. Middle East Soc Fertil J 9, 187–197.Agarwal, A., Allamaneni, S.S., 2004. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9, 338–347.Agarwal, A., Saleh, R.A., Bedaiwy, M.A., 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79, 829–843.Agarwal, A., Saleh, R.A., 2002. Role of oxidants in male infertility: rationale, significance, and treatment. Urol. Clin. North Am. Philadelphia 29, 817–827.Al Gubory, K.H., Fowler, P.A., Garrel, C., 2010. The role of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol 42, 1634–1650.Almiñana, C., Cuello, C., 2015. What is new in the cryopreservation of embryos? Anim. Reprod. Brazilian Coll. Anim. Reprod. 12, 418–427.Alvarenga, M.A., Fernandes, C.B., Landim-Alvarenga, F.C., 2007. Criopreservation of equine embryos._Acta_Scientiae_Veterinariae._ 35(Supl_3):_799-809. Acta Sci. Vet. 35, 799–809.Alvarez, A., 1999. Potencial Genetico Y Productivo Del Ganado Criollo Harton Del Valle 94–103.Álvarez, L., Vera, V., Cárdena, H., Barreto, G., Muñoz, J., 2011. Assessing the genetic diversity and ancestry of Hartón del Valle cattle using mitochondrial DNA. Rev. Colomb. Ciencias Pecu. 25, 14–26.Ambrogi, M., Dall’Acqua, P.C., Rocha- Frigoni, N., Leao, B., Mingoti, G.Z., 2017. Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: effects on nuclear and cytoplasmic maturation and embryonic development in vitro. Reprod. Domest. Anim. Linköping 52, 409–421.Anzola, H.J., 2005. Criollas Y Colombianas Para El Desarrollo Rural. Arch. Zootec. 54, 141–144.Arav, A., Natan, Y., Kalo, D., Komsky-Elbaz, A., Roth, Z., Levi-Setti, P.E., Leong, M., Patrizio, P., 2018. A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. J. Assist. Reprod. Genet. 35, 1161–1168. https://doi.org/10.1007/s10815-018-1210-9Asamblea de Valle del Cauca, 2017. ORDENANZA No. 451 del 4 de mayo de 2017. Proyecto de Ordenanza No. 013 de abril 18 de 2017, "POR MEDIO DE LA CUAL SE DECLARA PATRIMONIO GENÉTICO, SOCIAL Y ECONÓMICO DEL DEPARTAMENTO DEL VALLE DEL CAUCA LA RAZA CRIOLLA DE GANADO BOVINO “HARTÓN DEL VALLE.”Asocriollo, 2003. Razas Criollas Colombianas Puras. Convenio 135-01.Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., 2009. A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640. https://doi.org/https://doi.org/10.1016/j.foodhyd.2009.01.001Ávila-Portillo, M.U., Madero, J.I., López, C., Fernanda León, M., Acosta, L., Gómez, Claudia, Gabriela Delgado, L., Gómez, Claudio, Manuel Lozano, J., Reguero, M.T., 2006. Revisión de tema FUNDAMENTOS DE CRIOPRESERVACIÓN Basic points in cryopreservation. Rev. Colomb. Obstet. Ginecol. 57, 291–300.Aye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., Courbiere, B., 2010. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: Dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912. https://doi.org/10.1016/j.fct.2010.04.032Bajagai, Y.S., 2013. Multiple Ovulation and Non-Surgical Embryo Transfer in Cattle by Using Intravaginal Controlled Internal Drug Release (CIDR) Progesterone Inserts. Nepal J. Sci. Technol. 14, 15–22. https://doi.org/10.3126/njst.v14i1.8872Bajo, A., Coroleu, L., 2009. Fundamentos de la reproducción. panamericana,España 270–272.Baldoceda, L., Gilbert, I., Gagné, D., Vigneault, C., Blondin, P., Ferreira, C.R., Robert, C., 2016. Breed-specific factors influence embryonic lipid composition: comparison between Jersey and Holstein. Reprod. Fertil. Dev. 28, 1185–1196.Baldoceda, L., Vigneault, C., Gilbert, I., Gagné, D., Blondin, P., Robert, C., 2014. Influence of cattle breed on gene expression and phenotype of Holstein and Jersey embryos. Anim. Reprod. Sci. 149, 100–101. https://doi.org/10.1016/j.anireprosci.2014.06.016Battin, E.E., Brumaghim, J.L., 2009. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55, 1–23.Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 87(4):1620-1624. doi: 10.1073/pnas.87.4.1620. PMID: 2154753Behrman, H.R., Kodaman, P.H., Preston, S.L., Gao, S., 2001. Oxidative stress and the ovary. J Soc Gynecol Investig 8, 40–42.Bhattacharya, S., 2018. Cryoprotectants and Their Usage in Cryopreservation Process, in: Biomedical and Biological Sciences. Intechopen, p. 19.Bolaños, I., Hernández, D., Álvarez, L., 2017. Asociación de los alelos del gen BoLA-DRB3 con la infección natural de Babesia spp en el ganado criollo Hartón del Valle. Arch. Zootec. 53, 113–120.Boni, R., 2012. Origins and Effects of Oocyte Quality in Cattle. Anim. Reprod. 9, 333–340.Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Al., E., 2004. Stress- dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (80-. ). 303, 2011–2015.Calabrese, E.J., Mattson, M.P., Calabrese, V., 2010. Resveratrol commonly displays hormesis: occurrence and biomedical significance,. Hum. Exp. Toxicol. 29, 980–1015.Campos, R., Vélez, M., Hernández, E., García, K., Molina, R., Sánchez, H., Durán, C., Gitaldo, L., 2015. El mejoramiento genético y la producción de leche. La esencia de una realidad de producción animal. Acta Agronómica 64, 372–382.Campos, R., Giraldo, L., 2008. Efecto de la raza y la edad sobre las concentraciones de hormonas tiroideas T3 y T4 de bovinos en condiciones tropicales. Acta Agronómica 57, 137–141.Campos, R., González, F.H., Rodas, A., Cruz, C., 2004. Thyroid hormones in native colombian bovine breeds. Rev Bras Ci Vet 11, 174–177.Carrocera, S., CAAMAÑO, J.N., TRIGAL, B., MARTÍN, D., DÍEZ, C., 2016. Developmental kinetics of in vitro-produced bovine embryos: an aid for making decisions. Theriogenology, New York 85, 822–827.Casas, A., Casas, I., 1982. Métodos propuestos para medir la eficiencia reproductiva de los hatos lecheros con base en las variables numero de servicios por concepción e intervalo de parto a concepción. Acta Agronómica 32, 85–107.Casas, I., Valderrama, M., 1998. El Bovino Criollo “HARTÓN DEL VALLE.” Rev. Despertar Leche. 15, 37–62.Castedo M, Ferri K, Roumier T, M_etivier D, Zamzami N, Kroemer G., 2002. Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods. 265:39e47. https://doi.org/10.1016/S0022-1759(02)00069-8.Castillo-Martín, M., Bonet, S., Morato, R., Yeste, M., 2014a. Comparative effects of adding b -mercaptoethanol or L -ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Reprod. Fertil. Dev. 26, 875–882. https://doi.org/http://dx.doi.org/10.1071/RD13116Castillo-Martín, M., Bonet, S., Morató, R., Yeste, M., 2014b. Supplementing culture and vitrification-warming media with L -ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression q. Cryobiology 68, 451–458. https://doi.org/10.1016/j.cryobiol.2014.03.001Chaube, S.K., Prasad, P. V, Thakur, S.C., Shrivastav, T.G., 2005. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis 10, 863–874. https://doi.org/10.1007/s10495-005-0367-8Chen, H., Zhang, L., Wang, Z., Chang, H., Xie, X., Fu, L., Zhang, Y., Quan, F., 2019. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 1–9. https://doi.org/10.1002/mrd.23161Chi, H.J., Kim, J.H., Ryu, C.S., Al, E., 2008. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum. Reprod. 23, 1023–1028.Chinen, S., Yamanaka, T., Hirabayashi, M., Hochi, S., 2020. Rescue of vitrified-warmed bovine mature oocytes by short-term recovery culture with Resveratrol. Cryobiology. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.03.004Choe, C., Shin, Y., Kim, E., Cho, S., Kim, H., Choi, S., Al, E., 2010. Synergistic effects of glutathione and B-mercaptoethanol traetment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev 56, 575–582.Chung, I.M., Park, M.R., Chun, J.C., Yun, S.J., 2003. Resveratrol accumulation and Resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164, 103–109.Clark JH, Markaverich BM. Actions of ovarian steroid hormones. In: Knobil E, Neil JD, Ewing LL, Greenwald GS, Markert CL, Pfaff DW (eds.), The Physiology of Reproduction. New York: Raven Press; 1988: 675-724.Coello, A., Campos, P., Remohí, J., Meseguer, M., Cobo, A., 2016. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J. Assist. Reprod. Genet. 33, 413–421. https://doi.org/10.1007/s10815-015-0633-9Colica, C., Aiello, V., Lorenzo, A. De, Abenavoli, L., 2018. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat. Prod. Commun. 13, 1195–1203. https://doi.org/10.1177/1934578X1801300923Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., Castro-Obregón, S., 2008. Function of reactive oxygen species during animal development: Passive or active? . Dev Biol 320, 1–11.Cryotech®, 2019. El método Crytech Manual de uso “Para Oocitos y Embriones.” Cutaia, L.E., Bó, G.A., 2007. Cattle embryo production and trade in Argentina. Acta Sci. Vet 35, 931–944.D’Occhio, M.J., Baruselli, P.S., Campanile, G., 2019. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 125, 277–284. https://doi.org/https://doi.org/10.1016/j.theriogenology.2018.11.010Dangles, O., 2012. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biologica Significance. Curr. Org. Chem. 16, 697–714. https://doi.org/1875-5348/12 $58.00+.00De Alba, J., 1985. El criollo lechero en Turrialba. Costa Rica.De Matos, D. G., Gasparrini, B., Pasqualini, S. R., & Thompson, J. G. 2002. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 57(5), 1443–1451. https://doi.org/10.1016/S0093-691X(02)00643-Xde Matos, D.G., Furnus, C.C., Moses, D.F., 1997. Glutathione Synthesis During in Vitro Maturation of Bovine Oocytes: Role of Cumulus Cells1. Biol. Reprod. 57, 1420–1425. https://doi.org/10.1095/biolreprod57.6.1420Devine, P.J., Perreault, S.D., Luderer, U., 2012. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86, 27.Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba. Argentina. URL http://www.infostat.com.ar.Dickinson, B.C., Chang, C.J., 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Bio. 7, 504–511.Dinnyes, A., Nedambale, T.L., 2009. Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod. Fertil. Dev. 21, 45–59.du Plessis, S.S., Makker, K., Desai, N.R., Agarwal, A., 2008. Impact of oxidative stress on IVF. Expet Rev Obs. Gynecol 3, 539–554.Edgar, D.H., Gook, D.A., 2012. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum. Reprod. Update 18, 536–554. https://doi.org/10.1093/humupd/dms016El-Shahat, K.H., Hammam, A.M., 2014. Effect of different types of cryoprotectants on developmental capacity of vitrified-thawed immature buffalo oocytes. Anim. Reprod. 11, 543–548.El-Shalofy, A.S., Moawad, A.R., Darwish, G.M., Ismail, S.T., Badawy, A.B.A., Badr, M.R., 2017. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cryobiology 74, 86–92. https://doi.org/10.1016/j.cryobiol.2016.11.010El Mouatassim, S., Guérin, P., Ménézo, Y., 1999. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 5, 720–725. https://doi.org/10.1093/molehr/5.8.720Fahy, G.M., Wowk, B., Wu, J., Paynter, S., 2004. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35.Fahy, G.M., Macfarlane, D.R., Angell, C.A., Meryman, H.T., 1984. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426.Fan, Z., Yang, M., Regouski, M., Polejaeva, I.A., 2017. Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Rumin. Resveratrol. 147, 106–114. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.12.041Fang, C., Wei, X., Zhang, Z., Li, X., Zhang, X., 2017. Effects of Vitrified Cryopreservation on GSH Content and Mitochondrial ATPase Activity in Oocytes of Zebrafish. Fish. Sci. 36, 773–777.FAO, 2012. Cryconservation of animal genetic resources. Food Agric. Organ. United Nations Section 7, 85–94.Ferre, L., Cattaneo, L., 2013. Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet. 94, 28–36.Finkel, T., Deng, C.-X., Mostoslavsky, R., 2009. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591. https://doi.org/10.1038/nature08197Formigari, A., Irato, P., Santon, A., 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146, 443–459.Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. 2009. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009 Feb-Apr;30(1-2):86-98. doi: 10.1016/j.mam.2008.08.009.Fujii, J., Iuchi, Y., Okada, F., 2005. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3, 43.Fujikawa, T., Gen, Y., Hyon, S.-H., Kubota, C., 2018. 22 Vitrification of bovine embryo using antifreeze polyamino acid. Reprod. Fertil. Dev. 31, 137–137.Fukai, T., Ushio Fukai, M., 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 15, 1583–1606.Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., Vina, J., Borras, C., 2015. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 837042. https://doi.org/10.1155/2015/837042Gambini, J., López, R., Gonzáles, G., Inglés, M., Abdelazid, K., Alami, M., Costa, V., Borrás, C., Viña, J., 2013. Resveratrol: distribución, propiedades y perspectivas. Rev. Esp. Geriatr. Gerontol. 48, 79–88.Gao, C., Han, H.-B., Tian, X.-Z., Tan, D.-X., Wang, L., Zhou, G.-B., Zhu, S.-E., Liu1, G.-S., 2012. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Resveratrol. 52, 305–311. https://doi.org/10.1111/j.1600-079X.2011.00944.xGehm, B.D., McAndrews, J.M., Chien, P.Y., Jameson, J.L., 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist forthe estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 94, 14138–14143.Giraldo, J.J.G., Oquendo, J.G., Araque, N.V., 2012. Efecto de la Dimetilformamida sobre la viabilidad posvitrificación de embriones bovinos producidos in vitro. Rev. Lasallista Investig. 9, 13–20.Gomes, A., Fernandes, E., Lima, J. L. F. C, 2006. Use of fluorescence probes for detection of reactive oxygen species: a review. J. Fluoresc. 16, 119–139. doi:10.1007/S10895-005-0030-3Gonçalves, P.B.D., Visitin, J.A., Oliveira, M.A.L., 2008. Produção in vitro de embriões. Biotécnicas Apl. à reprodução Anim. São Paulo:, 261–301.Gonçalves, P.B.D., Visintin, J.A., Oliveira, M.A.., Montagner, M.M., Costa, L.F.S., 2001. Produção in vitro de Embriões. Biotecnias Apl. á Reprod. Anim. En: Gonça, 195–226.Gonzalez, N., Reichenbach, M., Zerbe, H., Scherzer, J., 2019. Comparison of survival rates of vitrified biopsied in vitro-produced bovine blastocysts using the VitTrans- or the Cryotop device..González, M., Arango, H., 1974. Estudio del ganado criollo &quot;harton&quot; del Valle del Cauca. Acta Agronómica 24, 1–15.Gospodaryov, L.L.E.-V.I.L.E.-D. V, 2012. The Role of Oxidative Stress in Female Reproduction and Pregnancy. IntechOpen, Rijeka, p. Ch. 14. https://doi.org/10.5772/32515Goud, A.P., Goud, P.T., Diamond, M.P., Gonik, B., Abu-Soud, H.M., 2008. Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44, 1295–1304. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2007.11.014Griffith, O.W. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic.Biol. Med. 27(9–10):922–935. [PubMed: 10569625]Griffith, O.W., Mulcahy, R.T. 1999. The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73:209–267. [PubMed: 10218110][PubMed: 10218110] Guemra, S., Monzani, P.S., Santos, E.S., Zanin, R., Ohashi, O.M., Miranda, M.S., Adona, P.R., 2013. In vitro maturation of bovine oocytes in medium supplemented with quercetin, and its effect on embryonic development. Arq. Bras. Med. Veterinária e Zootec. Belo Horiz. 65, 1616–1624.Guerin, P., El Mouatassim, S., Menezo, Y., 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Updat. 7, 175–189.Gupta, M.K., Uhm, S.J., Lee, H.T., 2010. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 93, 2602–2607. https://doi.org/10.1016/j.fertnstert.2010.01.043Gupta, S., Malhotra, N., Sharma, D., Chandra, A., Agarwal, A., 2009. Oxidative stress and its role in female infertility and assisted reproduction: clinical implications. Int J Fertil Steril 2, 147–164.Gutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., Cetica, P., 2020. Morphological , biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037Gutnisky, C., Alvarez, G.M., Cetica, P.D., Dalvit, G.C., 2013. Cryobiology Evaluation of the Cryotech Vitrification Kit for bovine embryos. Cryobiology 67, 391–393. https://doi.org/10.1016/j.cryobiol.2013.08.006Ha, A.N., Lee, S.R., Jeon, J.S., Park, H.S., Lee, S.H., Jin, J.I., Sessions, B.R., Wang, Z., White, K.L., Kong, I.K., 2014a. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology 68, 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007Ha, A.N., Park, H.S., Jin, J.I., Lee, S.H., Ko, D.H., Lee, D.S., White, K.L., Kong, I.K., 2014b. Postthaw survival of invitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw. Theriogenology 81, 467–473. https://doi.org/10.1016/j.theriogenology.2013.10.024Habibi, A., Farrokhi, N., Moreira da Silva, F., Bettencourt, B.F., Bruges-Armas, J., Amidi, F., Hosseini, A., 2010. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet 27, 599–604.Haley, R. M., Zuckerman, S. T., Dakhlallah, H., Capadona, J. R., von Recum, H. A., Ereifej, E. S., 2020. Resveratrol Delivery from Implanted Cyclodextrin Polymers Provides Sustained Antioxidant Effect on Implanted Neural Probes. International journal of molecular sciences, 21(10), 3579. https://doi.org/10.3390/ijms21103579Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., Iwata, H., 2018. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrifiedwarmed bovine embryos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0204571Hara H, Yamane I, Noto I, Kagawa N, Kuwayama M, Hirabayashi M & Hochi S. 2014. Microtubule assembly and in vitro development of bovine oocytes with intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote 22 476–482. (doi:10.1017/ S0967199413000105)Hayashi, T., Kansaku, K., Abe, T., Ueda, S., Iwata, H., 2019. Effects of Resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryopreserved by slow freezing. Anim. Sci. J. 90, 849–856. https://doi.org/10.1111/asj.13219Hayashi, T., Ueda, S., Mori, M., Baba, T., Abe, T., Iwata, H., 2018. Influence of Resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology 106, 271–278. https://doi.org/10.1016/j.theriogenology.2017.10.022He, X., Park, E.Y.H., Fowler, A., Yarmush, M.L., Toner, M., 2008. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: A study using murine embryonic stem cells. Cryobiology 56, 223–232.Hernandez, D., Muñoz, J., Álvarez, L., 2016. Dynamics of Bovine leukosis in creole cattle Hartón del Valle in natural infection. Arch. Zootec. 65, 365–373.Hernández, D.Y., Muñoz, J.E., Álvarez, L.A., 2015. Diversidad genética del gen BoLA-DRB3 en el ganado criollo colombiano Hartón del Valle. Rev CES Med Zootec 10, 18–30.Hernández, E.A., Campos, R., Giraldo, L., 2011. Comportamiento metabólico en el periparto de vacas Hartón del Valle, bajo condiciones de trópico bajo. ACTA AGRONÓMICA 60, 13–26.Hernández, G., 1996. Razas bovinas criollas y colombianas, 4th ed. Unidad de divulgación y prensa Banco Ganadero, Bogotá, Colombia.Hlavicová, J., Lopatářová, M., Čech, S., 2010. Vliv dvoustupňové vitrifikace na vývojovou kompetenci bovinních embryí získaných in vitro a in vivo. Acta Vet. Brno 79, 55–61. https://doi.org/10.2754/avb201079S9S055Holm, P., Booth, P.J., Scsmidt, M.H., Greve, T., Callesen, H., 1999. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.Hong, H., Lee, E., Lee, I.H., Lee, S.-R., 2019. Effects of transport stress on physiological responses and milk production in lactating dairy cows. Asian-Australasian J. Anim. Sci. 32, 442–451. https://doi.org/10.5713/ajas.18.0108Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature.; 425: 191-196.Hussein, M.A., 2011. A convenient mechanism for the free radical scavenging activity of Resveratrol. Int. J. Phytomed 3, 459–469.Inoue, F., 2014. Efficiency of a Closed Vitrification System with Oocytes and Blastocysts. Low Temp. Med. 40, 53–59.Ito, J., Shirasuna, K., Kuwayama, T., Iwata, H., 2020. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology 93, 37–43. https://doi.org/10.1016/j.cryobiol.2020.02.014Iwasaki, S., Yoshiba, N., Ushijima, H., Watanabe, S., & Nakahara, T. (1990). Morphology and proportion of inner cell mass of bovine blastocysts fertilized in vitro and in vivo. Journal of Reproduction and Fertility, 90, 279-284.Izaguirre, E., 2012. Adaptación de un método de vitrificación-Calentamiento en fibreplug para la transferencia directa de blastocistos bovinos producidos in vitro.Izquierdo, A., Eulogio, J., Liera, G., Mancera, A.V., Olivares Pérez, J., Arroyo, G.C., De Lourdes, M., Mosaqueda, J., Félix, J., Gutiérrez, P., 2015. Congelación De Embriones Bovinos. Rev. Complut. Ciencias Vet. 9, 22–40. https://doi.org/10.5209/rev_RCCV.2015.v9.n2.51041Jana, S.K., K, N.B., Chattopadhyay, R., Chakravarty, B., Chaudhury, K., 2010. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod. Toxicol. 29, 447–451. https://doi.org/https://doi.org/10.1016/j.reprotox.2010.04.002Jang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R., Han, J., 2017. Cryopreservation and its clinical applications. Integr. Med. Resveratrol. 6, 12–18. https://doi.org/10.1016/j.imr.2016.12.001Jaramillo, N., Arzuaga, J.M., Giraldo, J.J., Vásquez, N.A., 2019. Parámetros metabólicos, antioxidantes y competencia para el desarrollo embrionario de ovocitos bovinos madurados in vitro con L-Carnitina. Rev. Investig. Vet. del Perú 30, 265–275. https://doi.org/10.15381/rivep.v30i1.15703Jeandet, P., Delaunois, B., Aziz, A., Donnez, D., Vasserot, Y., Cordelier, S., Courot, E., 2012. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, Resveratrol. J Biomed Biotechnol 2012: 579089.Jiang, W., Li, Y., Zhao, Y., Gao, Q., Jin, Q., Yan, C., Xu, Y., 2020. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology 143, 64–73. https://doi.org/10.1016/j.theriogenology.2019.11.036Jin, B., Mazur, P., 2015. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci Rep 5, 9271. https://doi.org/10.1038/srep09271Juliarena, M.A., Poli, M., Ceriani, C., Sala, L., Rodriguez, E., Gutierrez, E., Dolcini, G. et al., 2009. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J Dairy Sci. 92(1): 375-381.Khazaei, M., Ph, D., Aghaz, F., Sc, M., 2017. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes 11, 63–70. https://doi.org/10.22074/ijfs.2017.4995.IntroductionKhosla, K., Zhan, L., Bhati, A., Carley-Clopton, A., Hagedorn, M., & Bischof, J., 2019. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir : the ACS journal of surfaces and colloids, 35(23), 7364–7375. https://doi.org/10.1021/acs.langmuir.8b03011Kim, Y.M., Uhm, S.J., Gupta, M.K., Yang, J.S., Lim, J.G., Das, Z.C., Heo, Y.T., Chung, H.J., Kong, I.K., Kim, N.H., Lee, H.T., Ko, D.H., 2012. Successful vitrification of bovine blastocysts on paper container. Theriogenology 78, 1085–1093. https://doi.org/10.1016/j.theriogenology.2012.05.004King, N., Korolchuk, S., McGivan, J.D., Suleiman, M.-S., 2004. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. J. Pharmacol. Toxicol. Methods 50, 215–222. https://doi.org/https://doi.org/10.1016/j.vascn.2004.05.003Kitazato®, 2020. Vitrification Cryotop®. Kitazato Corp.Kobayashi, T., Miyazaki, T., Natori, M., Nozawa, S., 1991. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod 6, 987–991.Kondo, S., Imai, K., Dochi, O., 2014. 44 The effect of sucrose concentration for single-step dilution on the viability of cryotop-vitrified in vitro-produced bovine embryos. Reprod. Fertil. Dev. 27, 115–115.Kordowitzki, P., Bernal, S.M., Herrmann, D., Aldag, P., Niemann, H., 2017. 198 Resveratrol supplementation during in vitro maturation and fertilisation enhances developmental competence of bovine oocytes. Reprod. Fertil. Dev. 28, 230–230. https://doi.org/https://doi.org/10.1071/RDv28n2Ab198Krisher, R.L., Prather, R.S., 2012. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.Kumar, R., Kaur, K., Uppal, S., Mehta, S.K., 2017. Ultrasound processed nanoemulsion: A comparative approach between Resveratrol and Resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrason. Sonochem. 37, 478–489. https://doi.org/https://doi.org/10.1016/j.ultsonch.2017.02.004Kundu JK, Surh YJ. 2008. Cancer chemopreventive and therapeutic potential of Resveratrol: mechanistic perspectives. Cancer Lett. 269: 243-261.Kuwajerwala, N., Cifuentes, E., Gautam, S., Menon, M., Barrack, E.R., Reddy,G.P., 2002. Resveratrol induces prostate cancer cell entry into s phaseand inhibits DNA synthesis. Cancer Res. 62 (9), 2488–2492.Kwak, S., Cheong, S., Jeon, Y., Lee, E., Choi, K., 2012. The effectsof Resveratrol on porcine oocyte in vitro maturation and subsequentembryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86–101.Lafleur, M. V, Hoorweg, J. J., Joenje, H., Westmijze, E. J., & Retèl, J., 1994. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radical Research, 21(1), 9–17. http://www.ncbi.nlm.nih.gov/pubmed/7951911Lampiao, F., 2012. Free radicals generation in an in vitro fertilization setting and how to minimize them. World J Obs. Gynecol 1, 29–34.Lawson, A., Ahmad, H., Sambanis, A., 2011. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology 62.Ledda, S., Kelly, J.M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., Arav, A., 2019. High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. J. Anim. Sci. Biotechnol. 10, 90. https://doi.org/10.1186/s40104-019-0390-1Ledda, S., Kelly, J.M., Walker, S.K., Natan, Y., Arav, A., 2018. 47 A New Device and Method for Successful Vitrification of In Vitro-Produced Ovine Embryos. Reprod. Fertil. Dev. 30, 163.Lee, S., Jung, E., Ho, J., Jin, S., Song, K., Chun, B., 2015. Sequential treatment with Resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology xxx, 1–10. https://doi.org/10.1016/j.theriogenology.2015.02.021Lee, M.H., Thomas, J., Wang, H.Y., Chang, C.C., Lin, C.C., Lin, H.Y., 2012. Extraction of Resveratrol from polygonum cuspidatum with magnetic orcinol-imprinted poly(ethylene-co-vinyl alcohol) composite particles and their in vitro suppression of human osteogenic sarcoma (HOS) cell line. J Mater Chem 22, 24644–24651.Lee, K., Wang, C., Chaille, J.M., Machaty, Z., 2010. Effect of Resveratrol onthe development of porcine embryos produced in vitro. J. Reprod. Dev.56 (3), 330–335.Lee, I., Cao, L., Mostoslavsky, R., Lombard, D., Liu, J., Bruns, N., Al., E., 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105, 3374–3379. https://doi.org/https://doi. org/10.1073/pnas.0712145105Lee, J.A., Parrett, B.M., Conejero, J.A., Laser, J., Chen, J., Kogon, A.J., Al., E., 2003. Biological alchemy: engineering bone and fat from fat derived stem cells. Ann Plast Surg 50, 610–7.Len, J.S., Koh, W.S.D., Tan, S.X., 2019. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 39. https://doi.org/10.1042/BSR20191601Leopoldini, M., Marino, T., Russo, N., Marirosa, T., 2004. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 108, 4916–4922. https://doi.org/10.1021/jp037247d CCC: $27.50Lestari, S.W., Ilato, K.F., Pratama, M.I.A., Fitriyah, N.N., Pangestu, M., Pratama, G., Margiana, R., 2018. Sucrose ‘Versus’ Trehalose Cryoprotectant Modification in Oocyte Vitrification : A Study of Embryo Development. Biomed. Pharmacol. J. 11, 97–104. https://doi.org/10.13005/bpj/1351Li, B., He, X., Zhuang, M., Niu, B., Wu, C., Mu, H., Al., E., 2018. Melatonin ameliorates busulfan- induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxid. Redox Signal 28, 385–400.Li, D., Liu, Q., Gong, Y., Huang, Y., Han, X., 2009. Cytotoxicity and oxidative stress study in cultured rat Sertoli cells with methyl tert-butyl ether (MTBE) exposure. Reprod. Toxicol. 27, 170–176. https://doi.org/10.1016/j.reprotox.2008.12.004Li, D., Yin, D., Han, X., 2007. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells. J. Appl. Toxicol. 27, 10–17. https://doi.org/10.1002/jat.1178Liang, S., Yuan, B., Jin, Y.-X., Zhang, J.-B., Bang, J.K., Kim, N.-H., 2017. Effects of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the in vitro developmental capacity of expanded bovine blastocysts. Reprod. Fertil. Dev. 29, 2140–2148.Liebermann, J., Dietl, J., Vanderzwalmen, P., Tucker, M., 2003. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7, 623–633.Liu, F., Lai, S., Tong, H., Lakey, P.S.J., Shiraiwa, M., Weller, M.G., Al., E., 2017. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 409, 2411–2420.Liu, M., Yin, Y., Ye, X., Zeng, M., Zhao, Q., Keefe, D.L., Liu, L., 2013. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 28, 707–717. https://doi.org/10.1093/humrep/des437Lobo, R.A., 1995. Benefits and risks of estrogen replacement therapy. Am.J. Obstet. Gynecol. 173, 982–989.Longobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., Puzio, M.V., Neglia, G., Gasparrini, B., 2017. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 88, 1–8. https://doi.org/10.1016/j.theriogenology.2016.09.046Loren, P., Sánchez, R., Arias, M.E., Felmer, R., Risopatrón, J., Cheuquemán, C., 2017. Melatonin scavenger properties against oxidative and nitrosative stress: Impact on gamete handling and in vitro embryo production in humans and other mammals. int J Mol Sci 18, 1–17.Luster, S.M., 2004. Cryopreservation of bovine and caprine oocytes by vitrificaction. Interdepartamental Progr. Anim. Sci.Lykkesfeldt, J., Svendsen, O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. Journal, London 173, 502–511.Maddipati, K.R., Marnett, L.J., 1987. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J. Biol. Chem. 262, 17398–17403. https://doi.org/https://doi.org/10.1016/S0021-9258(18)45392-6Madeira, E.M., Mion, B., Silva, J.F., Pegoraro, L.M.C., Vieira, A.D., Lucia Jr, T., 2015. Use of ethyleneglycol monomethyl ether as cryoprotectant in vitrification of IVP bovine embryos. Anim. Reprod. 12, 847–847.Madrid, S., López, A., Restrepo, G., Urrego, R., Julián, J., Zuluaga, E., 2019a. Supplementation with Resveratrol during culture improves the quality of in vitro produced bovine embryos. Livest. Sci. 221, 139–143. https://doi.org/10.1016/j.livsci.2019.01.025Madrid, S., López, A.H., Urrego, R., Restrepo, G.B., Echeverri, J.J., 2019b. Effect of Resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology 89, 42–50.Madrid, S.G., A.B., M., López, A.H., Restrepo, G.B., Urrego, R.Á., Echeverri, J.Z., Cética, P., 2018. Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reprod. Fertil. Dev. 31, 521–528.Maleki, E.M., Eimani, H., Bigdeli, M.R., Ebrahimi, B., Shahverdi, A.H., Narenji, A.G., Abedi, R., 2014. A comparative study of saffron aqueous extract and its active ingredient, crocin on the in vitro maturation, in vitro fertilization, and in vitro culture of mouse oocytes. Taiwan. J. Obstet. Gynecol. 53, 21–25.Manjunatha, B.M., Gupta, P.S.P., Ravindra, J.P., Devaraj, M., Nandi, S., 2008. In vitro embryo development and blastocyst hatching rates following vitrification of river buffalo embryos produced from oocytes recovered from slaughterhouse ovaries or live animals by ovum pick-up. Anim. Reprod. Sci. 104, 419–426. https://doi.org/https://doi.org/10.1016/j.anireprosci.2007.06.030Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., Vicente, J.S., 2016. Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method 11, e0148661. https://doi.org/https://doi.org/10.1371/journal.pone.0148661Mariaca, C.J., Zapata, M., Uribe, P., 2016. Oxidación y antioxidantes: hechos y controversias. Rev. la Asoc. Colomb. Dermatología y Cirugía Dermatológica 24, 162–173. https://doi.org/10.29176/2590843x.292Marques, C.C., Santos-Silva, C., Rodrigues, C., Matos, J.E., Moura, T., Baptista, M.C., Horta, A.E.M., Bessa, R.J.B., Alves, S.P., Soveral, G., Pereira, R.M.L.N., 2018. Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media. Cryobiology 81, 4–11. https://doi.org/10.1016/j.cryobiol.2018.03.003Marsico, T., de Camargo, J., Valente, R., & Sudano, M., 2019. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 16. 423-439. 10.21451/1984-3143-AR2019-0072.Martín-Romero, F.J., Miguel-Lasobras, E.M., Domínguez-Arroyo, J.A., González-Carrera, E., Álvarez, I.S., 2008. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online 17, 652–661. https://doi.org/https://doi.org/10.1016/S1472-6483(10)60312-4Martínez, R., Ávila, O., Pérez, J., Gallego, J., Onofre, H., 2005a. Estructura y función del banco de germoplasma in vitro en Colombia. Arch. Zootec. 54, 545–550.Martínez, R., Toro, T., Montoya, F., Burbano, M., Tobón, J., Ariza, F. 2005b. Caracterización del locus BoLA-DRB3 en ganado criollo colombiano y asociación con resistencia a enfermedades. Arch Zootec. 54(206-207): 349-356.Martínez, G., 2004a. Poblaciones actuales y estrategicas para la conservación de los bovinos criollos colombianos. II Foro Nac. las razas Bov. criollas y Colomb. 2, 112–127.Martínez, G., 2004b. Razas bovinas criollas y colombianas, primera ed. ed. Corpoica C.I. La libertad, Villavicencio.Martínez, G.C., 1999. Censo y caracterización de los sistemas de producción del ganado criollo y colombia.Matos, L., Stevenson, D., Gomes, F., Silva-Carvalho, J.L., Almeida, H., 2009. Superoxide dismutase expression in human cumulus oophorus cells. Mol. Hum. Reprod. 15, 411–419. https://doi.org/10.1093/molehr/gap034McCormack, D., McFadden, D., 2013. A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longe 2013, 575482.Mehaisen, G.M.K., Saeed, A.M., Gad, A., Abass, A.O., Arafa, M., El-Sayed, A., 2015. Antioxidant Capacity of melatonin on preimplantation development of fresh and vitrified rabbit embryos: Morphological and molecular aspects. Fraidenraich D, Ed. PLoS One 10, e0139814.Mendes, T.B., Paccola, C.C., De Oliveira Neves, F.M., Simas, J.N., Da Costa Vaz, A., Cabral, R.E.L., Vendramini, V., Miraglia, S.M., 2016. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty. Reproduction 152, 23–35. https://doi.org/10.1530/REP-16-0025Menéndez-Blanco, I., Soto-Heras, S., Catalá, M.G., Piras, A.-R., Izquierdo, D., Paramio, M.-T., 2020. Effect of vitrification of in vitro matured prepubertal goat oocytes on embryo development after parthenogenic activation and intracytoplasmic sperm injection. Cryobiology 93, 56–61. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.02.011Merton, J.S., Knijn, H.M., Flapper, H., Dotinga, F., Roelen, B.A.J., Vos, P.L.A.M., Mullaart, E., 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology 80, 365–371. https://doi.org/https://doi.org/10.1016/j.theriogenology.2013.04.025Michan, S., Sinclair, D., 2007. Sirtuins in mammals: insights into their biological function. Biochem J 404, 1–13.Middleton Jr, E., Kandaswami, C., Theoharides, T.C., 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation. Hear. Dis. cancer, Pharmacol. Rev. 52, 673–839.Mohana Kumar B, Song HJ, Cho SK, Balasubramanian S, Choe SY, Rho GJ., 2007. Effect of histone acetylation modification with sodium butyrate, a histone deacetylase inhibitor, on cell cycle, apoptosis, ploidy and gene expression in porcine fetal fibroblasts. J Reprod Dev.; 53: 903-913.Momozawa, K., Matsuzawa, A., Tokunaga, Y., Ohi, N., Harada, M., 2019. A new vitrification device that absorbs excess vitrification solution adaptable to a closed system for the cryopreservation of mouse embryos. Cryobiology 88, 9–14. https://doi.org/10.1016/j.cryobiol.2019.04.008Morado, S., Cetica, P., Beconi, M., Thompson, J.G., Dalvit, G., 2013. Reactive oxygen species production and redox state in parthenogenetic and spem-mediated bovine oocyte activation. Reproduction 145, 471–478.Morado, S.A., Cetica, P.D., Beconi, M.T., Dalvit, G.C., 2009. Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fert. Dev. 21, 608–614.Moreno, F., Derr, J.N., Bermúdez G., N., Ossa L., J., Estrada L, L., Scott, D., Bedoya B., G., Carvajal, L.G., Zuluaga, F.N., Berdugo, J., Barrera, J., Ruíz Linares, A., 2001. Diversidad genética y relaciones filogenéticas del ganado criollo colombiano. Corpoica Cienc. y Tecnol. Agropecu. 3, 17. https://doi.org/10.21930/rcta.vol3_num2_art:183Mori, C., Yabuuchi, A., Ezoe, K., Murata, N., Takayama, Y., Okimura, T., Uchiyama, K., Takakura, K., Abe, H., Wada, K., Okuno, T., Kobayashi, T., Kato, K., 2015. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod. Biomed. Online 30, 613–621. https://doi.org/10.1016/j.rbmo.2015.02.004Moulavi, F., Soto-Rodriguez, S., Kuwayama, M., Asadi-Moghaddam, B., Hosseini, S.M., 2019. Survival, re-expansion, and pregnancy outcome following vitrification of dromedary camel cloned blastocysts: A possible role of vitrification in improving clone pregnancy rate by weeding out poor competent embryos. Cryobiology. 2019 Oct;90:75-82. doi: 10.1016/j.cryobiol.2019.08.002Moussa, M., Shu, J., Zhang, X.H., Zeng, F., 2015. Maternal control of oocyte quality in cattle “a review.” Anim. Reprod. Sci. 155, 11–27. https://doi.org/10.1016/j.anireprosci.2015.01.011Mukherjee, A., Malik, H., Saha, A.P., Dubey, A., Singhal, D.K., Boateng, S., Saugandhika, S., Kumar, S., De, S., Guha, S.K., Malakar, D., 2014. Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J. Assist. Reprod. Genet. 31, 229–239. https://doi.org/10.1007/s10815-013-0116-9Mullaart, E., Verbrugge, A., Aerts, B., Merton, J.S., 1999. Optimization of OPU procedure, in: Proceedings of the 15th Scientific Meeting of European Embryo Transfer Association. pp. 10–11.Mumbengegwi, D.R., Li, Q., Li, C., Bear, C.E., Engelhardt, J.F., 2008. Evidence for a superoxide permeability pathway in endosomal membranes. Mol. Cell Biol. 28, 3700–3712.Nakamura, B., Fielder, T., Hoang, Y., Lim, J., Al, E., 2011. Lack of maternal glutamate cysteine ligase modifer subunit (Gclm) decreases oocyte glutathione concentrationes and disrupts preimplantation development in mice. Endocrinology 152, 2806–2815.Nohalez, A., Martinez, C.A., Parrilla, I., Roca, J., Gil, M.A., Rodriguez-, H., Martinez, E.A., Cuello, C., 2018. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 113, 113–119.Núñez, R., Ramírez, R., Saavedra, L.A., García, J.G., 2016. La adaptabilidad de los recursos zoogenéticos Criollos, base para enfrentar los desafíos de la producción animal. Arch. Zootec. 65, 461–468.Onofre, G., Parra, J., Martínez, R., Cassalett, E., Velásquez, H., 2015. Productive Potential and Milk Quality of Native Cattle Breeds - Blanco Orejinegro, Hartón Del Valle and Sanmartinero in the Piedmont Plains of Colombia. Actas Iberoam. Conserv. Anim. 5, 15–17.Ossa, G.S., 2004. Influencia de factores genéticos y ambientales en caracteres productivos de la raza criolla Romosinuana. Universidad Agraria de la Habana-Cuba.Ourique, G.M., Finamor, I.A., Saccol, E.M.H., Riffel, A.P.K., Pês, T.S., Al., E., 2013. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. reprod toxicol 37, 31–39.Panei, C., Suzuki, K., Echeverria, M., Serena, M., Metz, G., Gonzales, E., 2009. Association of BoLA-DRB3.2 alleles with resistance and susceptibility to persistent lymphocytosis in BLV infected Cattle Argentina. Int J Dairy Sci. 4(3): 123-128.Pangeni, R., Sahni, J.K., Ali, J., Sharma, S., Baboota, S., 2014. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11.Papuc, C., Goran, G.V., Predescu, C.N., Nicorescu, V., Stefan, G., 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16, 1243–1268.Park, S.P., Kim, E.Y., Kim, D.I., Park, N.H., Won, Y.S., Yoon, S.H., Chung, K.S., Lim, J.H., 1999. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids. Hum. Reprod. 14, 2838–2843. https://doi.org/10.1093/humrep/14.11.2838Parris, J., 2014. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81, 67–73.Pastore, A.G., Federici, E., Bertini, F., Piemonte, 2003. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333, 19–39.Pereira, B.A., Zangeronimo, M.G., Castillo-Martín, M., Gadani, B., Chaves, B.R., Rodríguez-Gil, J.E., Bonet, S., Yeste, M., 2019. Supplementing Maturation Medium With Insulin Growth Factor I and Vitrification-Warming Solutions With Reduced Glutathione Enhances Survival Rates and Development Ability of in vitro Matured Vitrified-Warmed Pig Oocytes. Front. Physiol. 9, 1–13. https://doi.org/10.3389/fphys.2018.01894Pervaiz, S., Holme, A.L., 2009. Resveratrol: Its biologic targets and functional activity. Antioxidants & Redox Signaling 11, 2851–2897.Phillips, P., Jahnke, M., 2016. Embryo Transfer (Techniques, donors, and recipients). Vet. Clin. North Am. Food Anim. Pract. 32, 365–385.Pinzón, M.E., 1984. Historia de la ganadería bovina en Colombia. Supl. Ganad. Banco Ganad. 4, 208.Pinzón, M.E., 1991. Historia de Colombia. Supl. Ganad. 8, 1.Piras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., Paramio, M.T., Bogliolo, L., 2020. Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4 °C in the domestic cat model. Theriogenology 144, 152–157. https://doi.org/10.1016/j.theriogenology.2020.01.009Piras, A.R., 2019. Resveratrol Supplementation During In Vitro Maturation: Effect On The Quality Of Oocytes In Species Of Veterinary Interest. UNIVERSITAT AUTÒNOMA DE BARCELONA FACULTAT DE VETERINÀRIA.Piras, A.R., Menéndez, I., Soto-Heras, S., Catalá, M.G., Izquierdo, D., Bogliolo, L., Paramio, M.T., 2019. Resveratrol supplementation during in vitro maturation improves embryo development of prepubertal goat oocytes selected by brilliant cresyl blue staining. J. Reprod. Dev. 65, 113–120. https://doi.org/10.1262/jrd.2018-077Pirola, L., Fröjdö, S., 2008. Resveratrol: one molecule, many targets. IUBMB Life 60, 323–332.Pontes, J.H.F., Melo Sterza, F.A., Basso, A.C., Ferreira, C.R., Sanches, B. V., Rubin, K.C.P., Seneda, M.M., 2011. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 75, 1640–1646. https://doi.org/10.1016/j.theriogenology.2010.12.026Prasad, S., Tiwari, M., Pandey, A.N., Shrivastav, T.G., Chaube, S.K., 2016. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 23, 19–23. https://doi.org/10.1186/s12929-016-0253-4Presicce, G.A., Neglia, G., Salzano, A., Padalino, B., Longobardi, V., Vecchio, D., De Carlo, E., Gasparrini, B., 2020. Efficacy of repeated ovum pick-up in Podolic cattle for preservation strategies: a pilot study. Ital. J. Anim. Sci. 19, 31–40. https://doi.org/10.1080/1828051X.2019.1684213Price, N.L., Gomes, A.P., Ling, A.J.Y., Duarte, F.V., Martin-Montalvo, A., North, B.J., Al., E., 2012. SIRT1 is required for AMPK activation and the beneficial effects of Resveratrol on mitochondrial function. Cell Metab 15, 675–690.Punyawai, K., Anakkul, N., Srirattana, K., Aikawa, Y., Sangsritavong, S., Nagai, T., Imai, K., Parnpai, R., 2015. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 61, 431–437. https://doi.org/10.1262/jrd.2014-163Quintero, D., Ospina, S., 2017. Avances en la caracterización de la producción láctea y el crecimiento antes del destete en el banco de germoplasma de la raza criolla Hartón del Valle en el C.I Palmira (CORPOICA). Rev. Colomb. Zootec. RCZ 3, 38–44.Quispe, C., G., E.A., A., J.S., P., I.U., S., E.M., 2018. Capacidad de desarrollo embrionario de ovocitos de bovino recuperados vía ultrasonografía y de ovarios de matadero. Rev. Investig. Vet. del Perú 29. https://doi.org/10.15381/rivep.v29i4.14418Rakhit, M., Gokul, S.R., Agarwal, A., Plessis, S.S., 2013. Antioxidant Strategies to Overcome OS in IVF-Embryo Transfer 237–262. https://doi.org/10.1007/978-1-62703-041-0Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at K196 8C by vitrification. Nature 313, 573–575.Rastislav, M., Mangesh, B., 2012. BoLA-DRB3 exon 2 mutations associated with paratuberculosis in cattle. Vet J. 192(3): 517-519.Restrepo, G., Gómez, J., Vasquez, N., 2011. Evaluación de la superestimulación ovárica y la calidad morfológica de occitos bovinos obtenidos por aspiración folicular. Rev. Politécnica 7, 16–21. https://doi.org/10.22507/jals.v6n1a2Richter C., 1987. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids. 44:175e89. https://doi.org/10.1016/0009-3084(87) 90049-1.Rimando, A., Kalt, W., Magee, J., Dewey, J., Ballington, J., 2004. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52, 4713–4719.Rios, G.L., Mucci, N.C., Kaiser, G.G., Alberio, R.H., 2010. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos. Anim. Reprod. Sci. 118, 19–24. https://doi.org/10.1016/j.anireprosci.2009.06.015Rodrigues-Cunha, M., Mesquita, L., Bressan, F., Collado, M., Balierio, J., Schwarz, K., Al, E., 2016. Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress and subsequent embryo development. Theriogenology 86, 1685–1694.Rodrigues, J.P., Paraguassú-Braga, F.H., Carvalho, L., Abdelhay, E., Bouzas, L.F., Porto, L.C., 2008. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56, 144–151. https://doi.org/10.1016/j.cryobiol.2008.01.003Rodriguez-Martinez, H., 2012. Assisted Reproductive Techniques for Cattle Breeding in Developing Coun- tries: A Critical Appraisal of Their Value and Limitations. Reprod. Domest. Anim. 47, 21–26.Rodríguez, P., Jiménez, C., 2011. Criopreservación de embriones bovinos producidos 58, 107–119.Rosero, J.A., Álvarez, L.A., Muñoz, J.E., Durán, C. V., Rodas, A.G., 2012. Allelic frequency of the Kap- pa–Casein gene in Colombian breeds. Rev Colomb Cienc Pecu 25, 173–182.Rosero, J.A., Álvarez, L.A., Muñoz, J.E. (2011). Polimorfismo genético de beta-lactoglobulina y alphalactoalbúmina en el ganado criollo colombiano, mediante PCR-SSCP. Acta Agronómica, 60 (4), 339-346.Roth, Z., 2017. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu. Rev. Anim. Biosci. 5, 151–170. https://doi.org/10.1146/annurev-animal-022516-022849Rubiolo, J.A., Mithieux, G., Vega, F.V., Rubiolo, J.A., Mithieux, G., Vega, F.V., 2008. Resveratrol protects primary rat hepatocytes against oxidative stress damage:. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes,. Eur. J. Pharmacol 591, 66–72. https://doi.org/https://doi.org/10.1016/j.ejphar.Ruiz, L., 2010. Determinación de la variabilidad genética en subpoblaciones comerciales de ganado criollo colombiano de raza romosinuano mediante marcadores moleculares tipo microsatélite. Pontificia Universidad Javeriana.Saavedra, G.D., 2018. Conservación seminal en toros Cebú. Efecto de la retirada del plasma seminal y su posterior incorporación sobre la calidad espermática en los protocolos de criopreservación. UNIVERSIDAD DE ZARAGOZA.Salazar, J.J., Cardozo, A., 1977. Conservación, mejoramiento y utilización de los recursos genéticos del bovino criollo. TOA 129.Sales, J.N.S., Iguma, L.T., Batista, R.I.T.P., Quintão, C.C.R., Gama, M.A.S., Freitas, C., Pereira, M.M., Camargo, L.S.A., Viana, J.H.M., Souza, J.C., Baruselli, P.S., 2015. Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J. Dairy Sci. 98, 3086–3099. https://doi.org/10.3168/jds.2014-8858Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., Zicarelli, L., Gasparrini, B., 2014. Effect of Resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim. Reprod. Sci. 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018Sanchéz, C., 2005. Estudio Citogenético en Bovinos Criollos Colombianos. [tesis Maest. Universidad Nacional de Colombia.Santos, M.V. de O., Borges, A.A., De, L.B., Neta, Q., Bertini, L.M., Pereira, A.F., 2018. Use of natural antioxidants in in vitro mammalian embryo production. Ciências Agrárias, Londrina 39, 431–444. https://doi.org/10.5433/1679-0359.2018v39n1p431Saraiva, H.F.R.A., Batista, R.I.T.P., Alfradique, V.A.P., Pinto, P.H.N., Ribeiro, L.S., Oliveira, C.S., Souza-fabjan, J.M.G., Camargo, L.S.A., Fonseca, J.F., Brand, F.Z., 2018. L-carnitine supplementation during vitrification or warming of in vivo - produced ovine embryos does not affect embryonic survival rates , but alters CrAT and PRDX1 expression. Theriogenology 105, 150–157. https://doi.org/10.1016/j.theriogenology.2017.09.022Saraswat, S., Kindal, S.K., Kharche, S.D., 2016. Antioxidant and spermatozoa: a complex story. Indian J. Anim. Sci. 86, 495–501.Sayin O, Arslan N, Guner G., 2012. The protective effects of Resveratrol on human coronary artery endothelial cell damage induced by hydrogen peroxide in vitro. Acta Clin Croat. Jun;51(2):227-35. PMID: 23115947.Seidel, G.E., 2010. Methods and comparative aspects of embryo cryopreservation in domestic animals. Equine Vet. J. 21, 77–79.Seki, S., Mazur, P., 2012. Ultra-rapid warming yields high survival of mouse oocytes cooled to -196°c in dilutions of a standard vitrification solution. PLoS One. 7(4): e36058. doi: 10.1371/journal.pone.0036058.Seki, S., Mazur, P., 2009. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology. 59 (1), 75-82.Selivanov, V.A., Votyakova, T. V., Pivtoraiko, V.N., Zeak, J., Sukhomlin, T., Trucco, M., Al., E., 2011. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. Beard DA, Ed. PLoS Comput Biol 31, e1001115.Shang, L., Zhou, H., Xia, Y., Wang, H., Gao, G., Chen, B., Al., E., 2009. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J Cell Mol Med 13, 4176–4184.Shaw, J.M., Oranratnachai, A., Trounson, A.O., 2000. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 59–72.Shi, L.Y., Jin, H., Kim, J., Mohana, K.B., Balasubramanian, S., Choe, S., Rho, G., 2007. Ultra-structural changes and developmental potential of porcine oocytes following vitrification. Anim Reprod Sci 100, 128–140.Shkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D., Dekel, N., 2011. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A 108, 1462–1467.Sikka, S.C., 2004. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl 25, 5–18.Soliman, G.A., 2013. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 5, 2231–2257. https://doi.org/https://doi.org/10.3390/nu5062231Solís, A., Guerra, R., Sandoya, G., De Armas, R., 2012. Efecto de sincronización de la onda folicular y de la frecuencia de aspiración de folículos en novillas de la raza Brahman. Rev. Electron. Vet. 13, 1–16.Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N.W., Farhudin, M., Dinnye ́s, A., Nagai, T., Kikuchi, K., 2007. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.Somoskoi, B., Martino, N.A., Cardone, R.A., Lacalandra, G.M., Aquila, M.E.D., Cseh, S., 2015. Different chromatin and energy / redox responses of mouse morulae and blastocysts to slow freezing and vitrification. Reprod. Biol. Endocrinol. 13, 1–16. https://doi.org/10.1186/s12958-015-0018-zSoobrattee, M.A., Neergheen, V.S., Luximon-ramma, A., 2005. Phenolics as potential antioxidant therapeutic agents : Mechanism and actions. Mutat. Resveratrol. 579, 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023Souza, J., Oliveira, C., Lienou, L., Cavalcante, T., Alexandrino, E., Santos, R., Dias, F., 2018. Vitrification of bovine embryos followed by in vitro hatching and expansion. Zygote 26, 99–103.Souza, J.F., Lienou, L.L., Rodrigues, A.P.R., Alexandrino, E., Cavalcante, T. V., Santos, R.R., Figueiredo, J.R., Dias, F.E.F., 2018. Cryosurvival after exposure of IVF-derived Nellore embryos to different cryoprotectants and exposure times during vitrification. Cryobiology 84, 95–97. https://doi.org/10.1016/j.cryobiol.2018.08.009Sovernigo, T.C., Adona, P.R., Lopes, F.G., Leal, C.L. V, 2017. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod. Domest. Anim. 52, 561–569. https://doi.org/10.1111/rda.12946Stroud, B., 2011. The year 2010 worldwide statistics of embryo transfer in domestic farm animals. Embryo Transf. Newsl. 29, 14–24.Succu, S., Gadau, S.D., Serra, E., Zinellu, A., Carru, C., Porcu, C., Al., E., 2018. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology 2018;. Theriogenolgy 110, 18–26.Sudano, M.J., Caixeta, E.S., Paschoal, D.M., Martins, A., Machado, R., Buratini, J., Landim-Alvarenga, F.D.C., 2014. Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reprod. Fertil. Dev. 26, 1129–1141.Szende, B., Tyihák, E., Király-Véghely, Z., 2000. Dose-dependent effect of Resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp. Mol. Med. 32 (2), 88–92.Tajimi, H., Yamazaki, T., Oike, S., Yoshida, T., Okada, K., Kuwayama, M., Ushijima, H., 2018. Vitrification for bovine embryos with low‐quality grade. Anim Sci J. 89, 1194– 1200. https://doi.org/10.1111/asj.13024Takahashi, M., 2012. Oxidative Stress and Redox Regulation on In Vitro Development of. J. Reprod. Dev. 58, 1–9.Takahashi, N., Harada, M., Oi, N., Izumi, G., Momozawa, K., Matsuzawa, A., Tokunaga, Y., Hirata, T., Fujii, T., Osuga, Y., 2020. Preclinical validation of the new vitrification device possessing a feature of absorbing excess vitrification solution for the cryopreservation of human embryos. J. Obstet. Gynaecol. Resveratrol. 46, 302–309. https://doi.org/10.1111/jog.14176Takaoka, M., 1940. Phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). II. Synthesis of Resveratrol and its derivatives. Proc. Imp. Acad. 16, 405–407.Takaya, Y., Yan, K.-X., Terashima, K., He, Y.-H., Niwa, M., 2002. Biogenic reactions on stilbene tetramers from Vitaceaeous plants. Tetrahedron 58, 9265–9271.Takeo, S., Kimura, K., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod. Fertil. Dev. 29, 759–767.Takeo, S., Sato, D., Kimura, K., Monji, Y., Kuwayama, T., 2014. Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes 60.Tatone, C., Di Emidio, G., Vitt, i M., Di Carlo, M., Santini, S.J., D’Alessandro, A.M., Falone, S., Amicarelli, F., 2015. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev 2015, 659687.Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG., 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol. ;26:563e7. https://doi.org/10.3109/09513591003686395.Thomas, C., Mackey, M.M., Diaz, A.A., Cox, D.P., 2009. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14, 102–108.Thompson, J.G., McNaughton, C., Gasparrini, B., McGowan, L.T., Tervit, H.R., 2000. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 118, 47–55.Tiwari, M., Prasad, S., Tripathi, A., Pandey, A.N., Singh, A.K., Shrivastav, T.G., Chaube, S.K., 2016. Involvement of Reactive Oxygen Species in Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. React. Oxyg. Species 1, 110–116.Tobar, C., Varela, G., 1989. Estudio de las curvas de crecimeinto y lactancia, fertilidad y rentabilidad en la raza Hartón del Valle. Universidad Nacional de Colombia, Sede Palmira.Torres-Osorio, V., Urrego, R., Echeverri-Zuluaga, J.J., López-Herrera, A., 2019. Oxidative stress and antioxidant use during in vitro mammal embryo production. Review. Rev. mex. cienc. Pecu. 10, 433–459.Torres, V., Hamdi, V., Millán de la Blanca, M., Urrego, J., Echeverri, J., Sánchez-calabuig, A., López-herrera, D., Rizos, A., Gutiérrez-adán, M.J., 2018. Resveratrol – cyclodextrin complex affects the expression of genes associated with lipid metabolism in bovine in vitro produced embryos. Reprod Dom Anim. 1–9. https://doi.org/10.1111/rda.13175Torres, V., Muñoz, L., Urrego, R., Echeverry, J., Lopez, A., 2016. 181 Resveratrol during in vitro maturation improves the quality of bovine oocyte and enhances embryonic. Reprod. Fertil. Dev. 29, 199–209.Trapphoff T, Heiligentag M, Simon J, Staubach N, Seidel T, Otte K, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U., 2016. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol Hum Reprod., Dec;22(12):867-881. doi: 10.1093/molehr/gaw059.Tripathi, A., Premkumar, K.V., Pandey, A.N., Khatun, S., Mishra, S.K., Shrivastav, T.G., Al., E., 2011. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. eur j pharmacol 667, 419–424.Tripathi, A., Khatun, S., Pandey, A.N., Mishra, S.K., Chaube, R., Shrivastav, T.G., Chaube, S.K., 2009. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic. Resveratrol. 43, 287–294. https://doi.org/10.1080/10715760802695985Trujillo, B.E., Valderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.Truong, V.L., Jun, M., Jeong, W.S., 2018. Role of Resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44, 36–49.Valderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.Tsantarliotou, M.P., Sapanidou, V.G., 2018. The importance of antioxidants in sperm quality and in vitro embryo production. J. Vet. Androl. 3, 1–12.Vajta, G., Holm, P., Kuwayama, M., Booth, P.J., Jacobsen, H., Greve, T., 1998. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51, 53–58.Valderrama, R.M., 2003. Ganado Hartón del Valle. Razas Criollas y Colombianas Puras. Mem. . Conv. 135. 01 109–118.Van Houten, B., Woshner, V., Santos, J.H., 2006. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5, 145–152.Vanderzwalmen, P., Zech, N., Ectors, F., Panagiotidis, Y., Papatheodorou, A., Yannis, P., Al., E., 2015. Vitrification of oocytes and embryos: Finally a recognized technique, but still a source of concern and debate. Vitr. Assist. Reprod. Tucker y L, 23–34.Vermerris, W., Nicholson, R., 2006. Families of phenolic compounds and means of classification, in: In: Vermerris W, Nicholson R, E. (Ed.), Phenolic Compound Biochemistry. The Netherlands: Springer, pp. 1–34. https://doi.org/DOI: 10.1007/978-1-4020-5164-7_4Versari, A., Parpinello, G.P., Tornielli, G.B., Ferrarini, R., Giulivo, C., 2001. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J. Agric. Food Chem. 49, 5531–5536.Viana, J., 2019. 2018 Statistics of embryo production and transfer in domestic farm animals. Embryo Technol. Newsletter-IETS 36, 1–26.Voelkel, S.A., Hu, Y.X., 1992. Use of ethylene glycol as a cryoprotectant for bovine embryos allowing direct transfer of frozen-thawed embryos to recipient females. Theriogenology 37, 687–697.von Mengden, L., Klamt, F., Smitz, J., 2020. Redox Biology of Human Cumulus Cells: Basic Concepts, Impact on Oocyte Quality, and Potential Clinical Use. Antioxid. Redox Signal. 32, 522–535. https://doi.org/10.1089/ars.2019.7984Wang, Y., Zhang, M., Chen, Z., Du, Y., 2018. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. Vitr. Cell. Dev. Biol. - Anim. 430–438. https://doi.org/https://doi.org/10.1007/s11626-018-0262-6Wang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D., Liu, G., 2014. Beneficial effect of Resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 101, 577–586. https://doi.org/http://dx.doi.org/10.1016/j.fertnstert.2013.10.041Woods, E.J., Benson, J.D., Agca, Y., Critser, J.K., 2004. Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.Wowk, B., 2007. How Cryoprotectans Work. Cryonics 28, 3–7.Wright, J.S., Johnson, E.R., Di Labio, G.A., 2001. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183.Xia, N., Daiber, A., Förstermann, U., Li, H., 2017. Antioxidant effects of Resveratrol in the cardiovascular system. Br. J. Pharmacol. 174, 1633–1646. https://doi.org/https://doi.org/10.1111/bph.13492Xiang, Y., Xu, J., Li, L., Lin, X., Chen, X., Zhang, X., Fu, Y., Luo, L., 2012. Calorie restriction increases primordial follicle reserve in mature female chemotherapy-treated rats. Gene 493, 77–82. https://doi.org/https://doi.org/10.1016/j.gene.2011.11.019Yang, Z., Argenziano, M., Salamone, P. et al., 2016. Preclinical pharmacokinetics comparison between Resveratrol 2-hydroxypropyl-β-cyclodextrin complex and Resveratrol suspension after oral administration. J Incl Phenom Macrocycl Chem 86, 263–271, . https://doi.org/10.1007/s10847-016-0657-5Yang, H.W., Hwang, K.J., Kwon, H.C., Kim, H.S., Choi, K.W., Oh, K.S., 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 4, 998– 1002.Yao, J., Geng, L., Huang, R., Peng, W., Chen, X., Jiang, X., Yu, M., Li, M., Huang, Y., Yang, X., 2017. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 154, 197–205. https://doi.org/10.1530/REP-16-0480Yashiro, I., Tagiri, M., Ogawa, H., Tashima, K., Takashima, S., Hara, H., Hirabayashi, M., Hochi, S., 2015. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with a -tocopherol. Reproduction 149, 347–355. https://doi.org/10.1530/REP-14-0594Ying C, Hsu WL, Hong WF, Cheng WT, Yang Y., 2000. Estrogen receptor is expressed in pig embryos during preimplantation development. Mol Reprod Dev. 55: 83-88.Yoon, J., Juhn, K.M., Jung, E.H., Park, H.J., Yoon, S.H., Ko, Y., Hur, C.Y., Lim, J.H., 2020. Effects of Resveratrol, granulocyte-macrophage colony-stimulating factor or dichloroacetic acid in the culture media on embryonic development and pregnancy rates in aged mice. Aging (Albany. NY). 12, 2659–2669. https://doi.org/10.18632/aging.102768Yoshikawa, T., Takahashi, S., Tanigawa, T., Naito, Y., Ichikawa, H., Takano, H., Al., E., 1991. Investigation into the reactivity between various amino acids and oxygen-derived free radicals by use of the ESR spin trapping method. J. Clin. Biochem. Nutr. 11, 161–169.You, J., Kim, J., Lim, J., Lee, E., 2010. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74, 777–785. https://doi.org/https://doi.org/10.1016/j.theriogenology.2010.04.002Youm, J., Ki, S., Chul, B., Hyun, S., 2017. Embryonic survival , development and cryoinjury of repeatedly vitrified mouse preimplantation embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 66–70. https://doi.org/10.1016/j.ejogrb.2017.08.027Yu, X.L., Deng, W., Liu, F.J., Li, Y.H., Li, X.X., Zhang, Y.L., Zan, L.S., 2010. Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology 73, 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004Zabihi, A., Shabankareh, H.K., Hajarian, H., Foroutanifar, S., 2019. Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domest. Anim. Endocrinol. 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010Zhang, L., Xue, X., Yan, J., Yan, L.Y., Jin, X.H., Zhu, X.H., He, Z.Z., Liu, J., Li, R., Qiao, J., 2016. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep26326Zhao, X., Hao, H., Du, W., Zhao, S., Wang, H., Wang, N., Wang, D., Liu, Y., Qin, T., Zhu, H., 2016. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Resveratrol 60, 132–141.Zhao, X.-M., Min, J.-T., Du, W.-H., Hao, H.-S., Liu, Y., Qin, T., Wang, D., Zhu, H.-B., 2015. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 23, 525–536. https://doi.org/DOI: 10.1017/S0967199414000161Zhao, X., Wei-hua, D.U., Dong, W., Hai-sheng, H.A.O., Tong, Q.I.N., Yan, L.I.U., Hua-bin, Z.H.U., 2012. Controlled Freezing and Open-Pulled Straw ( OPS ) Vitrification of In vitro Produced Bovine Blastocysts Following Analysis of ATP Content and Reactive Oxygen Species ( ROS ) Level. J. Integr. Agric. 11, 446–455. https://doi.org/10.1016/S2095-3119(12)60030-6Zhong, R., Zhou, D., 2013. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. J. Integr. Agric. Beijing 12, 1826–1838.Zullo, G., Albero, G., Neglia, G., Canditiis, C., Bifulco, G., Campanile, G., Gasparrini, B., 2016. L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos. Theriogenology, New York 85, 688–697.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80380/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1114823584.2021.pdf1114823584.2021.pdfMaestría en Ciencias Agrariasapplication/pdf3690727https://repositorio.unal.edu.co/bitstream/unal/80380/3/1114823584.2021.pdfb03ce24efc170c9d28df7ca88d2220f9MD53THUMBNAIL1114823584.2021.pdf.jpg1114823584.2021.pdf.jpgGenerated Thumbnailimage/jpeg5719https://repositorio.unal.edu.co/bitstream/unal/80380/4/1114823584.2021.pdf.jpg8f3376e79427efa9d73f84f9c8c9d87aMD54unal/80380oai:repositorio.unal.edu.co:unal/803802023-07-23 23:04:17.864Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==