Intelligent classification models for food products basis on morphological, colour and texture features
The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour a...
- Autores:
-
Veernagouda Ganganagowder, Narendra
Kamath, Priya
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/61055
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/61055
http://bdigital.unal.edu.co/59863/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
Algorithm
digital images
food classifiers
prediction accuracy
training/test
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_1e387e1005ec553e43cfc89fae5b6a1a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/61055 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Veernagouda Ganganagowder, Narendrad7a81113-a879-45eb-934f-2be57e50ac5b300Kamath, Priya9844e65c-4b9f-4a11-a1d4-4f6fa468c6613002019-07-02T19:48:21Z2019-07-02T19:48:21Z2017-10-01ISSN: 2323-0118https://repositorio.unal.edu.co/handle/unal/61055http://bdigital.unal.edu.co/59863/The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour and Texture features are used to train the models for classification and detection. The best prediction accuracy is obtained for the Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Simple Logistic (SLOG) and Sequential Minimal Optimization (SMO) classifiers (more than 80% of the success rate for the training/test set and 80% for the validation set). The percentage of correctly classified instances is very high in these models and ranged from 80% to 96% for the training/test set and up to 95% for the validation set.application/pdfspaUniversidad Nacional de Colombia - Sede Palmirahttps://revistas.unal.edu.co/index.php/acta_agronomica/article/view/60049Universidad Nacional de Colombia Revistas electrónicas UN Acta AgronómicaActa AgronómicaVeernagouda Ganganagowder, Narendra and Kamath, Priya (2017) Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66 (4). 486 - 494. ISSN 2323-011855 Ciencias de la tierra / Earth sciences and geology63 Agricultura y tecnologías relacionadas / AgricultureAlgorithmdigital imagesfood classifiersprediction accuracytraining/testIntelligent classification models for food products basis on morphological, colour and texture featuresArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL60049-337264-5-PB.pdfapplication/pdf2684622https://repositorio.unal.edu.co/bitstream/unal/61055/1/60049-337264-5-PB.pdf043982311523dac2fc7c14d4705f1c68MD51THUMBNAIL60049-337264-5-PB.pdf.jpg60049-337264-5-PB.pdf.jpgGenerated Thumbnailimage/jpeg7737https://repositorio.unal.edu.co/bitstream/unal/61055/2/60049-337264-5-PB.pdf.jpgbeae3545a86ad10f3a199d93297d07f4MD52unal/61055oai:repositorio.unal.edu.co:unal/610552024-04-16 23:37:02.774Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Intelligent classification models for food products basis on morphological, colour and texture features |
title |
Intelligent classification models for food products basis on morphological, colour and texture features |
spellingShingle |
Intelligent classification models for food products basis on morphological, colour and texture features 55 Ciencias de la tierra / Earth sciences and geology 63 Agricultura y tecnologías relacionadas / Agriculture Algorithm digital images food classifiers prediction accuracy training/test |
title_short |
Intelligent classification models for food products basis on morphological, colour and texture features |
title_full |
Intelligent classification models for food products basis on morphological, colour and texture features |
title_fullStr |
Intelligent classification models for food products basis on morphological, colour and texture features |
title_full_unstemmed |
Intelligent classification models for food products basis on morphological, colour and texture features |
title_sort |
Intelligent classification models for food products basis on morphological, colour and texture features |
dc.creator.fl_str_mv |
Veernagouda Ganganagowder, Narendra Kamath, Priya |
dc.contributor.author.spa.fl_str_mv |
Veernagouda Ganganagowder, Narendra Kamath, Priya |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology 63 Agricultura y tecnologías relacionadas / Agriculture |
topic |
55 Ciencias de la tierra / Earth sciences and geology 63 Agricultura y tecnologías relacionadas / Agriculture Algorithm digital images food classifiers prediction accuracy training/test |
dc.subject.proposal.spa.fl_str_mv |
Algorithm digital images food classifiers prediction accuracy training/test |
description |
The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour and Texture features are used to train the models for classification and detection. The best prediction accuracy is obtained for the Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Simple Logistic (SLOG) and Sequential Minimal Optimization (SMO) classifiers (more than 80% of the success rate for the training/test set and 80% for the validation set). The percentage of correctly classified instances is very high in these models and ranged from 80% to 96% for the training/test set and up to 95% for the validation set. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-10-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T19:48:21Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T19:48:21Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2323-0118 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/61055 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/59863/ |
identifier_str_mv |
ISSN: 2323-0118 |
url |
https://repositorio.unal.edu.co/handle/unal/61055 http://bdigital.unal.edu.co/59863/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/60049 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Acta Agronómica Acta Agronómica |
dc.relation.references.spa.fl_str_mv |
Veernagouda Ganganagowder, Narendra and Kamath, Priya (2017) Intelligent classification models for food products basis on morphological, colour and texture features. Acta Agronómica, 66 (4). 486 - 494. ISSN 2323-0118 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/61055/1/60049-337264-5-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/61055/2/60049-337264-5-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
043982311523dac2fc7c14d4705f1c68 beae3545a86ad10f3a199d93297d07f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089396127793152 |