Evaluation of spectral similarity indices in unsupervised change detection approaches
Unsupervised change detection (UCD) is a subject of Remote Sensing whose objective is to detect the differences between two multi-temporal images. In some cases, spectral similarity indices have been used as the comparison block in algorithms of UCD. The aim of this paper is to show in a quantitativ...
- Autores:
-
Ramos, Jeisson Fabian
Renza, Diego
Ballesteros L., Dora M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/68575
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/68575
http://bdigital.unal.edu.co/69608/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
change detection
spectral indices
remote sensing
accuracy assessment
detección de cambios
índices espectrales
teledetección
evaluación de precisión
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Unsupervised change detection (UCD) is a subject of Remote Sensing whose objective is to detect the differences between two multi-temporal images. In some cases, spectral similarity indices have been used as the comparison block in algorithms of UCD. The aim of this paper is to show in a quantitative way the performance of four spectral similarity indices in the correct identification of changes. Comparison is performed in terms of precision (overall accuracy and kappa index) over medium and high-resolution images (SPOT-5: Satellite Pour l'Observation de la Terre and Quickbird), with a reference obtained through a post-classification method (based on Support Vector Machines, SVM). The results show dependence on the automatic thresholding technique, as well as on the classes associated with the change. |
---|