Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido
ilustraciones, tablas
- Autores:
-
Velásquez Quintero, Carolina
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80747
- Palabra clave:
- 660 - Ingeniería química
Fermentación
Fermentation
Enzimas
Enzymes
Biotecnología
Fermentación en estado sólido
Hongos de la podredumbre blanca
Enzimas ligninolíticas
Lacasa
Extracción enzimática
Purificación e inmovilización enzimática
Colorantes sintéticos
Solid-state fermentation
Ligninolytic enzymes
Laccase
Enzymatic extraction
Enzymatic purification and immobilization
Synthetic dyes
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_1e0c491ea35176df44f82bedefbdea14 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80747 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
dc.title.translated.eng.fl_str_mv |
Production, purification and immobilization of laccase obtained from an optimized solid-state fermentation process |
title |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
spellingShingle |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido 660 - Ingeniería química Fermentación Fermentation Enzimas Enzymes Biotecnología Fermentación en estado sólido Hongos de la podredumbre blanca Enzimas ligninolíticas Lacasa Extracción enzimática Purificación e inmovilización enzimática Colorantes sintéticos Solid-state fermentation Ligninolytic enzymes Laccase Enzymatic extraction Enzymatic purification and immobilization Synthetic dyes |
title_short |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
title_full |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
title_fullStr |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
title_full_unstemmed |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
title_sort |
Producción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólido |
dc.creator.fl_str_mv |
Velásquez Quintero, Carolina |
dc.contributor.advisor.none.fl_str_mv |
Hormaza Anaguano, Angelina Ruiz Villadiego, Orlando Simon |
dc.contributor.author.none.fl_str_mv |
Velásquez Quintero, Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Síntesis, Reactividad y Transformación de Compuestos Orgánicos, Sirytcor |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química |
topic |
660 - Ingeniería química Fermentación Fermentation Enzimas Enzymes Biotecnología Fermentación en estado sólido Hongos de la podredumbre blanca Enzimas ligninolíticas Lacasa Extracción enzimática Purificación e inmovilización enzimática Colorantes sintéticos Solid-state fermentation Ligninolytic enzymes Laccase Enzymatic extraction Enzymatic purification and immobilization Synthetic dyes |
dc.subject.lemb.none.fl_str_mv |
Fermentación Fermentation Enzimas Enzymes Biotecnología |
dc.subject.proposal.spa.fl_str_mv |
Fermentación en estado sólido Hongos de la podredumbre blanca Enzimas ligninolíticas Lacasa Extracción enzimática Purificación e inmovilización enzimática Colorantes sintéticos |
dc.subject.proposal.eng.fl_str_mv |
Solid-state fermentation Ligninolytic enzymes Laccase Enzymatic extraction Enzymatic purification and immobilization Synthetic dyes |
description |
ilustraciones, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-30T15:39:43Z |
dc.date.available.none.fl_str_mv |
2021-11-30T15:39:43Z |
dc.date.issued.none.fl_str_mv |
2021-11-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80747 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80747 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. Zhu, Q. Wu, and N. Wang, “Industrial Enzymes,” in Comprehensive Biotechnology (Second Edition), vol. 3, M. Moo-Young, Ed. Elsevier B.V., 2011, pp. 3–13. O. V. Morozova, G. P. Shumakovich, S. V. Shleev, and Y. I. Yaropolov, “Laccase-mediator systems and their applications: A review,” Appl. Biochem. Microbiol., vol. 43, no. 5, pp. 523–535, 2007, doi: 10.1134/S0003683807050055. S. Rodríguez Couto and J. L. Toca Herrera, “Industrial and biotechnological applications of laccases: A review,” Biotechnol. Adv., vol. 24, no. 5, pp. 500–513, 2006, doi: 10.1016/j.biotechadv.2006.04.003. D. P. Barr and S. D. Aust, “Pollutant Degradation by White Rot Fungi,” Rev. Environ. Contam. Toxicol., vol. 138, pp. 49–72, 1994, doi: 10.1007/978-1-4612-2672-1_3. C. A. Reddy and Z. Mathew, “Bioremediation potential of white rot fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed. Cambridge University Press, 2009, pp. 52–78. C. M. Rivera-Hoyos, E. D. Morales-Álvarez, R. A. Poutou-Piñales, A. M. Pedroza-Rodríguez, R. RodrÍguez-Vázquez, and J. M. Delgado-Boada, “Fungal laccases,” Fungal Biol. Rev., vol. 27, no. 3–4, pp. 67–82, 2013, doi: 10.1016/j.fbr.2013.07.001. J. A. Majeau, S. K. Brar, and R. D. Tyagi, “Laccases for removal of recalcitrant and emerging pollutants,” Bioresour. Technol., vol. 101, no. 7, pp. 2331–2350, 2010, doi: 10.1016/j.biortech.2009.10.087. S. Rodríguez-Couto, “Solid-State Fermentation for Laccases Production and Their Applications,” Curr. Dev. Biotechnol. Bioeng., pp. 211–234, 2017, doi: 10.1016/b978-0-444-63990-5.00011-6 M. Bilal, T. Rasheed, F. Nabeel, H. M. N. Iqbal, and Y. Zhao, “Hazardous contaminants in the environment and their laccase-assisted degradation – A review,” J. Environ. Manage., vol. 234, no. December 2018, pp. 253–264, 2019, doi: 10.1016/j.jenvman.2019.01.001. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, and H. M. N. Iqbal, “Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment,” Environ. Int., vol. 122, no. September, pp. 52–66, 2019, doi: 10.1016/j.envint.2018.11.038. K. Turhan, I. Durukan, S. A. Ozturkcan, and Z. Turgut, “Decolorization of textile basic dye in aqueous solution by ozone,” Dye. Pigment., vol. 92, no. 3, pp. 897–901, 2012, doi: 10.1016/j.dyepig.2011.07.012. I. Arslan-Alaton and I. Alaton, “Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation,” Ecotoxicol. Environ. Saf., vol. 68, no. 1, pp. 98–107, 2007, doi: 10.1016/j.ecoenv.2006.03.009. G. M. Scott, M. Akhtar, R. E. Swaney, and C. J. Houtman, “Recent Developments in Biopulping Technology at Madison, WI,” Prog. Biotechnol., vol. 21, pp. 61–72, 2002, doi: 10.1016/S0921-0423(02)80008-9. G. Singh and S. K. Arya, “Utility of laccase in pulp and paper industry: A progressive step towards the green technology,” Int. J. Biol. Macromol., vol. 134, pp. 1070–1084, 2019, doi: 10.1016/j.ijbiomac.2019.05.168. N. P. Cheremisinoff and P. E. Rosenfeld, “Sources of air emissions from pulp and paper mills,” in Handbook of Pollution Prevention and Cleaner Production, vol. 2, 2010, pp. 179–259. A. Rekuć, J. Bryjak, K. Szymańska, and A. B. Jarzebski, “Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity,” Process Biochem., vol. 44, no. 2, pp. 191–198, 2009, doi: 10.1016/j.procbio.2008.10.007. A. Kandelbauer, O. Maute, R. W. Kessler, A. Erlacher, and G. M. Gübitz, “Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy,” Biotechnol. Bioeng., vol. 87, no. 4, pp. 552–563, 2004, doi: 10.1002/bit.20162. S. Rodríguez Couto, J. F. Osma, V. Saravia, G. M. Gübitz, and J. L. Toca Herrera, “Coating of immobilised laccase for stability enhancement: A novel approach,” Appl. Catal. A Gen., vol. 329, no. March 2019, pp. 156–160, 2007, doi: 10.1016/j.apcata.2007.07.001. Y. G. Makas, N. A. Kalkan, S. Aksoy, H. Altinok, and N. Hasirci Nesrin, “Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks,” J. Biotechnol., vol. 148, no. 4, pp. 216–220, 2010, doi: 10.1016/j.jbiotec.2010.05.011. S. García-Lara and S. O. Serna-Saldivar, “Corn History and Culture,” in Corn. Chemistry and Technology, Third Edit., S. O. Serna-Saldivar, Ed. Elsevier Inc., 2019, pp. 1–18. G. M. H. Gómez and J. E. Ocampo, “Producción y consumo del maíz en Colombia, descripción de la cadena y propuesta de estrategias para un mejor desempeño de la misma,” in Algunos componentes generales, particulares y singulares del maíz en Colombia y México, First Edit., G. M. H. Gómez, Ed. Medellín, Colombia: Biogénesis Fondo Editorial. Universidad de Antioquia, 2018, pp. 95–112. Agroinsumos SAS, “Situación del Cultivo de Maíz en Colombia,” 2018. L. V. P. Gonzalez, S. P. M. Gómez, and P. A. G. Abad, “Aprovechamiento de residuos agroindustriales en Colombia,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 2, pp. 141–150, 2017. J. S. Knapp and K. C. A. Bromley-Challoner, “Recalcitrant organic compounds,” in Handbook of Water and Wastewater Microbiology, D. Mara and N. Horan, Eds. Elsevier, 2003, pp. 559–595. P. Goyal and R. K. Basniwal, “Environmental Bioremediation : Biodegradation of Xenobiotic Compounds,” in Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management, M. Z. Hashmi, V. Kumar, and A. Varma, Eds. 2017, pp. 347–371. W. Przystas, E. Zabłocka-Godlewska, and E. Grabinska-Sota, “Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports,” Brazilian J. Microbiol., vol. 9, pp. 285–295, 2017, doi: 10.1016/j.bjm.2017.06.010. D. P. de Lima et al., “Fungal bioremediation of pollutant aromatic amines,” Curr. Opin. Green Sustain. Chem., vol. 11, pp. 34–44, 2018, doi: 10.1016/j.cogsc.2018.03.012. A. T. N. Dao, J. Vonck, T. K. S. Janssens, H. T. C. Dang, A. Brouwer, and T. E. de Boer, “Screening white-rot fungi for bioremediation potential of 2,3,7,8- tetrachlorodibenzo-p-dioxin,” Ind. Crop. Prod., vol. 128, pp. 153–161, 2019, doi: 10.1016/j.indcrop.2018.10.059. P. J. Harvey and C. F. Thurston, “The biochemistry of ligninolytic fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed. Cambridge University Press, 2009, pp. 27–51. A. Hatakka and K. E. Hammel, “Fungal Biodegradation of Lignocelluloses,” in Hofrichter M. (eds) Industrial Applications. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Second edi., Springer, Berlin, Heidelberg, 2010, pp. 319–340. L. Gianfreda, M. A. Rao, R. Scelza, and M. D. L. Mora, “Role of Enzymes in Environment Cleanup / Remediation,” in Agro-Industrial Wastes as Feedstock for Enzyme Production, First Edit., G. Dhillon and S. Kaur, Eds. Elsevier Inc., 2016, pp. 133–155. C. F. Thurston, “The structure and function of fungal laccases,” Microbiology, vol. 140, no. 1, pp. 19–26, 1994, doi: 10.5771/9783845276564-901. P. J. Strong and H. Claus, “Laccase : A Review of Its Past and Its Future in Bioremediation,” Crit. Rev. Environ. Sci. Technol., vol. 41, no. 4, pp. 373–434, 2011, doi: 10.1080/10643380902945706. A. T. N. Dao, J. Vonck, T. K. S. Janssens, H. T. C. Dang, A. Brouwer, and T. E. de Boer, “Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Ind. Crops Prod., vol. 128, pp. 153–161, 2019, doi: 10.1016/j.indcrop.2018.10.059. H. Forootanfar et al., “Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase,” J. Hazard. Mater., vol. 209–210, pp. 199–203, 2012, doi: 10.1016/j.jhazmat.2012.01.012. S. Shanmugam, P. Ulaganathan, K. Swaminathan, S. Sadhasivam, and Y. R. Wu, “Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: Degradation pathway and product analysis,” Int. Biodeterior. Biodegrad., vol. 125, pp. 258–268, 2017, doi: 10.1016/j.ibiod.2017.08.001. C. Krishna, “Solid-State Fermentation Systems—An Overview,” Crit. Rev. Biotechnol., vol. 25, no. 1–2, pp. 1–30, 2005, doi: 10.1080/07388550590925383. A. Pandey, C. R. Soccol, J. A. Rodríguez-Leon, and P. Nigam, Solid-State Fermentation in Biotechnology. Fundamentals and Applications, First Edit. New Delhi, 2001. C. R. Soccol et al., “Recent developments and innovations in solid state fermentation,” Biotechnol. Res. Innov., vol. 1, pp. 52–71, 2017, doi: 10.1016/j.biori.2017.01.002. N. Srivastava, M. Srivastava, W. Ramteke, and K. Mishra, “Solid-State Fermentation Strategy for Microbial Metabolites Production : An Overview,” in New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier B.V., 2019, pp. 345–354. X. Ge, J. Vasco-Correa, and Y. Li, “Solid-State Fermentation Bioreactors and Fundamentals,” in Current Developments in Biotechnology and Bioengineering. Bioprocesses, Bioreactors and Controls, C. Larroche, M. Á. Sanromán, G. Du, and A. Pandey, Eds. 2017, pp. 381–402. D. A. Mitchell, Solid Substrate Cultivation. London: Elsevier Applied Science, 1992. M. K. Gowthaman, C. Krishna, and M. Moo-Young, “Fungal solid state fermentation — an overview,” in Applied Mycology and Biotechnology. Vol 1. Agriculture and Food Production, G. G. Khachatourians and D. K. Arora, Eds. Elsevier Science B.V., 2001, pp. 305–352. B. K. Lonsane, N. P. Ghildyal, S. Budiatman, and S. V. Ramakrishna, “Engineering Aspects of Solid-State Fermentation,” Enzym. Microb. Technol., vol. 7, pp. 258–265, 1985, doi: 10.1016/S0065-2164(08)70215-6. M. Raimbault, “General and microbiological aspects of solid substrate fermentation,” Electron. J. Biotechnol., vol. 1, no. 3, pp. 114–140, 1998. B. K. Lonsane et al., “Scale-Up Strategies for Solid State Fermentation Systems,” Process Biochem., vol. 27, pp. 259–273, 1992. B. Bertrand, F. Martínez-Morales, and M. R. Trejo-Hernández, “Fungal Laccases: Induction and production,” Rev. Mex. Ing. Química, vol. 12, no. 3, pp. 23–43, 2013. D. Iark et al., “Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii,” Bioresour. Technol., vol. 289, 2019, doi: 10.1016/j.biortech.2019.121655. S. Zeng, X. Qin, and L. Xia, “Degradation of the herbicide isoproturon by laccase-mediator systems,” Biochem. Eng. J., vol. 119, pp. 92–100, 2017, doi: 10.1016/j.bej.2016.12.016. C. Barrios-Estrada et al., “Potentialities of active membranes with immobilized laccase for Bisphenol A degradation,” Int. J. Biol. Macromol., vol. 108, pp. 837–844, 2018, doi: 10.1016/j.ijbiomac.2017.10.177. X. Li, S. Li, X. Liang, D. J. McClements, X. Liu, and F. Liu, “Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase,” Trends Food Sci. Technol., vol. 103, no. June, pp. 78–93, 2020, doi: 10.1016/j.tifs.2020.06.014. M. Christwardana, “Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance,” Enzyme Microb. Technol., vol. 106, no. June, pp. 1–10, 2017, doi: 10.1016/j.enzmictec.2017.06.012. A. Guadix, F. Camacho, and E. M. Guadix, “Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor,” J. Food Eng., vol. 72, pp. 398–405, 2006, doi: 10.1016/j.jfoodeng.2004.12.022. E. Dako, A.-M. Bernier, A. Thomas, and C. K., “The Problems Associated with Enzyme Purification,” in Chemical Biology, P. D. Ekinci, Ed. InTech, 2012, pp. 19–40. A. H. Westphal and W. J. H. van Berkel, “Techniques for Enzyme Purification,” in Biocatalysis for Practitioners, G. De-Gonzalo and I. Lavandera, Eds. 2021. S. Mukherjee, “Isolation and Purification of Industrial Enzymes: Advances in Enzyme Technology,” in Advances in Enzyme Technology, R. S. Singh, R. R. Singhania, A. Pandey, and C. Larroche, Eds. Kolkata, India: Elsevier B.V., 2019, pp. 41–70. E. V. Schmalhausen, M. S. Shumkov, V. I. Muronetz, and V. K. Švedas, “Expression of glyceraldehyde-3-phosphate dehydrogenase from M. tuberculosis in E. coli. Purification and characteristics of the untagged recombinant enzyme,” Protein Expr. Purif., vol. 157, pp. 28–35, 2019, doi: 10.1016/j.pep.2019.01.010. A. C. Lemes, S. C. Silvério, S. Rodrigues, and L. R. Rodrigues, “Integrated strategy for purification of esterase from Aureobasidium pullulans,” Sep. Purif. Technol., vol. 209, pp. 409–418, 2019, doi: 10.1016/j.seppur.2018.07.062. A. M. Othman, M. A. Elsayed, A. M. Elshafei, and M. M. Hassan, “Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization,” Int. J. Biol. Macromol., vol. 113, pp. 1142–1148, 2018, doi: 10.1016/j.ijbiomac.2018.03.043. S. Sadeghian-Abadi, S. Rezaei, M. Yousefi-Mokri, and M. A. Faramarzi, “Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme,” J. Environ. Manage., vol. 244, pp. 235–246, 2019, doi: 10.1016/j.jenvman.2019.05.058. R. Hatti-kaul, “Aqueous Two-Phase Systems: A General Overview,” in Aqueous Two-Phase Systems. Methods and Protocols, 2000, pp. 1–10. K. Mayolo-Deloisa, J. Benavides, and M. Rito-Palomares, “General Concepts and Definitions of Aqueous Two-Phase Systems,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 1–18. M. L. Cacicedo et al., “Immobilized Enzymes and Their Applications,” in Advances in Enzyme Technology, R. S. Singh, R. R. Singhania, A. Pandey, and C. Larroche, Eds. Buenos Aires, Argentina: Elsevier B.V., 2019, pp. 169–200. M. Bilal, Y. Zhao, T. Rasheed, and H. M. N. Iqbal, “Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review,” Int. J. Biol. Macromol., vol. 120, pp. 2530–2544, 2018, doi: 10.1016/j.ijbiomac.2018.09.025. A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Dyes and Pigments: Their Structure and Properties,” in Dyes and Pigments, Springer, Cham, 2016, pp. 13–29. O. Glenz, “APPLICATION OF DYES BY DYEING,” in The Chemistry of SYNTHETIC DYES, vol. IV, K. Venkataraman, Ed. ACADEMIC PRESS, INC., 1970, pp. 1–74. N. Ashfaq and T. Masud, “Surveillance on Artificial Colours in Different Ready to Eat Foods,” Pakistan J. Nutr., vol. 1, no. 5, pp. 223–225, 2002. R. Christie, Environmental Aspects of Textile Dyeing. Elsevier, 2007. K. Hunger, “Industrial dyes: chemistry, properties, applications,” vol. 125, no. 33, 2003. LP Information Inc., “Global Dyes Market Growth 2019-2024,” 2019. [Online]. Available: https://www.lpinformationdata.com/reports/153723/global-dyes-market. H. Zollinger, Color chemistry: synthesis, properties, and applications of organic dyes and pigments. New York: VCH Publishers, 1987. P. Nigam, G. Armour, I. M. Banat, D. Singh, and R. Marchant, “Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues,” Bioresour. Technol., vol. 72, no. 3, pp. 219–226, 2000, doi: 10.1016/S0960-8524(99)00123-6. V. K. Gupta and Suhas, “Application of low-cost adsorbents for dye removal - A review,” J. Environ. Manage., vol. 90, no. 8, pp. 2313–2342, 2009, doi: 10.1016/j.jenvman.2008.11.017. A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Classification of Dye and Pigments,” in Dyes and Pigments, Springer, Cham, 2016, pp. 31–45. R. W. Sabnis, “A,” in Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications, John Wiley & Sons, Inc., 2010, pp. 1–35. K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, and V. Sidey, “Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R,” J. Mol. Struct., vol. 1144, pp. 216–224, 2017, doi: 10.1016/j.molstruc.2017.05.001. H. C. Ha, Y. Honda, T. Watanabe, and M. Kuwahara, “Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus,” Appl. Microbiol. Biotechnol., vol. 55, no. 6, pp. 704–711, 2001, doi: 10.1007/s002530100653. A. Jaramillo, S. Jimenez, A. Merino, and A. Hormaza, “Obtención de un inóculo fúngico para la degradación de un colorante azo por fermentación en estado sólido,” U.D.C.A Actual. Divulg. Científica, vol. 17, no. 2, pp. 577–585, 2014. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, pp. 248–254, 1976, doi: 10.1016/j.cj.2017.04.003. P. Ander and K. Messner, “Oxidation of 1-hydroxybenzotriazole by laccase and lignin peroxidase,” Biotechnol. Tech., vol. 12, no. 3, pp. 191–195, 1998, doi: 10.1023/A:1008813206178. R. E. Childs and W. G. Bardsley, “The Steady-State Kinetics of Peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as Chromogen,” Biochem. J., vol. 145, no. 1, pp. 93–103, 1975, doi: 10.1042/bj1450093. G. Palmieri et al., “Purification, Characterization, and Functional Role of a Novel Extracellular Protease from Pleurotus ostreatus,” Appl. Environ. Microbiol., vol. 67, no. 6, pp. 2754–2759, 2001, doi: 10.1128/AEM.67.6.2754-2759.2001. H. Risdianto, E. Sofianti, S. H. Suhardi, and T. Setiadi, “Optimisation of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation,” Int. J. Eng. Sci., vol. 44, no. 2, pp. 92–105, 2012, doi: 10.5614/itbj.eng.sci.2012.44.2.1. S. Rodríguez-Couto, M. A. Longo, C. Cameselle, and A. Sanromán, “Ligninolytic enzymes from Corncob Cultures of Phanerochaete chrysosporium under Semi-Solid-State Conditions,” Acta Biotechnol., vol. 19, no. 1, pp. 17–25, 1999, doi: 10.1002/abio.370190104. J. C. Gonzalez, S. C. Medina, A. Rodriguez, J. F. Osma, C. J. Alméciga-Díaz, and O. F. Sánchez, “Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes,” PLoS One, vol. 8, no. 9, pp. 1–14, 2013, doi: 10.1371/journal.pone.0073721. V. Elisashvili, E. Kachlishvili, and M. Penninckx, “Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes,” J. Ind. Microbiol. Biotechnol., vol. 35, no. 11, pp. 1531–1538, 2008, doi: 10.1007/s10295-008-0454-2. G. C. dos Santos Bazanella, D. F. de Souza, R. Castoldi, R. F. Oliveira, A. Bracht, and R. M. Peralta, “Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization,” Folia Microbiol. (Praha)., vol. 58, no. 6, pp. 641–647, 2013, doi: 10.1007/s12223-013-0253-7. Q. An et al., “Sequential Solid-State and Submerged Cultivation of the White Rot Fungus Pleurotus ostreatus on Biomass and the Activity of Lignocellulolytic Enzymes,” BioResources, vol. 11, no. 4, pp. 8791–8805, 2016, doi: 10.15376/biores.11.4.8791-8805. I. Membrillo, C. Sánchez, M. Meneses, E. Favela, and O. Loera, “Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains,” Bioresour. Technol., vol. 99, no. 16, pp. 7842–7847, 2008, doi: 10.1016/j.biortech.2008.01.083. A. I. El-Batal, N. M. Elkenawy, A. S. Yassin, and M. A. Amin, “Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles,” Biotechnol. Reports, vol. 5, no. 1, pp. 31–39, 2015, doi: 10.1016/j.btre.2014.11.001. A. Mishra and S. Kumar, “Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation,” Process Biochem., vol. 42, no. 4, pp. 681–685, 2007, doi: 10.1016/j.procbio.2006.09.022. C. Zhu, G. Bao, and S. Huang, “Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper,” Biotechnol. Biotechnol. Equip., vol. 30, no. 2, pp. 270–276, 2016, doi: 10.1080/13102818.2015.1135081. A. Das, S. Bhattacharya, G. Panchanan, B. S. Navya, and P. Nambiar, “Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk,” J. Genet. Eng. Biotechnol., vol. 14, no. 2, pp. 281–288, 2016, doi: 10.1016/j.jgeb.2016.09.007. J. M. Bollag and A. Leonowicz, “Comparative studies of extracellular fungal laccases,” Appl. Environ. Microbiol., vol. 48, no. 4, pp. 849–854, 1984, doi: 10.1128/aem.48.4.849-854.1984. M. A. Elsayed, M. M. Hassan, A. M. Elshafei, B. M. Haroun, and A. M. Othman, “Optimization of Cultural and Nutritional Parameters for the Production of Laccase by Pleurotus ostreatus ARC280,” Br. Biotechnol. J., vol. 2, no. 3, pp. 115–132, 2012, doi: 10.9734/bbj/2012/1305. É. C. D’Agostini, T. R. D’Agostini Mantovani, J. S. do Valle, L. D. Paccola-Meirelles, N. Barros Colauto, and G. A. Linde, “Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate cultivation,” Sci. Agric., vol. 68, no. 3, pp. 295–300, 2011, doi: 10.1590/s0103-90162011000300004. M. Stajić et al., “Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species,” Enzyme Microb. Technol., vol. 38, no. 1–2, pp. 65–73, 2006, doi: 10.1016/j.enzmictec.2005.03.026. G. Palmieri, P. Giardina, C. Bianco, B. Fontanella, and G. Sannia, “Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus,” Appl. Environ. Microbiol., vol. 66, no. 3, pp. 920–924, 2000, doi: 10.1128/AEM.66.3.920-924.2000. M. I. Fonseca, E. Shimizu, P. D. Zapata, and L. L. Villalba, “Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina),” Enzyme Microb. Technol., vol. 46, no. 6, pp. 534–539, 2010, doi: 10.1016/j.enzmictec.2009.12.017. P. Baldrian and J. Gabriel, “Copper and cadmium increase laccase activity in Pleurotus ostreatus,” FEMS Microbiol. Lett., vol. 206, no. 1, pp. 69–74, 2002, doi: 10.1016/S0378-1097(01)00519-5. S. G. Karp et al., “Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation,” Biomed Res. Int., 2015, doi: 10.1155/2015/181204. M. Akpinar and R. Ozturk Urek, “Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization,” 3 Biotech, vol. 7, no. 2, pp. 1–10, 2017, doi: 10.1007/s13205-017-0742-5. S. G. Karp et al., “Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse,” Bioresour. Technol., vol. 114, pp. 735–739, 2012, doi: 10.1016/j.biortech.2012.03.058. D. Lestan, M. Lestan, and A. Perdih, “Physiological aspects of biosynthesis of lignin peroxidases by Phanerochaete chrysosporium,” Appl. Environ. Microbiol., vol. 60, no. 2, pp. 606–612, 1994, doi: 10.1128/aem.60.2.606-612.1994. Z. Zheng and J. P. Obbard, “Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium,” J. Chem. Technol. Biotechnol., vol. 76, no. 4, pp. 423–429, 2001, doi: 10.1002/jctb.396. P. Dwivedi, V. Vivekanand, N. Pareek, A. Sharma, and R. P. Singh, “Co-cultivation of mutant Penicillium oxalicum SAU E-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation,” N. Biotechnol., vol. 28, no. 6, pp. 616–626, 2011, doi: 10.1016/j.nbt.2011.05.006. D. Kumar, V. K. Jain, G. Shanker, and A. Srivastava, “Citric acid production by solid state fermentation using sugarcane bagasse,” Process Biochem., vol. 38, no. 12, pp. 1731–1738, 2003, doi: 10.1016/S0032-9592(02)00252-2. I. Stoilova, A. Krastanov, and V. Stanchev, “Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation,” Adv. Biosci. Biotechnol., vol. 01, no. 03, pp. 208–215, 2010, doi: 10.4236/abb.2010.13029. S. Salony, V. Mishra, and V. S. Bisaria, “Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes,” Appl. Microbiol. Biotechnol., vol. 71, no. 5, pp. 646–653, 2006, doi: 10.1007/s00253-005-0206-4. G. Palmieri et al., “Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus,” Appl. Microbiol. Biotechnol., vol. 39, no. 4–5, pp. 632–636, 1993, doi: 10.1007/BF00205066. A. Majcherczyk, C. Johannes, and A. Hüttermann, “Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication,” Appl. Microbiol. Biotechnol., vol. 51, no. 2, pp. 267–276, 1999, doi: 10.1007/s002530051392. R. Zhuo et al., “Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants,” J. Hazard. Mater., vol. 344, pp. 499–510, 2018, doi: 10.1016/j.jhazmat.2017.10.055. Z. Ding et al., “Production and characterization of laccase from Pleurotus ferulae in submerged fermentation,” Ann. Microbiol., vol. 64, no. 1, pp. 121–129, 2014, doi: 10.1007/s13213-013-0640-y. L. Liu et al., “Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969,” Enzyme Microb. Technol., vol. 44, no. 6–7, pp. 426–433, 2009, doi: 10.1016/j.enzmictec.2009.02.008. S. Aslam, M. Asgher, N. A. Khan, and M. Bilal, “Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes,” J. Water Process Eng., vol. 40, 2021, doi: 10.1016/j.jwpe.2021.101971. V. A. Parsegian, “Hopes for Hofmeister,” Nature, vol. 378, no. 6555, pp. 335–336, 1995, doi: https://doi.org/10.1038/378335a0. K. Ratanapongleka, “Partitioning behavior of laccase from Lentinus polychrous lev in aqueous two phase systems,” Songklanakarin J. Sci. Technol., vol. 34, no. 1, pp. 69–76, 2012. S. Ketnawa, S. Rawdkuen, and P. Chaiwut, “Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar,” Biochem. Eng. J., vol. 52, no. 2–3, pp. 205–211, 2010, doi: 10.1016/j.bej.2010.08.012. K. Agrawal and P. Verma, “Potential removal of hazardous wastes using white laccase purified by ATPS–PEG–salt system: An operational study,” Environ. Technol. Innov., vol. 17, p. 100556, 2020, doi: 10.1016/j.eti.2019.100556. S. C. Silvério, O. Rodríguez, A. P. M. Tavares, J. A. Teixeira, and E. A. MacEdo, “Laccase recovery with aqueous two-phase systems: Enzyme partitioning and stability,” J. Mol. Catal. B Enzym., vol. 87, pp. 37–43, 2013, doi: 10.1016/j.molcatb.2012.10.010. B. Farruggia, R. Rigatuso, L. Capezio, V. Diez, and G. Picó, “Influence of high concentration monovalent cations on the protein partitioning in polyethyleneglycol 1500-phosphate aqueous two-phase systems,” J. Chromatogr. B, vol. 809, no. 2, pp. 301–306, 2004, doi: 10.1016/j.jchromb.2004.06.040. S. Nalinanon, S. Benjakul, W. Visessanguan, and H. Kishimura, “Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems,” Process Biochem., vol. 44, no. 4, pp. 471–476, 2009, doi: 10.1016/j.procbio.2008.12.018. H. Shahbaz-Mohamadi, E. Omidinia, and R. Dinarvand, “Evaluation of recombinant phenylalanine dehydrogenase behavior in aqueous two-phase partitioning,” Process Biochem., vol. 42, no. 9, pp. 1296–1301, 2007, doi: 10.1016/j.procbio.2007.06.005. G. Bassani, B. Farruggia, B. Nerli, D. Romanini, and G. Picó, “Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 859, no. 2, pp. 222–228, 2007, doi: 10.1016/j.jchromb.2007.09.038. A. M. Goja, H. Yang, M. Cui, and C. Li, “Aqueous Two-Phase Extraction Advances for Bioseparation,” J. Bioprocess. Biotech., vol. 04, no. 01, pp. 1–8, 2013, doi: 10.4172/2155-9821.1000140. K. Naganagouda and V. H. Mulimani, “Aqueous two-phase extraction (ATPE): An attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase,” Process Biochem., vol. 43, no. 11, pp. 1293–1299, 2008, doi: 10.1016/j.procbio.2008.07.016. S. Yang, Z. Huang, Z. Jiang, and L. Li, “Partition and purification of a thermostable xylanase produced by Paecilomyces thermophila in solid-state fermentation using aqueous two-phase systems,” Process Biochem., vol. 43, no. 1, pp. 56–61, 2008, doi: 10.1016/j.procbio.2007.10.013. A. S. Schmidt, A. M. Ventom, and J. A. Asenjo, “Partitioning and purification of α-amylase in aqueous two-phase systems,” Enzym. Microb. Technol., vol. 16, no. 2, pp. 131–142, 1994. B. Bertrand et al., “Pleurotus ostreatus laccase recovery from residual compost using aqueous two-phase systems,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2235–2242, 2016, doi: 10.1002/jctb.4995. M. González-González and F. Ruiz-Ruiz, “Aqueous Two-Phase Systems for the Recovery of Bioparticles,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 54–78. P. Vázquez-Villegas and O. Aguilar, “Continuous Aqueous Two-Phase System Processes,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 141–159. E. I. Díaz-Rojas, W. M. Argüelles-Monal, I. Higuera-Ciapara, J. Hernández, J. Lizardi-Mendoza, and F. M. Goycoolea, “Determination of chitin and protein contents during the isolation of chitin from shrimp waste,” Macromol. Biosci., vol. 6, no. 5, pp. 340–347, 2006, doi: 10.1002/mabi.200500233. M. L. Verma, S. Kumar, A. Das, J. S. Randhawa, and M. Chamundeeswari, “Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications,” in Sustainable Agriculture Reviews 35, vol. 35, Springer, Cham, 2019, pp. 147–173. J. A. Salazar-Leyva et al., “Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: Efectos en su estabilización y aplicaciones,” Rev. Mex. Ing. Química, vol. 13, no. 1, pp. 129–150, 2014, [Online]. Available: http://www.redalyc.org/articulo.oa?id=62029966013. F. Zheng, B. K. Cui, X. J. Wu, G. Meng, H. X. Liu, and J. Si, “Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes,” Int. Biodeterior. Biodegrad., vol. 110, no. 4, pp. 69–78, 2016, doi: 10.1016/j.ibiod.2016.03.004. M. Asgher, S. Noreen, and M. Bilal, “Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres,” Chem. Eng. Res. Des., vol. 119, pp. 1–11, 2017, doi: 10.1016/j.cherd.2016.12.011. M. Bilal and M. Asgher, “Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads,” Chem. Cent. J., vol. 9, no. 1, pp. 1–14, 2015, doi: 10.1186/s13065-015-0125-0. A. Kumari and A. M. Kayastha, “Immobilization of soybean (Glycine max) α-amylase onto Chitosan and Amberlite MB-150 beads: Optimization and characterization,” J. Mol. Catal. B Enzym., vol. 69, no. 1–2, pp. 8–14, 2011, doi: 10.1016/j.molcatb.2010.12.003. Ş. A. Çetinus, E. Şahin, and D. Saraydin, “Preparation of Cu(II) adsorbed chitosan beads for catalase immobilization,” Food Chem., vol. 114, no. 3, pp. 962–969, 2009, doi: 10.1016/j.foodchem.2008.10.049. O. Kašpar, V. Tokárová, G. S. Nyanhongo, G. Gübitz, and F. Štěpánek, “Effect of cross-linking method on the activity of spray-dried chitosan microparticles with immobilized laccase,” Food Bioprod. Process., vol. 91, no. 4, pp. 525–533, 2013, doi: 10.1016/j.fbp.2013.06.001. S. K. Halder et al., “Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation,” J. Biosci. Bioeng., vol. 117, no. 2, pp. 170–177, 2014, doi: 10.1016/j.jbiosc.2013.07.011. R. Bourbonnais and M. G. Paice, “Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation,” FEBS Lett., vol. 267, no. 1, pp. 99–102, 1990, doi: 10.1016/0014-5793(90)80298-w. M. Fabbrini, C. Galli, and P. Gentili, “Comparing the catalytic efficiency of some mediators of laccase,” J. Mol. Catal. - B Enzym., vol. 16, no. 5–6, pp. 231–240, 2002, doi: 10.1016/S1381-1177(01)00067-4. S. Sondhi, R. Kaur, S. Kaur, and P. S. Kaur, “Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent,” Int. J. Biol. Macromol., vol. 117, pp. 1093–1100, 2018, doi: 10.1016/j.ijbiomac.2018.06.007. L. Aricov, A. R. Leonties, I. C. Gîfu, D. Preda, A. Raducan, and D. F. Anghel, “Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants,” J. Environ. Manage., vol. 276, 2020, doi: 10.1016/j.jenvman.2020.111326. P. P. Champagne and J. A. Ramsay, “Dye decolorization and detoxification by laccase immobilized on porous glass beads,” Bioresour. Technol., vol. 101, no. 7, pp. 2230–2235, 2010, doi: 10.1016/j.biortech.2009.11.066. M. Vera, G. S. Nyanhongo, A. Pellis, B. L. Rivas, and G. M. Guebitz, “Immobilization of Myceliophthora thermophila laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl,” J. Appl. Polym. Sci., vol. 136, no. 16, pp. 1–10, 2019, doi: 10.1002/app.47417. C. C. S. Fortes, A. L. Daniel-da-Silva, A. M. R. B. Xavier, and A. P. M. Tavares, “Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions,” Chem. Eng. Process. Process Intensif., vol. 117, no. August 2016, pp. 1–8, 2017, doi: 10.1016/j.cep.2017.03.009. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxiv, 142 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.publisher.department.spa.fl_str_mv |
Escuela de biociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80747/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80747/2/1017236205.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80747/3/1017236205.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 e383c2fa6c7d140e6ddeb0c80d43d3ea 509b90941952eb29187bcb5a1bccf90c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089741899923456 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hormaza Anaguano, Angelina70779d78f865ae48c9e652716219e98e600Ruiz Villadiego, Orlando Simonc04face915a5523f79dee380ee442ad7600Velásquez Quintero, Carolina9be927e5528d01beb62f946ea9b6ad99Grupo de Investigación en Síntesis, Reactividad y Transformación de Compuestos Orgánicos, Sirytcor2021-11-30T15:39:43Z2021-11-30T15:39:43Z2021-11-29https://repositorio.unal.edu.co/handle/unal/80747Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasLas enzimas ligninolíticas, llamadas así por su capacidad de oxidar el polímero de la lignina, han cobrado importancia en el campo de la biotecnología en vista de la habilidad que demuestran para oxidar a su vez otro tipo de moléculas orgánicas estructuralmente más sencillas. Esta característica ha potencializado indudablemente su implementación en diversas aplicaciones industriales entre las que se destaca la deslignificación de la pulpa en el procesamiento del papel, el aprovechamiento de residuos agroindustriales para la generación de biocombustibles o enmiendas orgánicas y el tratamiento de efluentes contaminados con compuestos recalcitrantes, tales como los colorantes sintéticos, entre otras. La lacasa, particularmente la proveniente de los conocidos hongos de podredumbre blanca (HPB), pertenece a este grupo de enzimas ligninolíticas y es de especial interés debido a que es producida en gran cantidad y de manera extracelular. Bajo este contexto, el grupo de investigación en Síntesis, Reactividad y Transformación de Compuestos Orgánicos (SIRYTCOR) ha desarrollado una línea de investigación enfocada en la producción de enzimas ligninolíticas mediante fermentación en estado sólido (FES). Así, el presente estudio buscó fortalecer dicha línea investigativa a través de la evaluación de las condiciones más adecuadas para la producción, extracción y cuantificación de lacasa obtenida del proceso de FES sobre un soporte orgánico. Adicionalmente, reconociendo algunas de las limitaciones encontradas en la perspectiva de emplear la lacasa a una mayor escala, se evaluó la purificación e inmovilización de esta enzima y se llevó a cabo un estudio en el que se estimó su capacidad para decolorar un tinte sintético. En principio, se evaluó la producción de lacasa a partir de las cuatro especies de HPB Trametes pubescens, Phanaerochaete chrysosporium, Pleurotus ostreatus y Pleurotus pulmonarius durante un periodo de 7, 10 y 13 días de FES sobre el residuo agrícola tusa de maíz. Pleurotus ostreatus fue seleccionada para llevar a cabo la optimización de las condiciones fermentativas mediante un diseño central compuesto, del cual se estableció que la producción de lacasa se maximiza utilizando el extracto de malta como fuente de carbono, a una concentración de 18.2 g/L; el extracto de levadura como fuente de nitrógeno, ajustando la proporción carbono-nitrógeno a un valor de 5.15:1; el tween 80 como inductor, a una concentración de 0.17% v/v; y el contenido de humedad en 85.0%. Como etapa siguiente, se implementaron diversos diseños factoriales que permitieron seleccionar al buffer acetato de sodio 50 mM, a pH de 6.00 y pH de 4.00, como mejores condiciones para llevar a cabo los procesos de extracción y cuantificación enzimática, respectivamente. Una vez concluida esta fase, se realizó un seguimiento diario de la cinética de actividad enzimática y actividad específica durante 18 días; este estudio permitió concluir que la lacasa producida bajo las condiciones previamente seleccionadas, alcanza su primer pico de actividad al octavo día de fermentación. Con respecto a la actividad enzimática alcanzada, cabe señalar que se obtuvo un incremento de seis veces con respecto al valor reportado al inicio de la investigación (8.6 ± 0.8 U/gss), como resultado de la optimización de las condiciones fermentativas, así como del estudio de los procesos de extracción y cuantificación, y la construcción de las curvas cinéticas. Asimismo, se evaluó la purificación del extracto crudo obtenido, seguido de la inmovilización del extracto purificado. Para la purificación, se evaluaron dos metodologías consecutivas: precipitación con sulfato de amonio y separación por sistemas bifásicos acuosos. Por su parte, para la inmovilización se evaluó una metodología estándar que permitió la síntesis de micropartículas de quitosano funcionalizadas con glutaraldehído. El sistema final, resultante de la precipitación con sulfato de amonio a una concentración de saturación del 70% y la inmovilización de acuerdo con el método enunciado, se aplicó en la decoloración del tinte rojo allura AC (RA), cuyo uso se extiende a industrias como la textil y alimentaria en sus procesos de tinción. En esta última sección, se incluyeron evaluaciones comparativas con varios sistemas, encontrando los mejores resultados del proceso decolorativo con una lacasa comercial, el extracto crudo y el extracto precipitado respectivamente. (Texto tomado de la fuente)igninolytic enzymes, named for their ability to oxidase the lignin polymer, have gained importance in the field of biotechnology because of their demonstrated ability to also oxidase other types of structurally simpler organic molecules. This feature has undoubtedly promoted their implementation in multiple industrial applications, highlighting pulp delignification in paper processing, agro-industrial waste use for the generation of biofuels and organic amendments, and treatment of effluents contaminated with recalcitrant compounds as synthetic dyes, among others. Laccase, particularly from the well-known white-rot fungi (WRF), belongs to this group of ligninolytic enzymes and is especially important because it is produced in large amounts and in an extracellular way. In this context, the research group on Synthesis, Reactivity and Transformation of Organic Compounds (SIRYTCOR for its acronym in Spanish) has developed a research line focused on ligninolytic enzymes production through solid-state fermentation (SSF). Thus, the present study aimed at strengthening that research line by evaluating the most suitable conditions for the production, extraction and quantification of laccase, which was obtained from the SSF process onto an organic support. Furthermore, taking into account some of the limitations found in the perspective of using laccase on a larger scale, the purification and immobilization of this enzyme were evaluated, and a study to determine its capability to decolorize a synthetic dye was carried out. In the first place, laccase production by the four WRF Trametes pubescens, Phanaerochaete chrysosporium, Pleurotus ostreatus and Pleurotus pulmonarius was evaluated during 7, 10 and 13 days of a SSF onto the agricultural by-product corncob. Pleurotus ostreatus was selected to carry out an optimization of the fermentative conditions through a central composite design. It was found that laccase production is maximized using malt extract as carbon source (18.2 g L-1), yeast extract as nitrogen source fitting carbon-nitrogen ratio at 5.15:1, tween 80 as inducer (0.17 % v v-1) and a moisture content of 85%. Subsequently, several factorial designs allowed to select the 50 mM sodium acetate buffer pH = 6.00 and pH = 4.00 as the best conditions to carry out the enzymatic extraction and quantification processes, respectively. Once this phase was completed, a study of the kinetics of enzymatic activity and specific activity was performed during 18 days on a daily basis. This study allowed to conclude that the laccase produced under the previously selected conditions reaches its first peak of activity on the 8th day of fermentation. Regarding the enzymatic activity obtained, it is worth mentioning that it was observed a six-fold increase with respect to the value reached at the beginning of the research (8.6 ± 0.8 U/gss), as a result of the optimization of fermentation conditions, as well as the study of the extraction process, quantification process and the construction of kinetic curves. Likewise, the purification of the crude extract obtained was evaluated, followed by the immobilization of the purified extract. The enzymatic purification was carried out through two consecutive methodologies: ammonium sulfate precipitation and aqueous two-phase system. For its part, enzymatic immobilization was performed using a standard methodology that allowed the synthesis of chitosan microparticles functionalized with glutaraldehyde. The final system, resulting from the ammonium sulfate precipitation with 70% of salt saturation and the immobilization according to the stated method, was evaluated in the decolorization of allura red AC, a synthetic dye extensively used in the textile and food industry in their dyeing processes. In this last section, several systems were considered for comparative purposes. The results show that the best decolorative systems were a commercial laccase, the crude extract and the precipitated extract, respectively.MaestríaMagíster en Ciencias - BiotecnologíaBiotecnología ambientalÁrea curricular Biotecnologíaxxiv, 142 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaFermentaciónFermentationEnzimasEnzymesBiotecnologíaFermentación en estado sólidoHongos de la podredumbre blancaEnzimas ligninolíticasLacasaExtracción enzimáticaPurificación e inmovilización enzimáticaColorantes sintéticosSolid-state fermentationLigninolytic enzymesLaccaseEnzymatic extractionEnzymatic purification and immobilizationSynthetic dyesProducción, purificación e inmovilización de lacasa obtenida a partir de un proceso optimizado de fermentación en estado sólidoProduction, purification and immobilization of laccase obtained from an optimized solid-state fermentation processTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMD. Zhu, Q. Wu, and N. Wang, “Industrial Enzymes,” in Comprehensive Biotechnology (Second Edition), vol. 3, M. Moo-Young, Ed. Elsevier B.V., 2011, pp. 3–13.O. V. Morozova, G. P. Shumakovich, S. V. Shleev, and Y. I. Yaropolov, “Laccase-mediator systems and their applications: A review,” Appl. Biochem. Microbiol., vol. 43, no. 5, pp. 523–535, 2007, doi: 10.1134/S0003683807050055.S. Rodríguez Couto and J. L. Toca Herrera, “Industrial and biotechnological applications of laccases: A review,” Biotechnol. Adv., vol. 24, no. 5, pp. 500–513, 2006, doi: 10.1016/j.biotechadv.2006.04.003.D. P. Barr and S. D. Aust, “Pollutant Degradation by White Rot Fungi,” Rev. Environ. Contam. Toxicol., vol. 138, pp. 49–72, 1994, doi: 10.1007/978-1-4612-2672-1_3.C. A. Reddy and Z. Mathew, “Bioremediation potential of white rot fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed. Cambridge University Press, 2009, pp. 52–78.C. M. Rivera-Hoyos, E. D. Morales-Álvarez, R. A. Poutou-Piñales, A. M. Pedroza-Rodríguez, R. RodrÍguez-Vázquez, and J. M. Delgado-Boada, “Fungal laccases,” Fungal Biol. Rev., vol. 27, no. 3–4, pp. 67–82, 2013, doi: 10.1016/j.fbr.2013.07.001.J. A. Majeau, S. K. Brar, and R. D. Tyagi, “Laccases for removal of recalcitrant and emerging pollutants,” Bioresour. Technol., vol. 101, no. 7, pp. 2331–2350, 2010, doi: 10.1016/j.biortech.2009.10.087.S. Rodríguez-Couto, “Solid-State Fermentation for Laccases Production and Their Applications,” Curr. Dev. Biotechnol. Bioeng., pp. 211–234, 2017, doi: 10.1016/b978-0-444-63990-5.00011-6M. Bilal, T. Rasheed, F. Nabeel, H. M. N. Iqbal, and Y. Zhao, “Hazardous contaminants in the environment and their laccase-assisted degradation – A review,” J. Environ. Manage., vol. 234, no. December 2018, pp. 253–264, 2019, doi: 10.1016/j.jenvman.2019.01.001.T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, and H. M. N. Iqbal, “Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment,” Environ. Int., vol. 122, no. September, pp. 52–66, 2019, doi: 10.1016/j.envint.2018.11.038.K. Turhan, I. Durukan, S. A. Ozturkcan, and Z. Turgut, “Decolorization of textile basic dye in aqueous solution by ozone,” Dye. Pigment., vol. 92, no. 3, pp. 897–901, 2012, doi: 10.1016/j.dyepig.2011.07.012.I. Arslan-Alaton and I. Alaton, “Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation,” Ecotoxicol. Environ. Saf., vol. 68, no. 1, pp. 98–107, 2007, doi: 10.1016/j.ecoenv.2006.03.009.G. M. Scott, M. Akhtar, R. E. Swaney, and C. J. Houtman, “Recent Developments in Biopulping Technology at Madison, WI,” Prog. Biotechnol., vol. 21, pp. 61–72, 2002, doi: 10.1016/S0921-0423(02)80008-9.G. Singh and S. K. Arya, “Utility of laccase in pulp and paper industry: A progressive step towards the green technology,” Int. J. Biol. Macromol., vol. 134, pp. 1070–1084, 2019, doi: 10.1016/j.ijbiomac.2019.05.168.N. P. Cheremisinoff and P. E. Rosenfeld, “Sources of air emissions from pulp and paper mills,” in Handbook of Pollution Prevention and Cleaner Production, vol. 2, 2010, pp. 179–259.A. Rekuć, J. Bryjak, K. Szymańska, and A. B. Jarzebski, “Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity,” Process Biochem., vol. 44, no. 2, pp. 191–198, 2009, doi: 10.1016/j.procbio.2008.10.007.A. Kandelbauer, O. Maute, R. W. Kessler, A. Erlacher, and G. M. Gübitz, “Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy,” Biotechnol. Bioeng., vol. 87, no. 4, pp. 552–563, 2004, doi: 10.1002/bit.20162.S. Rodríguez Couto, J. F. Osma, V. Saravia, G. M. Gübitz, and J. L. Toca Herrera, “Coating of immobilised laccase for stability enhancement: A novel approach,” Appl. Catal. A Gen., vol. 329, no. March 2019, pp. 156–160, 2007, doi: 10.1016/j.apcata.2007.07.001.Y. G. Makas, N. A. Kalkan, S. Aksoy, H. Altinok, and N. Hasirci Nesrin, “Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks,” J. Biotechnol., vol. 148, no. 4, pp. 216–220, 2010, doi: 10.1016/j.jbiotec.2010.05.011.S. García-Lara and S. O. Serna-Saldivar, “Corn History and Culture,” in Corn. Chemistry and Technology, Third Edit., S. O. Serna-Saldivar, Ed. Elsevier Inc., 2019, pp. 1–18.G. M. H. Gómez and J. E. Ocampo, “Producción y consumo del maíz en Colombia, descripción de la cadena y propuesta de estrategias para un mejor desempeño de la misma,” in Algunos componentes generales, particulares y singulares del maíz en Colombia y México, First Edit., G. M. H. Gómez, Ed. Medellín, Colombia: Biogénesis Fondo Editorial. Universidad de Antioquia, 2018, pp. 95–112.Agroinsumos SAS, “Situación del Cultivo de Maíz en Colombia,” 2018.L. V. P. Gonzalez, S. P. M. Gómez, and P. A. G. Abad, “Aprovechamiento de residuos agroindustriales en Colombia,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 2, pp. 141–150, 2017.J. S. Knapp and K. C. A. Bromley-Challoner, “Recalcitrant organic compounds,” in Handbook of Water and Wastewater Microbiology, D. Mara and N. Horan, Eds. Elsevier, 2003, pp. 559–595.P. Goyal and R. K. Basniwal, “Environmental Bioremediation : Biodegradation of Xenobiotic Compounds,” in Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management, M. Z. Hashmi, V. Kumar, and A. Varma, Eds. 2017, pp. 347–371.W. Przystas, E. Zabłocka-Godlewska, and E. Grabinska-Sota, “Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports,” Brazilian J. Microbiol., vol. 9, pp. 285–295, 2017, doi: 10.1016/j.bjm.2017.06.010.D. P. de Lima et al., “Fungal bioremediation of pollutant aromatic amines,” Curr. Opin. Green Sustain. Chem., vol. 11, pp. 34–44, 2018, doi: 10.1016/j.cogsc.2018.03.012.A. T. N. Dao, J. Vonck, T. K. S. Janssens, H. T. C. Dang, A. Brouwer, and T. E. de Boer, “Screening white-rot fungi for bioremediation potential of 2,3,7,8- tetrachlorodibenzo-p-dioxin,” Ind. Crop. Prod., vol. 128, pp. 153–161, 2019, doi: 10.1016/j.indcrop.2018.10.059.P. J. Harvey and C. F. Thurston, “The biochemistry of ligninolytic fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed. Cambridge University Press, 2009, pp. 27–51.A. Hatakka and K. E. Hammel, “Fungal Biodegradation of Lignocelluloses,” in Hofrichter M. (eds) Industrial Applications. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Second edi., Springer, Berlin, Heidelberg, 2010, pp. 319–340.L. Gianfreda, M. A. Rao, R. Scelza, and M. D. L. Mora, “Role of Enzymes in Environment Cleanup / Remediation,” in Agro-Industrial Wastes as Feedstock for Enzyme Production, First Edit., G. Dhillon and S. Kaur, Eds. Elsevier Inc., 2016, pp. 133–155.C. F. Thurston, “The structure and function of fungal laccases,” Microbiology, vol. 140, no. 1, pp. 19–26, 1994, doi: 10.5771/9783845276564-901.P. J. Strong and H. Claus, “Laccase : A Review of Its Past and Its Future in Bioremediation,” Crit. Rev. Environ. Sci. Technol., vol. 41, no. 4, pp. 373–434, 2011, doi: 10.1080/10643380902945706.A. T. N. Dao, J. Vonck, T. K. S. Janssens, H. T. C. Dang, A. Brouwer, and T. E. de Boer, “Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Ind. Crops Prod., vol. 128, pp. 153–161, 2019, doi: 10.1016/j.indcrop.2018.10.059.H. Forootanfar et al., “Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase,” J. Hazard. Mater., vol. 209–210, pp. 199–203, 2012, doi: 10.1016/j.jhazmat.2012.01.012.S. Shanmugam, P. Ulaganathan, K. Swaminathan, S. Sadhasivam, and Y. R. Wu, “Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: Degradation pathway and product analysis,” Int. Biodeterior. Biodegrad., vol. 125, pp. 258–268, 2017, doi: 10.1016/j.ibiod.2017.08.001.C. Krishna, “Solid-State Fermentation Systems—An Overview,” Crit. Rev. Biotechnol., vol. 25, no. 1–2, pp. 1–30, 2005, doi: 10.1080/07388550590925383.A. Pandey, C. R. Soccol, J. A. Rodríguez-Leon, and P. Nigam, Solid-State Fermentation in Biotechnology. Fundamentals and Applications, First Edit. New Delhi, 2001.C. R. Soccol et al., “Recent developments and innovations in solid state fermentation,” Biotechnol. Res. Innov., vol. 1, pp. 52–71, 2017, doi: 10.1016/j.biori.2017.01.002.N. Srivastava, M. Srivastava, W. Ramteke, and K. Mishra, “Solid-State Fermentation Strategy for Microbial Metabolites Production : An Overview,” in New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier B.V., 2019, pp. 345–354.X. Ge, J. Vasco-Correa, and Y. Li, “Solid-State Fermentation Bioreactors and Fundamentals,” in Current Developments in Biotechnology and Bioengineering. Bioprocesses, Bioreactors and Controls, C. Larroche, M. Á. Sanromán, G. Du, and A. Pandey, Eds. 2017, pp. 381–402.D. A. Mitchell, Solid Substrate Cultivation. London: Elsevier Applied Science, 1992.M. K. Gowthaman, C. Krishna, and M. Moo-Young, “Fungal solid state fermentation — an overview,” in Applied Mycology and Biotechnology. Vol 1. Agriculture and Food Production, G. G. Khachatourians and D. K. Arora, Eds. Elsevier Science B.V., 2001, pp. 305–352.B. K. Lonsane, N. P. Ghildyal, S. Budiatman, and S. V. Ramakrishna, “Engineering Aspects of Solid-State Fermentation,” Enzym. Microb. Technol., vol. 7, pp. 258–265, 1985, doi: 10.1016/S0065-2164(08)70215-6.M. Raimbault, “General and microbiological aspects of solid substrate fermentation,” Electron. J. Biotechnol., vol. 1, no. 3, pp. 114–140, 1998.B. K. Lonsane et al., “Scale-Up Strategies for Solid State Fermentation Systems,” Process Biochem., vol. 27, pp. 259–273, 1992.B. Bertrand, F. Martínez-Morales, and M. R. Trejo-Hernández, “Fungal Laccases: Induction and production,” Rev. Mex. Ing. Química, vol. 12, no. 3, pp. 23–43, 2013.D. Iark et al., “Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii,” Bioresour. Technol., vol. 289, 2019, doi: 10.1016/j.biortech.2019.121655.S. Zeng, X. Qin, and L. Xia, “Degradation of the herbicide isoproturon by laccase-mediator systems,” Biochem. Eng. J., vol. 119, pp. 92–100, 2017, doi: 10.1016/j.bej.2016.12.016.C. Barrios-Estrada et al., “Potentialities of active membranes with immobilized laccase for Bisphenol A degradation,” Int. J. Biol. Macromol., vol. 108, pp. 837–844, 2018, doi: 10.1016/j.ijbiomac.2017.10.177.X. Li, S. Li, X. Liang, D. J. McClements, X. Liu, and F. Liu, “Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase,” Trends Food Sci. Technol., vol. 103, no. June, pp. 78–93, 2020, doi: 10.1016/j.tifs.2020.06.014.M. Christwardana, “Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance,” Enzyme Microb. Technol., vol. 106, no. June, pp. 1–10, 2017, doi: 10.1016/j.enzmictec.2017.06.012.A. Guadix, F. Camacho, and E. M. Guadix, “Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor,” J. Food Eng., vol. 72, pp. 398–405, 2006, doi: 10.1016/j.jfoodeng.2004.12.022.E. Dako, A.-M. Bernier, A. Thomas, and C. K., “The Problems Associated with Enzyme Purification,” in Chemical Biology, P. D. Ekinci, Ed. InTech, 2012, pp. 19–40.A. H. Westphal and W. J. H. van Berkel, “Techniques for Enzyme Purification,” in Biocatalysis for Practitioners, G. De-Gonzalo and I. Lavandera, Eds. 2021.S. Mukherjee, “Isolation and Purification of Industrial Enzymes: Advances in Enzyme Technology,” in Advances in Enzyme Technology, R. S. Singh, R. R. Singhania, A. Pandey, and C. Larroche, Eds. Kolkata, India: Elsevier B.V., 2019, pp. 41–70.E. V. Schmalhausen, M. S. Shumkov, V. I. Muronetz, and V. K. Švedas, “Expression of glyceraldehyde-3-phosphate dehydrogenase from M. tuberculosis in E. coli. Purification and characteristics of the untagged recombinant enzyme,” Protein Expr. Purif., vol. 157, pp. 28–35, 2019, doi: 10.1016/j.pep.2019.01.010.A. C. Lemes, S. C. Silvério, S. Rodrigues, and L. R. Rodrigues, “Integrated strategy for purification of esterase from Aureobasidium pullulans,” Sep. Purif. Technol., vol. 209, pp. 409–418, 2019, doi: 10.1016/j.seppur.2018.07.062.A. M. Othman, M. A. Elsayed, A. M. Elshafei, and M. M. Hassan, “Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization,” Int. J. Biol. Macromol., vol. 113, pp. 1142–1148, 2018, doi: 10.1016/j.ijbiomac.2018.03.043.S. Sadeghian-Abadi, S. Rezaei, M. Yousefi-Mokri, and M. A. Faramarzi, “Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme,” J. Environ. Manage., vol. 244, pp. 235–246, 2019, doi: 10.1016/j.jenvman.2019.05.058.R. Hatti-kaul, “Aqueous Two-Phase Systems: A General Overview,” in Aqueous Two-Phase Systems. Methods and Protocols, 2000, pp. 1–10.K. Mayolo-Deloisa, J. Benavides, and M. Rito-Palomares, “General Concepts and Definitions of Aqueous Two-Phase Systems,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 1–18.M. L. Cacicedo et al., “Immobilized Enzymes and Their Applications,” in Advances in Enzyme Technology, R. S. Singh, R. R. Singhania, A. Pandey, and C. Larroche, Eds. Buenos Aires, Argentina: Elsevier B.V., 2019, pp. 169–200.M. Bilal, Y. Zhao, T. Rasheed, and H. M. N. Iqbal, “Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review,” Int. J. Biol. Macromol., vol. 120, pp. 2530–2544, 2018, doi: 10.1016/j.ijbiomac.2018.09.025.A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Dyes and Pigments: Their Structure and Properties,” in Dyes and Pigments, Springer, Cham, 2016, pp. 13–29.O. Glenz, “APPLICATION OF DYES BY DYEING,” in The Chemistry of SYNTHETIC DYES, vol. IV, K. Venkataraman, Ed. ACADEMIC PRESS, INC., 1970, pp. 1–74.N. Ashfaq and T. Masud, “Surveillance on Artificial Colours in Different Ready to Eat Foods,” Pakistan J. Nutr., vol. 1, no. 5, pp. 223–225, 2002.R. Christie, Environmental Aspects of Textile Dyeing. Elsevier, 2007.K. Hunger, “Industrial dyes: chemistry, properties, applications,” vol. 125, no. 33, 2003.LP Information Inc., “Global Dyes Market Growth 2019-2024,” 2019. [Online]. Available: https://www.lpinformationdata.com/reports/153723/global-dyes-market.H. Zollinger, Color chemistry: synthesis, properties, and applications of organic dyes and pigments. New York: VCH Publishers, 1987.P. Nigam, G. Armour, I. M. Banat, D. Singh, and R. Marchant, “Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues,” Bioresour. Technol., vol. 72, no. 3, pp. 219–226, 2000, doi: 10.1016/S0960-8524(99)00123-6.V. K. Gupta and Suhas, “Application of low-cost adsorbents for dye removal - A review,” J. Environ. Manage., vol. 90, no. 8, pp. 2313–2342, 2009, doi: 10.1016/j.jenvman.2008.11.017.A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Classification of Dye and Pigments,” in Dyes and Pigments, Springer, Cham, 2016, pp. 31–45.R. W. Sabnis, “A,” in Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications, John Wiley & Sons, Inc., 2010, pp. 1–35.K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, and V. Sidey, “Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R,” J. Mol. Struct., vol. 1144, pp. 216–224, 2017, doi: 10.1016/j.molstruc.2017.05.001.H. C. Ha, Y. Honda, T. Watanabe, and M. Kuwahara, “Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus,” Appl. Microbiol. Biotechnol., vol. 55, no. 6, pp. 704–711, 2001, doi: 10.1007/s002530100653.A. Jaramillo, S. Jimenez, A. Merino, and A. Hormaza, “Obtención de un inóculo fúngico para la degradación de un colorante azo por fermentación en estado sólido,” U.D.C.A Actual. Divulg. Científica, vol. 17, no. 2, pp. 577–585, 2014.M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, pp. 248–254, 1976, doi: 10.1016/j.cj.2017.04.003.P. Ander and K. Messner, “Oxidation of 1-hydroxybenzotriazole by laccase and lignin peroxidase,” Biotechnol. Tech., vol. 12, no. 3, pp. 191–195, 1998, doi: 10.1023/A:1008813206178.R. E. Childs and W. G. Bardsley, “The Steady-State Kinetics of Peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as Chromogen,” Biochem. J., vol. 145, no. 1, pp. 93–103, 1975, doi: 10.1042/bj1450093.G. Palmieri et al., “Purification, Characterization, and Functional Role of a Novel Extracellular Protease from Pleurotus ostreatus,” Appl. Environ. Microbiol., vol. 67, no. 6, pp. 2754–2759, 2001, doi: 10.1128/AEM.67.6.2754-2759.2001.H. Risdianto, E. Sofianti, S. H. Suhardi, and T. Setiadi, “Optimisation of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation,” Int. J. Eng. Sci., vol. 44, no. 2, pp. 92–105, 2012, doi: 10.5614/itbj.eng.sci.2012.44.2.1.S. Rodríguez-Couto, M. A. Longo, C. Cameselle, and A. Sanromán, “Ligninolytic enzymes from Corncob Cultures of Phanerochaete chrysosporium under Semi-Solid-State Conditions,” Acta Biotechnol., vol. 19, no. 1, pp. 17–25, 1999, doi: 10.1002/abio.370190104.J. C. Gonzalez, S. C. Medina, A. Rodriguez, J. F. Osma, C. J. Alméciga-Díaz, and O. F. Sánchez, “Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes,” PLoS One, vol. 8, no. 9, pp. 1–14, 2013, doi: 10.1371/journal.pone.0073721.V. Elisashvili, E. Kachlishvili, and M. Penninckx, “Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes,” J. Ind. Microbiol. Biotechnol., vol. 35, no. 11, pp. 1531–1538, 2008, doi: 10.1007/s10295-008-0454-2.G. C. dos Santos Bazanella, D. F. de Souza, R. Castoldi, R. F. Oliveira, A. Bracht, and R. M. Peralta, “Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization,” Folia Microbiol. (Praha)., vol. 58, no. 6, pp. 641–647, 2013, doi: 10.1007/s12223-013-0253-7.Q. An et al., “Sequential Solid-State and Submerged Cultivation of the White Rot Fungus Pleurotus ostreatus on Biomass and the Activity of Lignocellulolytic Enzymes,” BioResources, vol. 11, no. 4, pp. 8791–8805, 2016, doi: 10.15376/biores.11.4.8791-8805.I. Membrillo, C. Sánchez, M. Meneses, E. Favela, and O. Loera, “Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains,” Bioresour. Technol., vol. 99, no. 16, pp. 7842–7847, 2008, doi: 10.1016/j.biortech.2008.01.083.A. I. El-Batal, N. M. Elkenawy, A. S. Yassin, and M. A. Amin, “Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles,” Biotechnol. Reports, vol. 5, no. 1, pp. 31–39, 2015, doi: 10.1016/j.btre.2014.11.001.A. Mishra and S. Kumar, “Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation,” Process Biochem., vol. 42, no. 4, pp. 681–685, 2007, doi: 10.1016/j.procbio.2006.09.022.C. Zhu, G. Bao, and S. Huang, “Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper,” Biotechnol. Biotechnol. Equip., vol. 30, no. 2, pp. 270–276, 2016, doi: 10.1080/13102818.2015.1135081.A. Das, S. Bhattacharya, G. Panchanan, B. S. Navya, and P. Nambiar, “Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk,” J. Genet. Eng. Biotechnol., vol. 14, no. 2, pp. 281–288, 2016, doi: 10.1016/j.jgeb.2016.09.007.J. M. Bollag and A. Leonowicz, “Comparative studies of extracellular fungal laccases,” Appl. Environ. Microbiol., vol. 48, no. 4, pp. 849–854, 1984, doi: 10.1128/aem.48.4.849-854.1984.M. A. Elsayed, M. M. Hassan, A. M. Elshafei, B. M. Haroun, and A. M. Othman, “Optimization of Cultural and Nutritional Parameters for the Production of Laccase by Pleurotus ostreatus ARC280,” Br. Biotechnol. J., vol. 2, no. 3, pp. 115–132, 2012, doi: 10.9734/bbj/2012/1305.É. C. D’Agostini, T. R. D’Agostini Mantovani, J. S. do Valle, L. D. Paccola-Meirelles, N. Barros Colauto, and G. A. Linde, “Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate cultivation,” Sci. Agric., vol. 68, no. 3, pp. 295–300, 2011, doi: 10.1590/s0103-90162011000300004.M. Stajić et al., “Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species,” Enzyme Microb. Technol., vol. 38, no. 1–2, pp. 65–73, 2006, doi: 10.1016/j.enzmictec.2005.03.026.G. Palmieri, P. Giardina, C. Bianco, B. Fontanella, and G. Sannia, “Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus,” Appl. Environ. Microbiol., vol. 66, no. 3, pp. 920–924, 2000, doi: 10.1128/AEM.66.3.920-924.2000.M. I. Fonseca, E. Shimizu, P. D. Zapata, and L. L. Villalba, “Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina),” Enzyme Microb. Technol., vol. 46, no. 6, pp. 534–539, 2010, doi: 10.1016/j.enzmictec.2009.12.017.P. Baldrian and J. Gabriel, “Copper and cadmium increase laccase activity in Pleurotus ostreatus,” FEMS Microbiol. Lett., vol. 206, no. 1, pp. 69–74, 2002, doi: 10.1016/S0378-1097(01)00519-5.S. G. Karp et al., “Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation,” Biomed Res. Int., 2015, doi: 10.1155/2015/181204.M. Akpinar and R. Ozturk Urek, “Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization,” 3 Biotech, vol. 7, no. 2, pp. 1–10, 2017, doi: 10.1007/s13205-017-0742-5.S. G. Karp et al., “Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse,” Bioresour. Technol., vol. 114, pp. 735–739, 2012, doi: 10.1016/j.biortech.2012.03.058.D. Lestan, M. Lestan, and A. Perdih, “Physiological aspects of biosynthesis of lignin peroxidases by Phanerochaete chrysosporium,” Appl. Environ. Microbiol., vol. 60, no. 2, pp. 606–612, 1994, doi: 10.1128/aem.60.2.606-612.1994.Z. Zheng and J. P. Obbard, “Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium,” J. Chem. Technol. Biotechnol., vol. 76, no. 4, pp. 423–429, 2001, doi: 10.1002/jctb.396.P. Dwivedi, V. Vivekanand, N. Pareek, A. Sharma, and R. P. Singh, “Co-cultivation of mutant Penicillium oxalicum SAU E-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation,” N. Biotechnol., vol. 28, no. 6, pp. 616–626, 2011, doi: 10.1016/j.nbt.2011.05.006.D. Kumar, V. K. Jain, G. Shanker, and A. Srivastava, “Citric acid production by solid state fermentation using sugarcane bagasse,” Process Biochem., vol. 38, no. 12, pp. 1731–1738, 2003, doi: 10.1016/S0032-9592(02)00252-2.I. Stoilova, A. Krastanov, and V. Stanchev, “Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation,” Adv. Biosci. Biotechnol., vol. 01, no. 03, pp. 208–215, 2010, doi: 10.4236/abb.2010.13029.S. Salony, V. Mishra, and V. S. Bisaria, “Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes,” Appl. Microbiol. Biotechnol., vol. 71, no. 5, pp. 646–653, 2006, doi: 10.1007/s00253-005-0206-4.G. Palmieri et al., “Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus,” Appl. Microbiol. Biotechnol., vol. 39, no. 4–5, pp. 632–636, 1993, doi: 10.1007/BF00205066.A. Majcherczyk, C. Johannes, and A. Hüttermann, “Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication,” Appl. Microbiol. Biotechnol., vol. 51, no. 2, pp. 267–276, 1999, doi: 10.1007/s002530051392.R. Zhuo et al., “Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants,” J. Hazard. Mater., vol. 344, pp. 499–510, 2018, doi: 10.1016/j.jhazmat.2017.10.055.Z. Ding et al., “Production and characterization of laccase from Pleurotus ferulae in submerged fermentation,” Ann. Microbiol., vol. 64, no. 1, pp. 121–129, 2014, doi: 10.1007/s13213-013-0640-y.L. Liu et al., “Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969,” Enzyme Microb. Technol., vol. 44, no. 6–7, pp. 426–433, 2009, doi: 10.1016/j.enzmictec.2009.02.008.S. Aslam, M. Asgher, N. A. Khan, and M. Bilal, “Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes,” J. Water Process Eng., vol. 40, 2021, doi: 10.1016/j.jwpe.2021.101971.V. A. Parsegian, “Hopes for Hofmeister,” Nature, vol. 378, no. 6555, pp. 335–336, 1995, doi: https://doi.org/10.1038/378335a0.K. Ratanapongleka, “Partitioning behavior of laccase from Lentinus polychrous lev in aqueous two phase systems,” Songklanakarin J. Sci. Technol., vol. 34, no. 1, pp. 69–76, 2012.S. Ketnawa, S. Rawdkuen, and P. Chaiwut, “Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar,” Biochem. Eng. J., vol. 52, no. 2–3, pp. 205–211, 2010, doi: 10.1016/j.bej.2010.08.012.K. Agrawal and P. Verma, “Potential removal of hazardous wastes using white laccase purified by ATPS–PEG–salt system: An operational study,” Environ. Technol. Innov., vol. 17, p. 100556, 2020, doi: 10.1016/j.eti.2019.100556.S. C. Silvério, O. Rodríguez, A. P. M. Tavares, J. A. Teixeira, and E. A. MacEdo, “Laccase recovery with aqueous two-phase systems: Enzyme partitioning and stability,” J. Mol. Catal. B Enzym., vol. 87, pp. 37–43, 2013, doi: 10.1016/j.molcatb.2012.10.010.B. Farruggia, R. Rigatuso, L. Capezio, V. Diez, and G. Picó, “Influence of high concentration monovalent cations on the protein partitioning in polyethyleneglycol 1500-phosphate aqueous two-phase systems,” J. Chromatogr. B, vol. 809, no. 2, pp. 301–306, 2004, doi: 10.1016/j.jchromb.2004.06.040.S. Nalinanon, S. Benjakul, W. Visessanguan, and H. Kishimura, “Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems,” Process Biochem., vol. 44, no. 4, pp. 471–476, 2009, doi: 10.1016/j.procbio.2008.12.018.H. Shahbaz-Mohamadi, E. Omidinia, and R. Dinarvand, “Evaluation of recombinant phenylalanine dehydrogenase behavior in aqueous two-phase partitioning,” Process Biochem., vol. 42, no. 9, pp. 1296–1301, 2007, doi: 10.1016/j.procbio.2007.06.005.G. Bassani, B. Farruggia, B. Nerli, D. Romanini, and G. Picó, “Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 859, no. 2, pp. 222–228, 2007, doi: 10.1016/j.jchromb.2007.09.038.A. M. Goja, H. Yang, M. Cui, and C. Li, “Aqueous Two-Phase Extraction Advances for Bioseparation,” J. Bioprocess. Biotech., vol. 04, no. 01, pp. 1–8, 2013, doi: 10.4172/2155-9821.1000140.K. Naganagouda and V. H. Mulimani, “Aqueous two-phase extraction (ATPE): An attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase,” Process Biochem., vol. 43, no. 11, pp. 1293–1299, 2008, doi: 10.1016/j.procbio.2008.07.016.S. Yang, Z. Huang, Z. Jiang, and L. Li, “Partition and purification of a thermostable xylanase produced by Paecilomyces thermophila in solid-state fermentation using aqueous two-phase systems,” Process Biochem., vol. 43, no. 1, pp. 56–61, 2008, doi: 10.1016/j.procbio.2007.10.013.A. S. Schmidt, A. M. Ventom, and J. A. Asenjo, “Partitioning and purification of α-amylase in aqueous two-phase systems,” Enzym. Microb. Technol., vol. 16, no. 2, pp. 131–142, 1994.B. Bertrand et al., “Pleurotus ostreatus laccase recovery from residual compost using aqueous two-phase systems,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2235–2242, 2016, doi: 10.1002/jctb.4995.M. González-González and F. Ruiz-Ruiz, “Aqueous Two-Phase Systems for the Recovery of Bioparticles,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 54–78.P. Vázquez-Villegas and O. Aguilar, “Continuous Aqueous Two-Phase System Processes,” in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products, 2017, pp. 141–159.E. I. Díaz-Rojas, W. M. Argüelles-Monal, I. Higuera-Ciapara, J. Hernández, J. Lizardi-Mendoza, and F. M. Goycoolea, “Determination of chitin and protein contents during the isolation of chitin from shrimp waste,” Macromol. Biosci., vol. 6, no. 5, pp. 340–347, 2006, doi: 10.1002/mabi.200500233.M. L. Verma, S. Kumar, A. Das, J. S. Randhawa, and M. Chamundeeswari, “Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications,” in Sustainable Agriculture Reviews 35, vol. 35, Springer, Cham, 2019, pp. 147–173.J. A. Salazar-Leyva et al., “Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: Efectos en su estabilización y aplicaciones,” Rev. Mex. Ing. Química, vol. 13, no. 1, pp. 129–150, 2014, [Online]. Available: http://www.redalyc.org/articulo.oa?id=62029966013.F. Zheng, B. K. Cui, X. J. Wu, G. Meng, H. X. Liu, and J. Si, “Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes,” Int. Biodeterior. Biodegrad., vol. 110, no. 4, pp. 69–78, 2016, doi: 10.1016/j.ibiod.2016.03.004.M. Asgher, S. Noreen, and M. Bilal, “Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres,” Chem. Eng. Res. Des., vol. 119, pp. 1–11, 2017, doi: 10.1016/j.cherd.2016.12.011.M. Bilal and M. Asgher, “Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads,” Chem. Cent. J., vol. 9, no. 1, pp. 1–14, 2015, doi: 10.1186/s13065-015-0125-0.A. Kumari and A. M. Kayastha, “Immobilization of soybean (Glycine max) α-amylase onto Chitosan and Amberlite MB-150 beads: Optimization and characterization,” J. Mol. Catal. B Enzym., vol. 69, no. 1–2, pp. 8–14, 2011, doi: 10.1016/j.molcatb.2010.12.003.Ş. A. Çetinus, E. Şahin, and D. Saraydin, “Preparation of Cu(II) adsorbed chitosan beads for catalase immobilization,” Food Chem., vol. 114, no. 3, pp. 962–969, 2009, doi: 10.1016/j.foodchem.2008.10.049.O. Kašpar, V. Tokárová, G. S. Nyanhongo, G. Gübitz, and F. Štěpánek, “Effect of cross-linking method on the activity of spray-dried chitosan microparticles with immobilized laccase,” Food Bioprod. Process., vol. 91, no. 4, pp. 525–533, 2013, doi: 10.1016/j.fbp.2013.06.001.S. K. Halder et al., “Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation,” J. Biosci. Bioeng., vol. 117, no. 2, pp. 170–177, 2014, doi: 10.1016/j.jbiosc.2013.07.011.R. Bourbonnais and M. G. Paice, “Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation,” FEBS Lett., vol. 267, no. 1, pp. 99–102, 1990, doi: 10.1016/0014-5793(90)80298-w.M. Fabbrini, C. Galli, and P. Gentili, “Comparing the catalytic efficiency of some mediators of laccase,” J. Mol. Catal. - B Enzym., vol. 16, no. 5–6, pp. 231–240, 2002, doi: 10.1016/S1381-1177(01)00067-4.S. Sondhi, R. Kaur, S. Kaur, and P. S. Kaur, “Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent,” Int. J. Biol. Macromol., vol. 117, pp. 1093–1100, 2018, doi: 10.1016/j.ijbiomac.2018.06.007.L. Aricov, A. R. Leonties, I. C. Gîfu, D. Preda, A. Raducan, and D. F. Anghel, “Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants,” J. Environ. Manage., vol. 276, 2020, doi: 10.1016/j.jenvman.2020.111326.P. P. Champagne and J. A. Ramsay, “Dye decolorization and detoxification by laccase immobilized on porous glass beads,” Bioresour. Technol., vol. 101, no. 7, pp. 2230–2235, 2010, doi: 10.1016/j.biortech.2009.11.066.M. Vera, G. S. Nyanhongo, A. Pellis, B. L. Rivas, and G. M. Guebitz, “Immobilization of Myceliophthora thermophila laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl,” J. Appl. Polym. Sci., vol. 136, no. 16, pp. 1–10, 2019, doi: 10.1002/app.47417.C. C. S. Fortes, A. L. Daniel-da-Silva, A. M. R. B. Xavier, and A. P. M. Tavares, “Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions,” Chem. Eng. Process. Process Intensif., vol. 117, no. August 2016, pp. 1–8, 2017, doi: 10.1016/j.cep.2017.03.009.Universidad Nacional de ColombiaSistema Nacional de Becas de PosgradoEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80747/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1017236205.2021.pdf1017236205.2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1701878https://repositorio.unal.edu.co/bitstream/unal/80747/2/1017236205.2021.pdfe383c2fa6c7d140e6ddeb0c80d43d3eaMD52THUMBNAIL1017236205.2021.pdf.jpg1017236205.2021.pdf.jpgGenerated Thumbnailimage/jpeg4534https://repositorio.unal.edu.co/bitstream/unal/80747/3/1017236205.2021.pdf.jpg509b90941952eb29187bcb5a1bccf90cMD53unal/80747oai:repositorio.unal.edu.co:unal/807472023-07-31 23:03:54.326Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |