Intelligent classification models for food products basis on morphological, colour and texture features
The aim of this paper is to build a supervised intelligent classification model of food products such as Biscuits, Cereals, Vegetables, Edible nuts and etc., using digital images. The Correlation-based Feature Selection (CFS) algorithm and 2nd derivative pre-treatments of the Morphological, Colour a...
- Autores:
-
Veernagouda Ganganagowder, Narendra
Kamath, Priya
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/61055
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/61055
http://bdigital.unal.edu.co/59863/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
63 Agricultura y tecnologías relacionadas / Agriculture
Algorithm
digital images
food classifiers
prediction accuracy
training/test
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional