Intelligent classification models for food products basis on morphological, colour and texture features

The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour a...

Full description

Autores:
Veernagouda Ganganagowder, Narendra
Kamath, Priya
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/61055
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/61055
http://bdigital.unal.edu.co/59863/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
Algorithm
digital images
food classifiers
prediction accuracy
training/test
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_1e387e1005ec553e43cfc89fae5b6a1a
oai_identifier_str oai:repositorio.unal.edu.co:unal/61055
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Veernagouda Ganganagowder, Narendrad7a81113-a879-45eb-934f-2be57e50ac5b300Kamath, Priya9844e65c-4b9f-4a11-a1d4-4f6fa468c6613002019-07-02T19:48:21Z2019-07-02T19:48:21Z2017-10-01ISSN: 2323-0118https://repositorio.unal.edu.co/handle/unal/61055http://bdigital.unal.edu.co/59863/The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour and Texture features are used to train the models for classification and detection. The best prediction accuracy is obtained for the Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Simple Logistic (SLOG) and Sequential Minimal Optimization (SMO) classifiers (more than 80% of the success rate for the training/test set and 80% for the validation set). The percentage of correctly classified instances is very high in these models and ranged from 80% to 96% for the training/test set and up to 95% for the validation set.application/pdfspaUniversidad Nacional de Colombia - Sede Palmirahttps://revistas.unal.edu.co/index.php/acta_agronomica/article/view/60049Universidad Nacional de Colombia Revistas electrónicas UN Acta AgronómicaActa AgronómicaVeernagouda Ganganagowder, Narendra and Kamath, Priya (2017) Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66 (4). 486 - 494. ISSN 2323-011855 Ciencias de la tierra / Earth sciences and geology63 Agricultura y tecnologías relacionadas / AgricultureAlgorithmdigital imagesfood classifiersprediction accuracytraining/testIntelligent classification models for food products basis on morphological, colour and texture featuresArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL60049-337264-5-PB.pdfapplication/pdf2684622https://repositorio.unal.edu.co/bitstream/unal/61055/1/60049-337264-5-PB.pdf043982311523dac2fc7c14d4705f1c68MD51THUMBNAIL60049-337264-5-PB.pdf.jpg60049-337264-5-PB.pdf.jpgGenerated Thumbnailimage/jpeg7737https://repositorio.unal.edu.co/bitstream/unal/61055/2/60049-337264-5-PB.pdf.jpgbeae3545a86ad10f3a199d93297d07f4MD52unal/61055oai:repositorio.unal.edu.co:unal/610552024-04-16 23:37:02.774Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Intelligent classification models for food products basis on morphological, colour and texture features
title Intelligent classification models for food products basis on morphological, colour and texture features
spellingShingle Intelligent classification models for food products basis on morphological, colour and texture features
55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
Algorithm
digital images
food classifiers
prediction accuracy
training/test
title_short Intelligent classification models for food products basis on morphological, colour and texture features
title_full Intelligent classification models for food products basis on morphological, colour and texture features
title_fullStr Intelligent classification models for food products basis on morphological, colour and texture features
title_full_unstemmed Intelligent classification models for food products basis on morphological, colour and texture features
title_sort Intelligent classification models for food products basis on morphological, colour and texture features
dc.creator.fl_str_mv Veernagouda Ganganagowder, Narendra
Kamath, Priya
dc.contributor.author.spa.fl_str_mv Veernagouda Ganganagowder, Narendra
Kamath, Priya
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
topic 55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
Algorithm
digital images
food classifiers
prediction accuracy
training/test
dc.subject.proposal.spa.fl_str_mv Algorithm
digital images
food classifiers
prediction accuracy
training/test
description The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour and Texture features are used to train the models for classification and detection. The best prediction accuracy is obtained for the Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Simple Logistic (SLOG) and Sequential Minimal Optimization (SMO) classifiers (more than 80% of the success rate for the training/test set and 80% for the validation set). The percentage of correctly classified instances is very high in these models and ranged from 80% to 96% for the training/test set and up to 95% for the validation set.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-10-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T19:48:21Z
dc.date.available.spa.fl_str_mv 2019-07-02T19:48:21Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2323-0118
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/61055
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/59863/
identifier_str_mv ISSN: 2323-0118
url https://repositorio.unal.edu.co/handle/unal/61055
http://bdigital.unal.edu.co/59863/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/60049
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Acta Agronómica
Acta Agronómica
dc.relation.references.spa.fl_str_mv Veernagouda Ganganagowder, Narendra and Kamath, Priya (2017) Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66 (4). 486 - 494. ISSN 2323-0118
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/61055/1/60049-337264-5-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/61055/2/60049-337264-5-PB.pdf.jpg
bitstream.checksum.fl_str_mv 043982311523dac2fc7c14d4705f1c68
beae3545a86ad10f3a199d93297d07f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089396127793152