Evaluation of spectral similarity indices in unsupervised change detection approaches

Unsupervised change detection (UCD) is a subject of Remote Sensing whose objective is to detect the differences between two multi-temporal images. In some cases, spectral similarity indices have been used as the comparison block in algorithms of UCD. The aim of this paper is to show in a quantitativ...

Full description

Autores:
Ramos, Jeisson Fabian
Renza, Diego
Ballesteros L., Dora M.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/68575
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/68575
http://bdigital.unal.edu.co/69608/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
change detection
spectral indices
remote sensing
accuracy assessment
detección de cambios
índices espectrales
teledetección
evaluación de precisión
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Unsupervised change detection (UCD) is a subject of Remote Sensing whose objective is to detect the differences between two multi-temporal images. In some cases, spectral similarity indices have been used as the comparison block in algorithms of UCD. The aim of this paper is to show in a quantitative way the performance of four spectral similarity indices in the correct identification of changes. Comparison is performed in terms of precision (overall accuracy and kappa index) over medium and high-resolution images (SPOT-5: Satellite Pour l'Observation de la Terre and Quickbird), with a reference obtained through a post-classification method (based on Support Vector Machines, SVM). The results show dependence on the automatic thresholding technique, as well as on the classes associated with the change.