Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos
Documento en PDF a color.
- Autores:
-
Chaves Osorio, José Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79865
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Robotics
Autonomous robots
Robótica
Robots autónomos
Agent
AWMR
Collaborative team
Cooperation
COVID-19
Minefield
mobile robotics
Path planning
Safe routes
Search algorithms
Strategy for cooperative task
Agente
AWMR
Equipo colaborativo
Cooperación
COVID-19
Campo minado
Robótica móvil
Planificación de rutas
Rutas seguras
Algoritmos de búsqueda
Estrategia para tarea cooperativa
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_1b6ad0373a3269307e0605b8ba4959f0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79865 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
dc.title.translated.eng.fl_str_mv |
Design of a strategy to obtain safe paths from collaborative robot teamwork |
title |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
spellingShingle |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos 620 - Ingeniería y operaciones afines Robotics Autonomous robots Robótica Robots autónomos Agent AWMR Collaborative team Cooperation COVID-19 Minefield mobile robotics Path planning Safe routes Search algorithms Strategy for cooperative task Agente AWMR Equipo colaborativo Cooperación COVID-19 Campo minado Robótica móvil Planificación de rutas Rutas seguras Algoritmos de búsqueda Estrategia para tarea cooperativa |
title_short |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
title_full |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
title_fullStr |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
title_full_unstemmed |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
title_sort |
Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos |
dc.creator.fl_str_mv |
Chaves Osorio, José Andrés |
dc.contributor.advisor.none.fl_str_mv |
Gómez Mendoza, Juan Bernardo |
dc.contributor.author.none.fl_str_mv |
Chaves Osorio, José Andrés |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Robotics Autonomous robots Robótica Robots autónomos Agent AWMR Collaborative team Cooperation COVID-19 Minefield mobile robotics Path planning Safe routes Search algorithms Strategy for cooperative task Agente AWMR Equipo colaborativo Cooperación COVID-19 Campo minado Robótica móvil Planificación de rutas Rutas seguras Algoritmos de búsqueda Estrategia para tarea cooperativa |
dc.subject.lcsh.none.fl_str_mv |
Robotics Autonomous robots |
dc.subject.lemb.none.fl_str_mv |
Robótica Robots autónomos |
dc.subject.proposal.eng.fl_str_mv |
Agent AWMR Collaborative team Cooperation COVID-19 Minefield mobile robotics Path planning Safe routes Search algorithms Strategy for cooperative task |
dc.subject.proposal.spa.fl_str_mv |
Agente AWMR Equipo colaborativo Cooperación COVID-19 Campo minado Robótica móvil Planificación de rutas Rutas seguras Algoritmos de búsqueda Estrategia para tarea cooperativa |
description |
Documento en PDF a color. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-29T15:46:54Z |
dc.date.available.none.fl_str_mv |
2021-07-29T15:46:54Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79865 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79865 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] M. Sánchez, M. Rodríguez, S. Bayarri, P. Redorta, F. Rodríguez, E. Fernández, and V. Mavrich, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte i),” Actas urológicas españolas. 31(2):69-76., 2007. [2] M. Sanchez, P. Jiménez, M. Rodriguez, S. Bayarri, F. Monllau, R. Palou, and M. Villavicencio, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte ii),” Actas urológicas españolas, vol. 31, no. 3, pp. 185–196, 2007. [3] T. L. Chen et al., “Robots for humanity: using assistive robotics to empower people with disabilities,” IEEE Robotics & Automation Magazine, vol. 20, no. 1, pp. 30–39, 2013. [4] K. Fu, R. González, and G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, R. U. Herbert Freman, Ed. Mc Graw-Hill, 1990. [5] A. K. Guruji, H. Agarwal, and D. Parsediya, “Time-efficient a* algorithm for robot path planning,” Procedia Technology, vol. 23, pp. 144–149, 2016. [6] P. Muntean, “Mobile robot navigation on partially known maps using a fast a star algorithm version,” arXiv preprint arXiv:1604.08708, 2016. [7] F. Kuhnt, M. Pfeiffer, P. Zimmer, D. Zimmerer, J. M. Gomer, V. Kaiser, R. Kohlhaas, and J. M. Zollner, “Robust environment perception for the audi autonomous driving cup,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1424–1431. [8] F. Duchovn, A. Babinec, M. Kajan, P. Bevno, M. Florek, T. Fico, and L. Jurivsica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014. [9] D. J. M. Sanchez, “Evaluación e implementación de técnicas de navegación en un robot móvil,” Universidad Nacional Experimental del Tachira, Tech. Rep., 2009. [10] D. Lopez, F. Gomez, F. Cuesta, and A. Ollero, “Planificación de trayectorias con el algoritmo rrt. aplicación a robots no holónomos,” RIAII, vol. 3, no. 3, pp. 56–67, 2006. [11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, P. Hall, Ed. Prentice Hall, 2010. [12] B. Avron, F. Edward, and R. C, The Handbook of Artificial Intelligence, Volume 1. JSTOR, 1982, vol. 1. [Online]. Available: https://ia601202.us.archive.org/3/items/handbookofartific01barr/handbookofartific01barr.pdf [13] J. Roberto, “Inteligencia artificial: Introducción y tareas de búsqueda,” 2010. [14] S. Russell and P. Norvig, “A modern approach,” Intelligence, Artificial, 2003. [15] M. T. Thoa, C. Cosmin, T. D. Trung, and D. K. Robin, “Heuristic approaches in robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp.13–28, 2016. [16] L. E. Hajjami, E. M. Mellouli, and M. Berrada, “Neural network based sliding mode lateral control for autonomous vehicle,” in 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2020, pp. 1–6. [17] R. Martinez, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet, “A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot,” Autonomous Robots, vol. 27, no. 2, pp. 93–103, 2009. [18] T. Alam and L. Bobadilla, “Multi-robot coverage and persistent monitoring in sensing-constrained environments,” Robotics, vol. 9, no. 2, p. 47, 2020. [19] M. Aljehani and M. Inoue, “Performance evaluation of multi-uav system in post-disaster application: Validated by hitl simulator,” IEEE Access, vol. 7, pp.64 386–64 400, 2019. [20] Z. Beck, L. Teacy, A. Rogers, and N. Jennings, “Collaborative online planning for automated victim search in disaster response,” Robotics and Autonomous Systems, vol. 100, pp. 251–266, 2018. [21] K. Rama, S. B. Prakash, B. Sowmya, A. G. Sai, and A. Chakravarthy, “Design of a rescue robot assist at fire disaster,” Stainless Steel, vol. 1510, p. 2750, 2012. [22] C. Winai and B. Andreas, “Using rescue robots to increase construction site safety,” ISARC2006, pp. 241–245, 2006. [23] Rubio, L. Ríos, A. Torres et al., “Implementación de sensores extereoceptivos para una plataforma móvil utilizando microcontroladores,” 2008. [24] E. Minca, F. Dragomir, O. E. Dragomir, and A. E. Mihai, “Temporal recurrent modelling appllied to manufacturing flexible lines served by collaborative robots,” in Control Conference (ASCC), 2011 8th Asian. IEEE, 2011, pp. 749–754. [25] D. García, F. Bravo, and M. del Toro, “Comparativa entre planificadores de trayectorías para su uso combinado en la generación de maniobras,” 2007. [26] E. González, “Diseño de una estrategia que permita a un sistema robótico real de bajo costo generar una ruta segura a fin de desplazarse autónomamente entre dos puntos conocidos,” mathesis, Enero 2019. [27] H. C. Vargas, “Generación de trayectorias para un robot móvil khepera ii usando tócnicas de aprendizaje automático,” Master’s thesis, Instituto Politecnico nacional, 2007. [28] D. A. Lopez et al., “Nuevas aportaciones en algoritmos de planificación para la ejecución de maniobras en robots autónomos no holónomos,” 2011. [29] S. Fortune and G. Wilfong, “Planning constrained motion,” Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 21–82, 1991. [30] J. C. Latombe, Robot motion planning. Springer Science & Business Media, 2012, vol. 124. [31] J. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for nonholonomic mobile robots,” Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp. 577–593, 1994. [32] S. M. LaValle, “Rapidly-exploring random trees a new tool for path planning,” 1998. [33] B. James and V. Manuela, “Real-time randomized path planning for robot navigation,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 3. IEEE, 2002, pp. 2383–2388. [34] S. Garrido, L. Moreno, D. Blanco, and M. L. Muñoz, “Sensor-based global planning for mobile robot navigation,” Robotica, vol. 25, no. 02, pp. 189–199, 2007. [35] G. Santiago, M. Luis, B. D, and M. Fernando, “Exploratory navigation based on voronoi transform and fast marching,” in Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. IEEE, 2007, pp. 1–6. [36] N. Nils, “A mobile automaton: An application of artificial intelligence techniques,” DTIC Document, Tech. Rep., 1969. [37] A. Franz, “Voronoi diagrams: a survey of a fundamental geometric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, 1991. [38] N. Ahuja, R. Chien, R. Yen, and N. Bridwell, “Interference detection and collision avoidance among three dimensional objects.” in AAAI, 1980, pp. 44–48. [39] H. Vincent, “Fast collision detection scheme by recursive decomposition of a manipulator workspace,” in Robotics and Automation. Proceedings. 1986 IEEE International Conference on, vol. 3. IEEE, 1986, pp. 1044–1049. [40] J. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595,1996. [41] E. Cobos, “Traction modeling and control of a differential drive mobile robot to avoid wheel slip,” mathesis, Oklahoma State University, Dec. 2013. [Online]. Available: https://shareok.org/bitstream/handle/11244/14773/CobosTorres_okstate_0664M_13102.pdf?sequence=1 [42] G. A. Hernandez, L. H. Rios, and H. Parra, “Implementación de un controlador pid mediante rna para el control de motores dc de robots moviles diferenciales,” Scientia et technica, vol. 2, no. 50, pp. 8–14, 2012. [43] S. Inge and E. Olav, “Trajectory planning and collision avoidance for underwater vehicles using optimal control,” Oceanic Engineering, IEEE Journal of, vol. 19, no. 4, pp. 502–511, 1994. [44] M. Yacoub, D. S. Necsulescu, J. Z. Sasiadek et al., “Energy consumption optimization for mobile robots in three-dimension motion using predictive control,” in Control Conference (ASCC), 2013 9th Asian. IEEE, 2013, pp. 1–6. [45] Y. Mostafa, N. DS, S. J. Z et al., “Experimental evaluation of energy optimization algorithm for mobile robots in three-dimension motion using predictive control,” in Control & Automation (MED), 2013 21st Mediterranean Conference on. IEEE, 2013, pp. 437–443. [46] D. N. Trung, H. Raposo, and H. Schioler, “Potentially distributable energy: Towards energy autonomy in large population of mobile robots,” in Computational Intelligence in Robotics and Automation, 2007. CIRA 2007. International Symposium on. IEEE, 2007, pp. 206–211. [47] V. Jito, S. Bibhya, and N. Shin-ichi, “An asymptotically stable collision-avoidance system,” International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 925–932, 2008. [48] G. Baldassarre, D. Parisi, and S. Nolfi, “Medición de la coordinación como disminución de la entropía en grupos de robots simulados vinculados,” in Proc. de la int. Conf. en Sistemas Complejos (ICCS), 2004. [49] H. Cuchango, E. Espitia, J. Esmeral, and I. Sofrony, “Algoritmo para planear trayectorias de robots móviles, empleando campos potenciales y enjambres de partículas activas brownianas a path planning algorithm for mobile robots using potential fields and swarms of active brownian particles,” p. 75, 2012. [50] A. Campbell and A. Wu, “Multi-agent role allocation: issues, approaches, and multiple perspectives,” Autonomous agents and multi-agent systems, vol. 22, no. 2, pp. 317–355, 2011. [51] L. F. Castillo, M. G. Bedia, C. López, F. J. Seron, and G. Isaza, “Designing strategies for improving the performance of groups in collective environments,” in Distributed Computing and Artificial Intelligence, 11th International Conference. Springer, 2014, pp. 243–250. [52] J. Bajo, J. M. Corchado, and L. F. Castillo, “Running agents in mobile devices,” in Advances in Artificial Intelligence-IBERAMIA-SBIA 2006. Springer, 2006, pp. 58–67. [53] L. F. Castillo, J. F. Corchado, and M. Bedia, “Modelo y desarrollo de w-planner: sistema multiagente on-line aplicado al turismo electrónico,” Ingeniería y Ciencia, vol. 1, no. 1, pp. 97–113, 2005. [54] J. M. Corchado, J. Pavón, E. S. Corchado, and L. F. Castillo, “Development of cbr-bdi agents: a tourist guide application,” in European Conference on Case-based Reasoning. Springer, 2004, pp. 547–559. [55] L. E. Parker, “Distributed intelligence: Overview of the field and its application in multi-robot systems,” Journal of Physical Agents, vol. 2, no. 1, pp. 5–14, 2008. [56] K. Sharma and R. Doriya, “Coordination of multi-robot path planning for warehouse application using smart approach for identifying destinations,” Intelligent Service Robotics, pp. 1–13, 2021. [57] A. Rathi, M. Vadali et al., “Dynamic prioritization for conflict-free path planning of multi-robot systems,” arXiv preprint arXiv:2101.01978, 2021. [58] R. Talak, “Information exchange and robust learning algorithms for networked autonomy,” phdthesis, Massachusetts Institute of Technology, Sep. 2020. [Online]. Available: https://hdl.handle.net/1721.1/129160 [59] H. Karaoguz and H. I. Bozma, “Merging of appearance-based place knowledge among multiple robots,” Autonomous Robots, pp. 1–19, 2020. [60] S. Bae, F. Rossi, J. Hookr, S. Davidoff, and K.-L. Ma, “A visual analytics approach to debugging cooperative, autonomous multi-robot systems’ worldviews,” arXiv preprint arXiv:2009.01921, 2020. [Online]. Available: https://arxiv.org/pdf/2009.01921.pdf [61] T. Alsboui, Y. Qin, R. Hill, and H. Al-Aqrabi, “Enabling distributed intelligence for the internet of things with iota and mobile agents,” Computing, vol. 102, no. 6, pp. 1345–1363, 2020. [62] K. Geihs, “Engineering challenges ahead for robot teamwork in dynamic environments,” Applied Sciences, vol. 10, no. 4, p. 1368, 2020. [63] E. Umili, M. Tognon, D. Sanalitro, G. Oriolo, and A. Franchi, “Communication-based and communication-less approaches for robust cooperative planning in construction with a team of uavs,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020, pp. 279–288. [64] A. López, J. Meda, E. Hernández, and P. Paniagua, “Multi robot distance based formation using parallel genetic algorithm,” Applied Soft Computing, vol. 86, p.105929, 2020. [65] P. Bechon, C. Lesire, and M. Barbier, “Hybrid planning and distributed iterative repair for multi-robot missions with communication losses,” Autonomous Robots, vol. 44, no. 3, pp. 505–531, 2020. [66] C.-C. Tsai, C.-C. Yu, and C.-W. Wu, “Adaptive distributed bls-fontsm formation control for uncertain networking heterogeneous omnidirectional mobile multirobots,” Journal of the Chinese Institute of Engineers, vol. 43, no. 2, pp. 171–185, 2020. [67] M. Mendonça, R. Palácios, E. Papageorgiou, and de Lucas Souza, “Multi-robot exploration using dynamic fuzzy cognitive maps and ant colony optimization,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020, pp. 1–8. [68] S. Daniluk and R. Emami, “An advice mechanism for heterogeneous robot teams,” International Journal of Robotics and Automation, vol. 35, no. 1, pp. 53–68, 2020. [69] I. Jawhar, N. Mohamed, and J. Al-Jaroodi, “Secure communication in multi-robot systems,” in 2020 IEEE Systems Security Symposium (SSS). IEEE, 2020, pp.1–8. [70] A. Puzicha and P. Buchholz, “Real-time simulation of robot swarms with restricted communication skills,” in 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). IEEE, 2020, pp. 1–8. [71] L. Souza et al., “Sistema multirrobô para exploração de ambientes desconhecidos utilizando controladores fuzzy,” Master’s thesis, Universidade Tecnológica Federal do Paraná, 2020. [Online]. Available: http://riut.utfpr.edu.br/jspui/bitstream/1/5431/1/CP_PPGEM_M_Souza%2C_Lucas_Botoni_de_2020.pdf [72] A. V. Ermakov and L. I. Suchkova, “Development of algorithms for reliable data exchange between autonomous robots based on the principles of a self-organizing network,” Reliability, vol. 20, no. 2, pp. 35–42, 2020. [73] S. Daniluk, “An advice mechanism for heterogeneous robot teams,” Ph. D. Thesis, 2017. [Online]. Available: https://tspace.library.utoronto.ca/bitstream/ 1807/79051/3/Daniluk_Steven_201711_MAS_thesis.pdf [74] J. Verma and V. Ranga, “Multi-robot coordination analysis, taxonomy, challenges and future scope,” Journal of Intelligent & Robotic Systems, vol. 102, no. 1, pp. 1–36, 2021. [75] H.-Y. Zheng, “Fuzzy cooperative ekf localization and adaptive integral terminal sliding-mode formation control using fuzzy broad learning system and artificial potential function for uncertain networking heterogeneous omnidirectional multirobots,” Master’s thesis, 2020. [76] R. Juha, H. Janne, K. Anssi, M. Henna, and V. Ilari, “Smart system for distributed sensing,” in Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic. IEEE, 2008, pp. 21–30. [77] K. Gulzar, “Gesture planning and execution for anchoring between multi-embodiment robots in decentralized settings,” Ph.D. dissertation, Aalto University, 2020. [Online]. Available: https://aaltodoc.aalto.fi/bitstream/handle/123456789/47032/isbn9789526401003.pdf?sequence=1 [78] L. Yugang, N. Goldie, and V. Jessyka, “Learning to cooperate together: A semi-autonomous control architecture for multi-robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6. [79] V. Jessyka, L. Yugang, and N. Goldie, “Semi-autonomous exploration with robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6. [80] C. Undeger and F. Polat, “Real-time edge follow: A real-time path search approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 5, pp. 860–872, 2007. [81] O. Kohei, T. Koichi, and I. Hiroshi, “Possibilities of androids as poetry-reciting agent,” in RO-MAN, 2012 IEEE. IEEE, 2012, pp. 565–570. [82] K. Sugawara and M. Sano, “Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system,” Physica D: Nonlinear Phenomena, vol. 100, no. 3, pp. 343–354, 1997. [83] B. Christoph, R. Juliane, and C. Julie, “Use of praise and punishment in human-robot collaborative teams,” in Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on. IEEE, 2006, pp. 177–182. [84] R. Moeckel, Y. N. Perov, A. Nguyen, M. Vespignani, S. Bonardi, S. Pouya, A. Sproewitz, J. van den Kieboom, F. Wilhelm, and A. J. Ijspeert, “Gait optimization for roombots modular robots matching simulation and reality,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 3265–3272. [85] S. Behnke and R. Rojas, “A hierarchy of reactive behaviors handles complexity,” in Balancing reactivity and social deliberation in multi-agent systems. Springer, 2001, pp. 125–136. [86] D. Krohling and E. Martinez, “Ai integral theory of mind en agentes de negociacion conscientes del contexto,” in XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) -JAIIO 48 (Salta), 2019. [87] A. Arab, “A constitution and an economic model for the organisation and emergence of collective behaviour in a colony of robots,” in From Perception to Action Conference, 1994., Proceedings. IEEE, 1994, pp. 334–337. [88] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger, and P. Feyzeau, “Path planning: A 2013 survey,” in Industrial Engineering and Systems Management (IESM), Proceedings of 2013 International Conference on. IEEE, 2013, pp. 1–8. [89] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial Intelligence, vol. 155, no. 12, pp. 93 – 146, 2004. [90] R. R. Murphy, “Trial by fire [rescue robots],” Robotics and Automation Magazine, IEEE, vol. 11, no. 3, pp. 50–61, 2004. [91] M. R. Sierra et al., “Mejora de algoritmos de búsqueda heurística mediante poda por dominancia. aplicación a problemas de scheduling,” 2009. [Online]. Available: http://digibuo.uniovi.es/dspace/bitstream/10651/15043/1/TD_M%20Rita%20Sierra%20Sanchez.pdf [92] R. Andrea and E. Matthias, “A comparison of solution strategies for biobjective shortest path problems,” Computers and Operations Research, vol. 36, no. 4, pp. 1299–1331, 2009. [93] K. Pradipta, S. Patro, C. Panda, and B. Bunil, “D* lite algorithm based path planning of mobile robot in static environment,” Int. J. Comput. Commun. Technol.(IJCCT), vol. 2, pp. 32–36, 2011. [94] S. Peter, L. Guy, G. Audrunas, C. W. Marian, Z. Vinicius, J. Max, L. Marc, S. Nicolas, L. J. Z, T. Karl et al., “Value-decomposition networks for cooperative multi-agent learning based on team reward,” in Proceedings of the 17th international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, 2018, pp. 2085–2087. [95] A. Amanatiadis, S. Chatzichristofis, K. Charalampous, L. Doitsidis, E. Kosmatopoulos, P. Tsalides, A. Gasteratos, S. Roumeliotis et al., “A multi-objective exploration strategy for mobile robots under operational constraints,” Access, IEEE, vol. 1, pp. 691–702, 2013. [96] A. Salman, K. Mohd, and H. Ghulam, “Feedback linearized strategies for collaborative nonholonomic robots,” in Control, Automation and Systems, 2007. ICCAS’07. International Conference on. IEEE, 2007, pp. 1551–1556. [97] A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, A. Hsieh, L. E. Parker, and K. Stoy, Distributed Autonomous Robotic Systems: The 10th International Symposium. Springer, 2012, vol. 83. [98] K. Tsianos, I. Sucan, and L. Kavraki, “Sampling-based robot motion planning: Towards realistic applications,” Computer Science Review, vol. 1, no. 1, pp. 2–11, 2007. [99] A. L. Cumbajin, “Desarrollo de un sistema de navegación basado en la plataforma pioneer p3-dx para el transporte de materiales,” 2020. [100] A. Hussein, “Control and communication systems for automated vehicles cooperation and coordination,” phdthesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Sep. 2018. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/27674 [101] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A survey,” Artificial Intelligence, vol. 247, pp. 10–44, 2017. [102] M. Sina, K. Christoforos, F. Emil, K. Dariusz, and N. George, “Cooperative coverage path planning for visual inspection,” Control Engineering Practice, vol. 74, pp. 118–131, 2018. [103] R. Al-Jarrah, A. Shahzad, and H. Roth, “Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy,” IFAC-PapersOnLine, vol. 48, no. 10, pp. 46–51, 2015. [104] Z. Wang and S. Zlatanova, “Multi-agent based path planning for first responders among moving obstacles,” Computers, Environment and Urban Systems, vol. 56, pp. 48–58, 2016. [105] M. Ganeshmurthy and G. Suresh, “Path planning algorithm for autonomous mobile robot in dynamic environment,” in Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on. IEEE, 2015, pp. 1–6. [106] L. Chaymaa, F. Youssef, and B. Said, “Collaborative q-learning path planning for autonomous robots based on holonomic multi-agent system,” in Intelligent Systems: Theories and Applications (SITA), 2015 10th International Conference on. IEEE, 2015, pp. 1–6. [107] D. Megherbi and M. Kim, “A collaborative distributed multi-agent reinforcement learning technique for dynamic agent shortest path planning via selected sub-goals in complex cluttered environments,” in Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2015 IEEE International Inter-Disciplinary Conference on. IEEE, 2015, pp. 118–124. [108] S. E. Muldoon, C. Luo, F. Shen, and H. Mo, “Naturally inspired optimization algorithms as applied to mobile robotic path planning,” in Swarm Intelligence (SIS), 2014 IEEE Symposium on. IEEE, 2014, pp. 1–6. [109] C. Keonyup, L. Minchae, and S. Myoungho, “Local path planning for off-road autonomous driving with avoidance of static obstacles,” Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4, pp. 1599–1616, 2012. [110] B. Fethi and J. Tongdan, “An approach for collaborative path planning in multi-robot systems,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009, pp. 2356–2361. [111] Z. Lihui, “On the techniques of multi-agent path planning and the collaboration,” in Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol. 13. IEEE, 2010, pp. V13–430. [112] J. Chen and L. R. Li, “Path planning protocol for collaborative multi-robot systems,” in Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE International Symposium on. IEEE, 2005, pp. 721–726. [113] C. Kim, H. Yang, D. Kang, and D. Lee, “2-d cooperative localization with omni-directional mobile robots,” in 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Oct 2015, pp. 425–426. [114] S. Nestinger and M. Demetriou, “Adaptive collaborative estimation of multi-agent mobile robotic systems,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp. 1856–1861. [115] H. Chen, P. Hovareshti, and J. S. Baras, “Distributed collaborative controlled autonomous vehicle systems over wireless networks,” in Control & Automation (MED), 2010 18th Mediterranean Conference on. IEEE, 2010, pp. 1695–1700. [116] Z. Chuan, X. Jianqing, and Y. Xiangsheng, “An architecture for intelligent collaborative systems based on multi-agent,” in Computer Supported Cooperative Work in Design, 2008. CSCWD 2008. 12th International Conference on. IEEE, 2008, pp. 367–372. [117] N. Patricio and C. Enric, “A framework for the development of cooperative robotic applications,” in Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International Conference on. IEEE, 2005, pp. 901–906. [118] S. Jian, J. Ibañez, T. Chew, and C. Boon, “A collaborative-shared control system with safe obstacle avoidance capability,” in Robotics, Automation and Mechatronics, 2004 IEEE Conference on, vol. 1. IEEE, 2004, pp. 119–123. [119] K. Koji, I. Horoshi, and B. Matther, “Identifying and localizing robots in a multi-robot system environment,” in Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, vol. 2. IEEE, 1999, pp. 966–971. [120] A. Hajime, O. Koichi, I. Yoshiki, Y. Kazutaka, M. Akihiro, K. Hayato, and E. Isao, “Collaborative team organization using communication in a decentralized robotic system,” in Intelligent Robots and Systems’ 94.’Advanced Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International Conference on, vol. 2. IEEE, 1994, pp. 816–823. [121] Y. Liu, B. Yin, and D. Jia, “A multi-objective optimization method for aerospace product research and development process based on particle swarm optimization algorithm and critical path algorithm,” in Journal of Physics: Conference Series, vol. 1732, no. 1. IOP Publishing, 2021, p. 012076. [122] S. Ramabalan, V. Sathiya, and M. Chinnadurai, “Wheeled mobile robot trajectory planning using evolutionary techniques,” Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020, pp. 291–301, 2020. [123] O. A. Razzaq and A. Al-Araji, “Path planning and control strategy design for mobile robot based on hybrid swarm optimization algorithm,” International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021, 2021. [124] R. Szczepanski and T. Tarczewski, “Global path planning for mobile robot based on artificial bee colony and dijkstraâs algorithms,” 2020. [125] A. M. Pupo, “Diseño e implementación de una herramienta computacional para reconocimiento de minas antipersonal artesanales plásticas mediante técnicas de procesamiento digital de imágenes,” 2015. [126] M. Armada, R. E. Fernandez, H. Montes, J. F. Sarria, and C. Salinas, “Robots móviles para tareas de desminado humanitario,” 2013. [127] B. G. Santiago, “Robot hexápodo para la detección de minas antipersona artesanales tipo jeringa,” 2014. [128] A. Bedoya, G. Guzmán, and J. Chaves, “Propuesta de desarrollo robótico para el desminado humanitario,” Scientia et Technica, vol. 3, no. 49, pp. 239–244, 2011. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/1531 [129] R. C. Ponticelli, Sistema de exploración de terrenos con robots móviles: aplicación en tareas de detección y localización de minas antipersonas. Universidad Complutense de Madrid, Servicio de Publicaciones, 2011. [130] E. Mercado and J. Saavedra, “Sistema de localización acústico para robots móviles basado en múltipes transmisores y un receptor,” Visión Electrónica: algo más que un estado sólido, vol. 1, no. 1, pp. 32–40, 2011. [131] C. A. Parra, C. A. Campo, J. D. Coronado, J. I. Rizo, and C. A. Otálora, “Una herramienta robotica para la detección y localización de minas antipersonales,” Revista de La Asociación de Ingenieros Javerianos, 2002. [132] M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lalbakhsh, M. Jamshidi, L. L. Spada, M. Mirmozafari, M. Dehghani, A. Sabet, S. Roshani, S. Roshani, N. Bayat-Makou, B. Mohamadzade, Z. Malek, A. Jamshidi, S. Kiani, H. Hashemi-Dezaki, and W. Mohyuddin, “Artificial intelligence and covid-19: Deep learning approaches for diagnosis and treatment,” IEEE Access, vol. 8, pp. 109 581–109 595, 2020. [133] A. A. R. Alsaeedy and E. K. P. Chong, “Detecting regions at risk for spreading covid-19 using existing cellular wireless network functionalities,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 187–189, 2020. [134] M. N. Islam and A. K. M. N. Islam, “A systematic review of the digital interventions for fighting covid-19: The bangladesh perspective,” IEEE Access, vol. 8, pp. 114 078–114 087, 2020. [135] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. Zheng, “A weakly-supervised framework for covid-19 classification and lesion localization from chest ct,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020. [136] E. González, “Desarrollo de un algoritmo planificador de rutas con capacidad de implementación en diversas aplicaciones de la robótica móvil,” Thesis, Octubre 2015. [137] J. Goyal and K. Nagla, “A new approach of path planning for mobile robots,” in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2014, pp. 863–867. [138] S. V. Konakalla, “A star algorithm,” December 2014. [139] S. Yogang, S. Sanjay, S. Robert, H. Daniel, and K. Asiya, “A constrained a* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents,” Ocean Engineering, vol. 169, pp. 187–201, 2018. [140] D. Sundfeld, C. Razzolini, G. Teodoro, A. Boukerche, and A. C. Magalhaes, “Pa-star: A disk-assisted parallel a-star strategy with locality-sensitive hash for multiple sequence alignment,” Journal of Parallel and Distributed Computing, vol. 112, pp. 154–165, 2018. [141] D. Yang, B. Xu, K. Rao, and W. Sheng, “Passive infrared (pir)-based indoor position tracking for smart homes using accessibility maps and a-star algorithm,” Sensores, 2018. [142] P. Judea, “Heuristics: intelligent search strategies for computer problem solving,” Addison-Wesley Pub. Co., Inc., Reading, MA, 1984. [143] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, M. P. E. Limited, Ed., 2016. [144] A. Patelâs, “Introduction to a*,” Blog, 2012. [Online]. Available: http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html [145] A. González and H. Garzón, “Diseño, implementación y aplicación de una estrategia de búsqueda preferente por amplitud, para uso multidireccional sobre sistemas distribuidos o de procesamiento en paralelo usando un simulador de escenarios, construido para el trazado de rutas en robótica móvil,” mathesis, Nov. 2011. [Online]. Available: https://core.ac.uk/download/pdf/71396727.pdf [146] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in ai,” AI Magazine, vol. 25, no. 2, p. 99, 2004. [147] J. Chaves, J. Gómez, and E. González, “Two agents with gbfs algorithms working cooperatively to get a shortest path,” Scientia et Technica, vol. 25, no. 3, pp. 448–454, 2020. [148] R. Inam, K. Raizer, A. Hata, R. Souza, E. Forsman, E. Cao, and S. Wang, “Risk assessment for human-robot collaboration in an automated warehouse scenario,” in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 743–751. [149] M. Iwasa, Y. Toda, A. Saputra, and N. Kubota, “Path planning of the autonomous mobile robot by using real-time rolling risk estimation with fuzzy inference,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017, pp. 1–6. [150] M. Irie, K. Nagatani, and A. Gofuku, “Path evaluation for a mobile robot based on a risk of collision,” in Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No. 03EX694), vol. 1. IEEE, 2003, pp. 485–490. [151] Z. Qidan, W. Yebin, W. Guoqiang, and W. Xin, “An improved anytime rrts algorithm,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1. IEEE, 2009, pp. 268–272. [152] K. Nagatani, “Recent trends and issues of volcanic disaster response with mobile robots,” Journal of Robotics and Mechatronics, vol. 26, no. 4, pp. 436–441, 2014. [153] A. Gomez, H. Martinez, and M. Sanchez, “A fuzzy logic based language to model autonomous mobile robots,” in Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International, vol. 1. IEEE, 1999, pp. 550–555. [154] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised. Springer, 2017, vol. 118. [155] R. Singh, G. Singh, and V. Kumar, “Control of closed-loop differential drive mobile robot using forward and reverse kinematics,” in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020, pp. 430–433. [156] S. Y. Kadirova and T. R. Nenov, “Design of power wheelchair controller,” in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE AE), 2020, pp. 1–4. [157] S. Nurmaini, K. Dewi, and B. Tutuko, “Differential-drive mobile robot control design based-on linear feedback control law,” in IOP Conference Series: Materials Science and Engineering, vol. 190, no. 1. IOP Publishing, 2017, p. 012001. [158] K. Kothandaraman, “Motion planning and control of differential drive mobile robot,” mathesis, Wright State University, Dec. 2016. [Online]. Available: https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2841&context=etd_all [159] Mohd Saifizi Saidonr, H. Desa, and M. N. Rudzuan, “A differential steering control with proportional controller for an autonomous mobile robot,” in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 90–94. [160] R. Siegwart and I. Nourbakhsh, “Robot control basics.” [Online]. Available: https://cs.gmu.edu/~kosecka/cs485/lec04-control.pdf [161] M. Gheisarnejad and M. H. Khooban, “An intelligent non-integer pid controller-based deep reinforcement learning: Implementation and experimental results,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3609–3618, 2021. [162] W. Liu, X. Wang, and S. Liang, “Trajectory tracking control for wheeled mobile robots based on a cascaded system control method,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 396–401. [163] C. B. Jabeur and H. Seddik, “Implementation of snnpid optimized neural networks controller for a two-wheeled mobile robot,” in 2019 International Conference on Control, Automation and Diagnosis (ICCAD), 2019, pp. 1–6. [164] W. Serralheiro, “A motion control scheme for a wmr based on input-output feedback linearization and pid,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), 2019, pp. 222–227. [165] C. Lee, B. Su, C. Chang, T. Hsu, and W. Lee, “Applications of taguchi method to pid control for path tracking of a wheeled mobile robot,” in 2018 IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 453–456. [166] V. Gupta, N. Bendapudi, I. N. Kar, and S. K. Saha, “Three-stage computed-torque controller for trajectory tracking in non-holonomic wheeled mobile robot,” in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), 2018, pp. 144–149. [167] J. Heikkinen, T. Minav, and A. D. Stotckaia, “Self-tuning parameter fuzzy pid controller for autonomous differential drive mobile robot,” in 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 2017, pp. 382–385. [168] J. Singh and P. S. Chouhan, “A new approach for line following robot using radius of path curvature and differential drive kinematics,” in 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA), 2017, pp. 497–502. [169] C. S. Shijin and K. Udayakumar, “Speed control of wheeled mobile robots using pid with dynamic and kinematic modelling,” in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–7. [170] C. Pareja, “Diseño y construcción de un robot para la implementación y evaluación de algoritmos de planificación de rutas utilizando materiales de bajo costo,” Thesis, April 2017. [171] F. Hua, G. Li, F. Liu, and Y. Liu, “Mechanical design of a four-wheel independent drive and steering mobile robot platform,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2016, pp. 235–238. [172] A. Araujo, D. Portugal, M. Couceiro, J. Sales, and R. Rocha, “Desarrollo de un robot móvil compacto integrado en el middleware ros,” Revista Iberoamericana de Automótica e Informótica industrial, vol. 11, no. 3, pp. 315–326, 2014. [173] R. D. Chaglla and R. P. Pereira, “Diseño, construcción e implementación de un prototipo de robot móvil para el recorrido de trayectorias definidas por computador para el laboratorio de robótica industrial decem,” B.S. thesis, Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería en Mecatrónica, 2014. [174] V. Lopez, “Diseño y construcción de un robot móvil con navegación controlada a través de una aplicación móvil con interfaz de voz,” mathesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Oct. 2014. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/26237 [175] E. Ramos, “Control punto a punto para el seguimiento de trayectorias de un robot móvil de ruedas tipo diferencial,” phdthesis, Instituto Politécnico Nacional, May 2011. [Online]. Available: http://www.repositoriodigital.ipn.mx/handle/123456789/12281 [176] R. Ortigoza, E. R. Ramos, and R. Morales, “Modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial,” Latin-American Journal of Physics Education, vol. 4, no. 3, p. 39, 2010. [177] C. Tello and J. A. D. la Peña, “Construcción y localización en tiempo real de un robot móvil vía odometría en el seguimiento de trayectorias mediante control automático,” Ph.D. dissertation, 2010. [178] U. Cortesand, A. Castañeda, A. Benitez, and A. Diaz, “Control de Movimiento de un Robot Móvil Tipo Diferencial Robot uubetaot-32b 2015. [179] L. Y. Lopez, “Implementación del filtro de kalman para la localización de un robot móvil tipo lego nxt en labview,” Tecnura, vol. 16, pp. 68–75, 2012. [180] F. Aguado, Castaño, J. A. Casanova, E. Zalama, and J. Garcia, “Diseño y simulación de un filtro kalman para un robot móvil,” XXV Jornadas de Automatica, Ciudad Real, 2004. [181] J. Chaves, C. Pareja, and E. González, “Design and construction of a low cost wheeled mobile robot for implementation of path planning algorithms,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2018, pp. 1–6. [182] P. Robotics and E. Corporation, “Minimu-9 v5 gyro, accelerometer, and compass (lsm6ds33 and lis3mdl carrier),” Nov. 2016. [Online]. Available: https://www.pololu.com/product/2738 [183] “Digital output magnetic sensor: ultra-low-power, high-performance 3-axis magnetometer,” May 2015. [184] D. Grimaldi, Y. Kurylyak, and F. Lamonaca, “Detection and parameters estimation of locally motion blurred objects,” in Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference on, vol. 1. IEEE, 2011, pp. 483–487. [185] L. Huei and L. Kun, “Motion blur removal and its application to vehicle speed detection,” in Image Processing, 2004. ICIP’04. 2004 International Conference on, vol. 5. IEEE, 2004, pp. 3407–3410. [186] A. Taherkhani and J. Mohammadi, “Mejora de estimación de la velocidad de objeto esfórico con la base de redes neuronales en el análisis por desenfoque de movimiento,” AFINIDAD, vol. 71, no. 563, pp. 42–47, 2014. [187] M. Javad, A. Rohollah et al., “Vehicle speed estimation based on the image motion blur using radon transform,” in Signal Processing Systems (ICSPS), 2010 2nd International Conference on, vol. 1. IEEE, 2010, pp. V1–243. [188] J. Yu, C. Li, K. Yang, and W. Chen, “Grg-mape and pcc-mape based on uncertainty-mathematical theory for path-loss model selection,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5. [189] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson Prentice Hall, 2007. [190] N. Idiou, F. Benatia, and B. Brahimi, “Bias and rmse of archimedean copula using moment and l-moments methods,” in 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), 2020, pp. 55–58. [191] D. Purwanto, C. Eswaran, and R. Logeswaran, “A comparison of arima, neural network and linear regression models for the prediction of infant mortality rate,” in 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, pp. 34–39. [192] A. Hidalgo-Paniagua, J. P. Bandera, M. R. de Quintanilla, and A. Bandera, “Quad-rrt: A real-time gpu-based global path planner in large-scale real environments,” Expert Systems with Applications, vol. 99, pp. 141–154, 2018. [193] J. Camarena, “Análisis cinemático dinámico y control en tiempo real de un vehículo guiado automáticamente,” Master’s thesis, Centro Nacional de Investigacion y Desarrollo Tecnologico, 2009. [194] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993. [195] M. G. Bekker, “Off-the-road locomotion (1960),” Ann Arbor, Michigan: University of Michigan Press, 1960. [196] B. M. Gregory, “Introduction to terrain-vehicle systems,” 1969. [197] C. Gottesman and H. Intraub, “Constraints on spatial extrapolation in the mental representation of scenes: View-boundaries vs. object-boundaries,” Visual Cognition, vol. 10, no. 7, pp. 875–893, 2003. [198] L. B. Sanabria, Imagen mental y representacion espacial. Universidad Pedagógica nacional, 2015. [199] C. Thinus-Blanc and F. Gaunet, “Representation of space in blind persons: vision as a spatial sense,” Psychological bulletin, vol. 121, no. 1, p. 20, 1997. [200] T. S. Levitt and D. T. Lawton, “Qualitative navigation for mobile robots,” Artificial intelligence, vol. 44, no. 3, pp. 305–360, 1990. [201] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and S. Chien, “Decision-making in a robotic architecture for autonomy,” 2001. [202] S. Weiming and N. Douglas, “Sistemas basados en agentes para la fabricación inteligente: una encuesta de vanguardia,” Sistemas de conocimiento e información, 1999. [203] N. Jennings, M. J. Wooldridge, and N. Jennings, Tecnología del agente: fundaciones, aplicaciones y mercados, S. S. . B. Media, Ed., 1998. [204] J. A. Arcos, “Sistema de navegación y modelado del entorno para un robot móvil,” 2009. [205] C. Hu, H. Jing, R. Wang, F. Yan, and M. Chadli, “Robust h output-feedback control for path following of autonomous ground vehicles,” Mechanical Systems and Signal Processing, 2016. [206] S. Villalobos et al., Diseño y manejo de estructuras de datos en C. Mc Graw-Hill Interamericana, 1996. [Online]. Available: https://books.google.com.co/books?id=rrDRAAAACAAJ [207] M. A. Murray-Lasso, “Math puzzles, powerful ideas, algorithms and computers in teaching problem-solving,” Journal of applied research and technology, vol. 1, no. 3, pp. 215–234, 2003. [208] D. Guichard, “Combinatorics and graph theory,” Department of Mathematics Whitman College. [209] V. J. Molina, P. C. Torres, and P. C. Restrepo, “Técnicas de inteligencia artificial para la solución de laberintos de estructura desconocida,” Scientia et Technica, vol. 2, no. 39, 2008. [210] C. Keum-Bae and C. Seong-Yun, “The concept of collision-free motion planning using a dynamic collision map,” International Journal of Advanced Robotic Systems, vol. 11, no. 9, p. 145, 2014. [211] A. Kott, V. Saks, and A. Mercer, “A new technique enables dynamic replanning and rescheduling of aeromedical evacuation: Special articles on innovative applications,” The AI magazine, vol. 20, no. 1, pp. 43–53, 1999. [212] A. Stentz and I. C. Mellon, “Optimal and efficient path planning for unknown and dynamic environments,” International Journal of Robotics and Automation, vol. 10, pp. 89–100, 1993. [213] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national conference on Artificial intelligence. American Association for Artificial Intelligence, 2002, pp. 476–483. [214] T. Lozano and M. Wesley, “An algorithm for planning collision-free paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570, 1979. [215] M. Fernandez, “Algoritmos de búsqueda heurística en tiempo real. aplicación a la navegación en los juegos de vídeo,” 2005. [216] H. Manuel, K. Thomas, and H. Malte, “Search progress and potentially expanded states in greedy best-first search.” International Joint Conferences on Artificial Intelligence, 2018. [217] R. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,” Artificial Intelligence, vol. 27, no. 1, pp. 97 – 109, 1985. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0004370285900840 [218] I Gavalda Jordi Duch and N. H. Tejedor, Inteligencia artificial. UOC Universitat Oberta de Catalunya, 2008. [Online]. Available: http://www.exabyteinformatica.com/uoc/Inteligencia_artificial/Inteligenca_artificial_ES/Inteligencia_artificial.pdf [219] E. M. Alvaro, M. M. D. Javier, and R. P. F. Javier, “Funciones que ganan partidas.” Universidad de Alcala, 2013. [Online]. Available: http://www2.uah.es/libretics/concurso2013/files2013/Trabajos/Funciones%20que%20ganan%20partidas.pdf [220] A. Sedeño and M. Colebrook, “A biobjective dijkstra algorithm,” European Journal of Operational Research, 2019. [221] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July 1968. [Online]. Available: http://ieeexplore.ieee.org.ezproxy.utp.edu.co/xpl/articleDetails.jsp?tp=&arnumber=4082128&queryText%3DA+Formal+Basis+for+the+Heuristic+Determination+of+Minimum+Cost+Paths [222] “Ai hall of fame,” Intelligent Systems, IEEE, vol. 26, no. 4, pp. 5–15, July 2011. [223] S. Koenig, “Agent-centered search,” AI Magazine, vol. 22, no. 4, p. 109, 2001. [224] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 23, pp. 189 – 211, 1990. [225] M. Shimbo and T. Ishida, “Controlling the learning process of real-time heuristic search,” Artificial Intelligence, vol. 146, no. 1, pp. 1 – 41, 2003. [226] K. Sven, F. David, and B. Colin, “Heuristic search-based replanning,” in AIPS, 2002, pp. 294–301. [227] L. M. and K. S., “Incremental replanning for mapping,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 1, 2002, pp. 667–672 vol.1. [228] S. Andrei and K. Kiyoshi, “Collision-free navigation with extended terrain maps,” in Transactions on Computational Science XXIII. Springer, 2014, pp. 139–156. [229] K. Oussama, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404. [230] S. Karansher and F. Kikuo, “Map making by cooperating mobile robots,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on. IEEE, 1993, pp. 254–259. [231] E. Fernandez-Moral, V. Arevalo, and J. Gonzalez-Jimenez, “Mapeo métrico-topológico híbrido para slam monocular a gran escala,” in Informatics in Control, Automation and Robotics, Springer, Ed., 2015. [232] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016. [233] J. Blanco, J. Gonzalez, and J. Fernandez-Madrigal, “Mapas subjetivos locales para slam métrico-topológico híbrido,” Robotica y Sistemas Autonomos, 2009. [234] A. Federico, L. Martin, T. Gonzalo, and B. Facundo, “Slam estado del arte,” 2007. [235] A. M. Romero, “Mapeado y localización topológicos mediante información visual,” phdthesis, Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial, May 2013. [Online]. Available: http://hdl.handle.net/10045/30275 [236] J. Lim, J. Frahm, and M. Pollefeys, “Online environment mapping using metric-topological maps,” The International Journal of Robotics Research, 2012. [237] F. Lawrence, Strategy: A history. Oxford University Press, 2015. [238] E. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press, 1988. [239] D. Joseph, “Kinematics (joseph stiles beggs),” 1985. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.license.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
206 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79865/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79865/2/7914501.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79865/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79865/4/7914501.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 664e7c9b9229714bb0455bfc97bce290 4460e5956bc1d1639be9ae6146a50347 61d1c836a57f4f44214bd5a2a4112b54 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089371553366016 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Mendoza, Juan Bernardo352a44038fe939012b06a03bec791971Chaves Osorio, José Andrés7a56c44f8d9ad1b26b3e52725908f64c2021-07-29T15:46:54Z2021-07-29T15:46:54Z2021https://repositorio.unal.edu.co/handle/unal/79865Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Documento en PDF a color.figuras, tablasThis doctoral thesis was designed and implemented using a strategy of explorer agents and a management and monitoring system to obtain the shortest and safest paths. The strategy was simulated using Matlab R2016 in 10 test environments. The comparisons were made between the results obtained by considering each robot's work and contrasting it with the results obtained by implementing the cooperative-collaborative strategy. For this purpose, were used two path planning algorithms, they are the A* and the Greedy Best First Search (GBFS). Some changes were made to these classic algorithms to improve their performance to guarantee interactions and comparisons between them, transforming them into Incremental Heuristic (IH) algorithms, which gave rise to a couple of agents with new path planners called IH-A* and IH-GBFS. The cooperative strategy was implemented with IH-A* and IH-GBFS algorithms to obtain the shortest paths. The cooperative process was used 300 times in 100 complete tests (3 times in 10 tests in each of 10 environments), which allowed determining that the strategy decreased the original path (without cooperation) in 79% of the cases. In 20.50% of cases, the author identified that the cooperative process, reduced to less than half the original path. The collaborative strategy was implemented to obtain the safer path, using a communications system that allows the interaction among the explorer agents, the test environment, and the management and monitoring system to generate early warnings and compare the risk between paths. In this work, the risk is due to hidden marks found by the explorer agents; for this reason, it is implemented a potential risk function that allows obtaining the path risk estimated. The path risk estimated metric is the one that facilitates the evaluation and comparison of risk between paths to find safer paths. The AWMRs operates using a kinematic model, a controller, a path planner, and sensors that allow them to navigate through the environment gently and safely. Simultaneously with the explorer agents, the administration and monitoring system as a user interface that facilitates the presentation and consolidation of results were implemented. Subsequently, 16 tests were carried out, implementing the complete cooperative-collaborative strategy in four different environments, which had hidden marks. When analyzing the results, it was determined that the Shortest Safest Estimated Path was found in 62.5% of the tests. A WMR and a square test stage were built. In the test scenario, 240 path tracking tests were carried out (the WMR travelled 24 different paths; the WMR travelled each path ten times). The path data were obtained using odometry with encoders onboard the robot and image processing through an external camera. The author apply a tracking error analysis on the WMR path, travelling a circumference of 3.64 m in length. When comparing the path obtained with the WMR kinematic model with the data obtained using image processing, a Mean Absolute Percentage Error (MAPE) of 2,807% was obtained; and with the odometry data, the MAPE was 1,224%. As a general conclusion, this study has numerically identified the relevance of the implementation of the cooperative-collaborative strategy in robotic teamwork to find shortest and safest paths, a strategy applied in test environments that have obstacles and hidden marks. The cooperative-collaborative strategy can be used in different applications that involve displacement in a dangerous place or environment, such as a minefield or a region at risk of spreading COVID-19.Esta tesis doctoral fue diseñada e implementada utilizando una estrategia de agentes exploradores y un sistema de gestión y seguimiento para obtener caminos más cortos y seguros. La estrategia se simuló utilizando Matlab R2016 en 10 entornos de prueba. Las comparaciones se realizaron entre los resultados obtenidos al considerar el trabajo realizado por cada robot y contrastarlo con los resultados obtenidos al implementar la estrategia cooperativa-colaborativa. Para ello, se utilizaron dos algoritmos de planificación de rutas, que son el A* y el Greedy Best First Search (GBFS). Se realizaron algunos cambios a estos algoritmos clásicos para mejorar su rendimiento para garantizar interacciones y comparaciones entre ellos, transformándolos en algoritmos Heurísticos Incrementales (IH), lo que dio lugar a un par de agentes con nuevos planificadores de rutas denominados IH-A * e IH- GBFS. La estrategia cooperativa se implementó con algoritmos IH-A * e IH-GBFS para obtener los caminos más cortos. El proceso cooperativo se utilizó 300 veces en 100 pruebas completas (3 veces en 10 pruebas en cada uno de los 10 entornos), lo que permitió determinar que la estrategia disminuyó la trayectoria original (sin cooperación) en el 79% de los casos. En el 20,50% de los casos, el autor identificó que el proceso cooperativo, redujo la distancia entre inicio y meta a menos de la mitad del recorrido original. La estrategia colaborativa se implementó para obtener el camino más seguro, utilizando un sistema de comunicaciones que permite la interacción entre los agentes exploradores, el entorno de prueba y el sistema de gestión y monitoreo para generar alertas tempranas y comparar el riesgo entre caminos. En este trabajo, el riesgo se debe a las marcas ocultas encontradas por los agentes exploradores; por ello, se implementa una función de riesgo potencial que permite obtener el riesgo de ruta estimado. La métrica estimada de riesgo de ruta es la que facilita la evaluación y comparación de riesgo entre rutas para encontrar rutas más seguras. Los robots autónomos móviles con ruedas (en inglés AWMR) operan utilizando un modelo cinemático, un controlador, un planificador de rutas y sensores que les permiten navegar por el entorno de manera suave y segura. Simultáneamente con los agentes exploradores, el autor implementó un sistema de administración y monitoreo como interfaz de usuario que facilita la presentación y consolidación de resultados. Posteriormente, se realizaron 16 pruebas, implementando la estrategia cooperativa-colaborativa completa en cuatro entornos diferentes, que tenían marcas ocultas. Al analizar los resultados, se determinó que una ruta estimada más corta y más segura se obtenía en el 62.5% de las pruebas. Se construyeron un WMR y un escenario de prueba cuadrado. En el escenario de prueba, se llevaron a cabo 240 pruebas de seguimiento de ruta (el WMR recorrió 24 rutas diferentes; el WMR recorrió cada ruta diez veces). Los datos de la trayectoria se obtuvieron utilizando odometría con encoders a bordo del robot y procesamiento de imágenes a través de una cámara externa. El autor aplica un análisis de error de seguimiento en la ruta recorrida por el WMR, generando una circunferencia de 3,64 m de longitud. Al comparar la ruta obtenida con el modelo cinemático del WMR con los datos obtenidos usando el procesamiento de imágenesse obtuvo un error de porcentaje absoluto medio (MAPE) de 2.807%; y con los datos de odometría, el MAPE fue de 1,224%. Como conclusión general, este estudio ha identificado numéricamente la relevancia de la implementación de la estrategia cooperativa-colaborativa en el trabajo en equipo robótico para encontrar caminos más cortos y seguros, estrategia aplicada en entornos de prueba que poseen obstáculos y marcas ocultas. La estrategia cooperativa-colaborativa puede ser utilizada en diferentes aplicaciones que involucran el desplazamiento en un lugar o entorno peligroso, como pueden ser un campo minado o una región en riesgo de propagación de COVID-19.DoctoradoDoctor en Ingeniería - Ingeniería Automática206 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesRoboticsAutonomous robotsRobóticaRobots autónomosAgentAWMRCollaborative teamCooperationCOVID-19Minefieldmobile roboticsPath planningSafe routesSearch algorithmsStrategy for cooperative taskAgenteAWMREquipo colaborativoCooperaciónCOVID-19Campo minadoRobótica móvilPlanificación de rutasRutas segurasAlgoritmos de búsquedaEstrategia para tarea cooperativaDiseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativosDesign of a strategy to obtain safe paths from collaborative robot teamworkTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Text[1] M. Sánchez, M. Rodríguez, S. Bayarri, P. Redorta, F. Rodríguez, E. Fernández, and V. Mavrich, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte i),” Actas urológicas españolas. 31(2):69-76., 2007.[2] M. Sanchez, P. Jiménez, M. Rodriguez, S. Bayarri, F. Monllau, R. Palou, and M. Villavicencio, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte ii),” Actas urológicas españolas, vol. 31, no. 3, pp. 185–196, 2007.[3] T. L. Chen et al., “Robots for humanity: using assistive robotics to empower people with disabilities,” IEEE Robotics & Automation Magazine, vol. 20, no. 1, pp. 30–39, 2013.[4] K. Fu, R. González, and G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, R. U. Herbert Freman, Ed. Mc Graw-Hill, 1990.[5] A. K. Guruji, H. Agarwal, and D. Parsediya, “Time-efficient a* algorithm for robot path planning,” Procedia Technology, vol. 23, pp. 144–149, 2016.[6] P. Muntean, “Mobile robot navigation on partially known maps using a fast a star algorithm version,” arXiv preprint arXiv:1604.08708, 2016.[7] F. Kuhnt, M. Pfeiffer, P. Zimmer, D. Zimmerer, J. M. Gomer, V. Kaiser, R. Kohlhaas, and J. M. Zollner, “Robust environment perception for the audi autonomous driving cup,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1424–1431.[8] F. Duchovn, A. Babinec, M. Kajan, P. Bevno, M. Florek, T. Fico, and L. Jurivsica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.[9] D. J. M. Sanchez, “Evaluación e implementación de técnicas de navegación en un robot móvil,” Universidad Nacional Experimental del Tachira, Tech. Rep., 2009.[10] D. Lopez, F. Gomez, F. Cuesta, and A. Ollero, “Planificación de trayectorias con el algoritmo rrt. aplicación a robots no holónomos,” RIAII, vol. 3, no. 3, pp. 56–67, 2006.[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, P. Hall, Ed. Prentice Hall, 2010.[12] B. Avron, F. Edward, and R. C, The Handbook of Artificial Intelligence, Volume 1. JSTOR, 1982, vol. 1. [Online]. Available: https://ia601202.us.archive.org/3/items/handbookofartific01barr/handbookofartific01barr.pdf[13] J. Roberto, “Inteligencia artificial: Introducción y tareas de búsqueda,” 2010.[14] S. Russell and P. Norvig, “A modern approach,” Intelligence, Artificial, 2003.[15] M. T. Thoa, C. Cosmin, T. D. Trung, and D. K. Robin, “Heuristic approaches in robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp.13–28, 2016.[16] L. E. Hajjami, E. M. Mellouli, and M. Berrada, “Neural network based sliding mode lateral control for autonomous vehicle,” in 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2020, pp. 1–6.[17] R. Martinez, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet, “A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot,” Autonomous Robots, vol. 27, no. 2, pp. 93–103, 2009.[18] T. Alam and L. Bobadilla, “Multi-robot coverage and persistent monitoring in sensing-constrained environments,” Robotics, vol. 9, no. 2, p. 47, 2020.[19] M. Aljehani and M. Inoue, “Performance evaluation of multi-uav system in post-disaster application: Validated by hitl simulator,” IEEE Access, vol. 7, pp.64 386–64 400, 2019.[20] Z. Beck, L. Teacy, A. Rogers, and N. Jennings, “Collaborative online planning for automated victim search in disaster response,” Robotics and Autonomous Systems, vol. 100, pp. 251–266, 2018.[21] K. Rama, S. B. Prakash, B. Sowmya, A. G. Sai, and A. Chakravarthy, “Design of a rescue robot assist at fire disaster,” Stainless Steel, vol. 1510, p. 2750, 2012.[22] C. Winai and B. Andreas, “Using rescue robots to increase construction site safety,” ISARC2006, pp. 241–245, 2006.[23] Rubio, L. Ríos, A. Torres et al., “Implementación de sensores extereoceptivos para una plataforma móvil utilizando microcontroladores,” 2008.[24] E. Minca, F. Dragomir, O. E. Dragomir, and A. E. Mihai, “Temporal recurrent modelling appllied to manufacturing flexible lines served by collaborative robots,” in Control Conference (ASCC), 2011 8th Asian. IEEE, 2011, pp. 749–754.[25] D. García, F. Bravo, and M. del Toro, “Comparativa entre planificadores de trayectorías para su uso combinado en la generación de maniobras,” 2007.[26] E. González, “Diseño de una estrategia que permita a un sistema robótico real de bajo costo generar una ruta segura a fin de desplazarse autónomamente entre dos puntos conocidos,” mathesis, Enero 2019.[27] H. C. Vargas, “Generación de trayectorias para un robot móvil khepera ii usando tócnicas de aprendizaje automático,” Master’s thesis, Instituto Politecnico nacional, 2007.[28] D. A. Lopez et al., “Nuevas aportaciones en algoritmos de planificación para la ejecución de maniobras en robots autónomos no holónomos,” 2011.[29] S. Fortune and G. Wilfong, “Planning constrained motion,” Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 21–82, 1991.[30] J. C. Latombe, Robot motion planning. Springer Science & Business Media, 2012, vol. 124.[31] J. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for nonholonomic mobile robots,” Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp. 577–593, 1994.[32] S. M. LaValle, “Rapidly-exploring random trees a new tool for path planning,” 1998.[33] B. James and V. Manuela, “Real-time randomized path planning for robot navigation,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 3. IEEE, 2002, pp. 2383–2388.[34] S. Garrido, L. Moreno, D. Blanco, and M. L. Muñoz, “Sensor-based global planning for mobile robot navigation,” Robotica, vol. 25, no. 02, pp. 189–199, 2007.[35] G. Santiago, M. Luis, B. D, and M. Fernando, “Exploratory navigation based on voronoi transform and fast marching,” in Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. IEEE, 2007, pp. 1–6.[36] N. Nils, “A mobile automaton: An application of artificial intelligence techniques,” DTIC Document, Tech. Rep., 1969.[37] A. Franz, “Voronoi diagrams: a survey of a fundamental geometric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, 1991.[38] N. Ahuja, R. Chien, R. Yen, and N. Bridwell, “Interference detection and collision avoidance among three dimensional objects.” in AAAI, 1980, pp. 44–48.[39] H. Vincent, “Fast collision detection scheme by recursive decomposition of a manipulator workspace,” in Robotics and Automation. Proceedings. 1986 IEEE International Conference on, vol. 3. IEEE, 1986, pp. 1044–1049.[40] J. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595,1996.[41] E. Cobos, “Traction modeling and control of a differential drive mobile robot to avoid wheel slip,” mathesis, Oklahoma State University, Dec. 2013. [Online]. Available: https://shareok.org/bitstream/handle/11244/14773/CobosTorres_okstate_0664M_13102.pdf?sequence=1[42] G. A. Hernandez, L. H. Rios, and H. Parra, “Implementación de un controlador pid mediante rna para el control de motores dc de robots moviles diferenciales,” Scientia et technica, vol. 2, no. 50, pp. 8–14, 2012.[43] S. Inge and E. Olav, “Trajectory planning and collision avoidance for underwater vehicles using optimal control,” Oceanic Engineering, IEEE Journal of, vol. 19, no. 4, pp. 502–511, 1994.[44] M. Yacoub, D. S. Necsulescu, J. Z. Sasiadek et al., “Energy consumption optimization for mobile robots in three-dimension motion using predictive control,” in Control Conference (ASCC), 2013 9th Asian. IEEE, 2013, pp. 1–6.[45] Y. Mostafa, N. DS, S. J. Z et al., “Experimental evaluation of energy optimization algorithm for mobile robots in three-dimension motion using predictive control,” in Control & Automation (MED), 2013 21st Mediterranean Conference on. IEEE, 2013, pp. 437–443.[46] D. N. Trung, H. Raposo, and H. Schioler, “Potentially distributable energy: Towards energy autonomy in large population of mobile robots,” in Computational Intelligence in Robotics and Automation, 2007. CIRA 2007. International Symposium on. IEEE, 2007, pp. 206–211.[47] V. Jito, S. Bibhya, and N. Shin-ichi, “An asymptotically stable collision-avoidance system,” International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 925–932, 2008.[48] G. Baldassarre, D. Parisi, and S. Nolfi, “Medición de la coordinación como disminución de la entropía en grupos de robots simulados vinculados,” in Proc. de la int. Conf. en Sistemas Complejos (ICCS), 2004.[49] H. Cuchango, E. Espitia, J. Esmeral, and I. Sofrony, “Algoritmo para planear trayectorias de robots móviles, empleando campos potenciales y enjambres de partículas activas brownianas a path planning algorithm for mobile robots using potential fields and swarms of active brownian particles,” p. 75, 2012.[50] A. Campbell and A. Wu, “Multi-agent role allocation: issues, approaches, and multiple perspectives,” Autonomous agents and multi-agent systems, vol. 22, no. 2, pp. 317–355, 2011.[51] L. F. Castillo, M. G. Bedia, C. López, F. J. Seron, and G. Isaza, “Designing strategies for improving the performance of groups in collective environments,” in Distributed Computing and Artificial Intelligence, 11th International Conference. Springer, 2014, pp. 243–250.[52] J. Bajo, J. M. Corchado, and L. F. Castillo, “Running agents in mobile devices,” in Advances in Artificial Intelligence-IBERAMIA-SBIA 2006. Springer, 2006, pp. 58–67.[53] L. F. Castillo, J. F. Corchado, and M. Bedia, “Modelo y desarrollo de w-planner: sistema multiagente on-line aplicado al turismo electrónico,” Ingeniería y Ciencia, vol. 1, no. 1, pp. 97–113, 2005.[54] J. M. Corchado, J. Pavón, E. S. Corchado, and L. F. Castillo, “Development of cbr-bdi agents: a tourist guide application,” in European Conference on Case-based Reasoning. Springer, 2004, pp. 547–559.[55] L. E. Parker, “Distributed intelligence: Overview of the field and its application in multi-robot systems,” Journal of Physical Agents, vol. 2, no. 1, pp. 5–14, 2008.[56] K. Sharma and R. Doriya, “Coordination of multi-robot path planning for warehouse application using smart approach for identifying destinations,” Intelligent Service Robotics, pp. 1–13, 2021.[57] A. Rathi, M. Vadali et al., “Dynamic prioritization for conflict-free path planning of multi-robot systems,” arXiv preprint arXiv:2101.01978, 2021.[58] R. Talak, “Information exchange and robust learning algorithms for networked autonomy,” phdthesis, Massachusetts Institute of Technology, Sep. 2020. [Online]. Available: https://hdl.handle.net/1721.1/129160[59] H. Karaoguz and H. I. Bozma, “Merging of appearance-based place knowledge among multiple robots,” Autonomous Robots, pp. 1–19, 2020.[60] S. Bae, F. Rossi, J. Hookr, S. Davidoff, and K.-L. Ma, “A visual analytics approach to debugging cooperative, autonomous multi-robot systems’ worldviews,” arXiv preprint arXiv:2009.01921, 2020. [Online]. Available: https://arxiv.org/pdf/2009.01921.pdf[61] T. Alsboui, Y. Qin, R. Hill, and H. Al-Aqrabi, “Enabling distributed intelligence for the internet of things with iota and mobile agents,” Computing, vol. 102, no. 6, pp. 1345–1363, 2020.[62] K. Geihs, “Engineering challenges ahead for robot teamwork in dynamic environments,” Applied Sciences, vol. 10, no. 4, p. 1368, 2020.[63] E. Umili, M. Tognon, D. Sanalitro, G. Oriolo, and A. Franchi, “Communication-based and communication-less approaches for robust cooperative planning in construction with a team of uavs,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020, pp. 279–288.[64] A. López, J. Meda, E. Hernández, and P. Paniagua, “Multi robot distance based formation using parallel genetic algorithm,” Applied Soft Computing, vol. 86, p.105929, 2020.[65] P. Bechon, C. Lesire, and M. Barbier, “Hybrid planning and distributed iterative repair for multi-robot missions with communication losses,” Autonomous Robots, vol. 44, no. 3, pp. 505–531, 2020.[66] C.-C. Tsai, C.-C. Yu, and C.-W. Wu, “Adaptive distributed bls-fontsm formation control for uncertain networking heterogeneous omnidirectional mobile multirobots,” Journal of the Chinese Institute of Engineers, vol. 43, no. 2, pp. 171–185, 2020.[67] M. Mendonça, R. Palácios, E. Papageorgiou, and de Lucas Souza, “Multi-robot exploration using dynamic fuzzy cognitive maps and ant colony optimization,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020, pp. 1–8.[68] S. Daniluk and R. Emami, “An advice mechanism for heterogeneous robot teams,” International Journal of Robotics and Automation, vol. 35, no. 1, pp. 53–68, 2020.[69] I. Jawhar, N. Mohamed, and J. Al-Jaroodi, “Secure communication in multi-robot systems,” in 2020 IEEE Systems Security Symposium (SSS). IEEE, 2020, pp.1–8.[70] A. Puzicha and P. Buchholz, “Real-time simulation of robot swarms with restricted communication skills,” in 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). IEEE, 2020, pp. 1–8.[71] L. Souza et al., “Sistema multirrobô para exploração de ambientes desconhecidos utilizando controladores fuzzy,” Master’s thesis, Universidade Tecnológica Federal do Paraná, 2020. [Online]. Available: http://riut.utfpr.edu.br/jspui/bitstream/1/5431/1/CP_PPGEM_M_Souza%2C_Lucas_Botoni_de_2020.pdf[72] A. V. Ermakov and L. I. Suchkova, “Development of algorithms for reliable data exchange between autonomous robots based on the principles of a self-organizing network,” Reliability, vol. 20, no. 2, pp. 35–42, 2020.[73] S. Daniluk, “An advice mechanism for heterogeneous robot teams,” Ph. D. Thesis, 2017. [Online]. Available: https://tspace.library.utoronto.ca/bitstream/ 1807/79051/3/Daniluk_Steven_201711_MAS_thesis.pdf[74] J. Verma and V. Ranga, “Multi-robot coordination analysis, taxonomy, challenges and future scope,” Journal of Intelligent & Robotic Systems, vol. 102, no. 1, pp. 1–36, 2021.[75] H.-Y. Zheng, “Fuzzy cooperative ekf localization and adaptive integral terminal sliding-mode formation control using fuzzy broad learning system and artificial potential function for uncertain networking heterogeneous omnidirectional multirobots,” Master’s thesis, 2020.[76] R. Juha, H. Janne, K. Anssi, M. Henna, and V. Ilari, “Smart system for distributed sensing,” in Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic. IEEE, 2008, pp. 21–30.[77] K. Gulzar, “Gesture planning and execution for anchoring between multi-embodiment robots in decentralized settings,” Ph.D. dissertation, Aalto University, 2020. [Online]. Available: https://aaltodoc.aalto.fi/bitstream/handle/123456789/47032/isbn9789526401003.pdf?sequence=1[78] L. Yugang, N. Goldie, and V. Jessyka, “Learning to cooperate together: A semi-autonomous control architecture for multi-robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6.[79] V. Jessyka, L. Yugang, and N. Goldie, “Semi-autonomous exploration with robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6.[80] C. Undeger and F. Polat, “Real-time edge follow: A real-time path search approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 5, pp. 860–872, 2007.[81] O. Kohei, T. Koichi, and I. Hiroshi, “Possibilities of androids as poetry-reciting agent,” in RO-MAN, 2012 IEEE. IEEE, 2012, pp. 565–570.[82] K. Sugawara and M. Sano, “Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system,” Physica D: Nonlinear Phenomena, vol. 100, no. 3, pp. 343–354, 1997.[83] B. Christoph, R. Juliane, and C. Julie, “Use of praise and punishment in human-robot collaborative teams,” in Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on. IEEE, 2006, pp. 177–182.[84] R. Moeckel, Y. N. Perov, A. Nguyen, M. Vespignani, S. Bonardi, S. Pouya, A. Sproewitz, J. van den Kieboom, F. Wilhelm, and A. J. Ijspeert, “Gait optimization for roombots modular robots matching simulation and reality,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 3265–3272.[85] S. Behnke and R. Rojas, “A hierarchy of reactive behaviors handles complexity,” in Balancing reactivity and social deliberation in multi-agent systems. Springer, 2001, pp. 125–136.[86] D. Krohling and E. Martinez, “Ai integral theory of mind en agentes de negociacion conscientes del contexto,” in XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) -JAIIO 48 (Salta), 2019.[87] A. Arab, “A constitution and an economic model for the organisation and emergence of collective behaviour in a colony of robots,” in From Perception to Action Conference, 1994., Proceedings. IEEE, 1994, pp. 334–337.[88] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger, and P. Feyzeau, “Path planning: A 2013 survey,” in Industrial Engineering and Systems Management (IESM), Proceedings of 2013 International Conference on. IEEE, 2013, pp. 1–8.[89] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial Intelligence, vol. 155, no. 12, pp. 93 – 146, 2004.[90] R. R. Murphy, “Trial by fire [rescue robots],” Robotics and Automation Magazine, IEEE, vol. 11, no. 3, pp. 50–61, 2004.[91] M. R. Sierra et al., “Mejora de algoritmos de búsqueda heurística mediante poda por dominancia. aplicación a problemas de scheduling,” 2009. [Online]. Available: http://digibuo.uniovi.es/dspace/bitstream/10651/15043/1/TD_M%20Rita%20Sierra%20Sanchez.pdf[92] R. Andrea and E. Matthias, “A comparison of solution strategies for biobjective shortest path problems,” Computers and Operations Research, vol. 36, no. 4, pp. 1299–1331, 2009.[93] K. Pradipta, S. Patro, C. Panda, and B. Bunil, “D* lite algorithm based path planning of mobile robot in static environment,” Int. J. Comput. Commun. Technol.(IJCCT), vol. 2, pp. 32–36, 2011.[94] S. Peter, L. Guy, G. Audrunas, C. W. Marian, Z. Vinicius, J. Max, L. Marc, S. Nicolas, L. J. Z, T. Karl et al., “Value-decomposition networks for cooperative multi-agent learning based on team reward,” in Proceedings of the 17th international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, 2018, pp. 2085–2087.[95] A. Amanatiadis, S. Chatzichristofis, K. Charalampous, L. Doitsidis, E. Kosmatopoulos, P. Tsalides, A. Gasteratos, S. Roumeliotis et al., “A multi-objective exploration strategy for mobile robots under operational constraints,” Access, IEEE, vol. 1, pp. 691–702, 2013.[96] A. Salman, K. Mohd, and H. Ghulam, “Feedback linearized strategies for collaborative nonholonomic robots,” in Control, Automation and Systems, 2007. ICCAS’07. International Conference on. IEEE, 2007, pp. 1551–1556.[97] A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, A. Hsieh, L. E. Parker, and K. Stoy, Distributed Autonomous Robotic Systems: The 10th International Symposium. Springer, 2012, vol. 83.[98] K. Tsianos, I. Sucan, and L. Kavraki, “Sampling-based robot motion planning: Towards realistic applications,” Computer Science Review, vol. 1, no. 1, pp. 2–11, 2007.[99] A. L. Cumbajin, “Desarrollo de un sistema de navegación basado en la plataforma pioneer p3-dx para el transporte de materiales,” 2020.[100] A. Hussein, “Control and communication systems for automated vehicles cooperation and coordination,” phdthesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Sep. 2018. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/27674[101] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A survey,” Artificial Intelligence, vol. 247, pp. 10–44, 2017.[102] M. Sina, K. Christoforos, F. Emil, K. Dariusz, and N. George, “Cooperative coverage path planning for visual inspection,” Control Engineering Practice, vol. 74, pp. 118–131, 2018.[103] R. Al-Jarrah, A. Shahzad, and H. Roth, “Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy,” IFAC-PapersOnLine, vol. 48, no. 10, pp. 46–51, 2015.[104] Z. Wang and S. Zlatanova, “Multi-agent based path planning for first responders among moving obstacles,” Computers, Environment and Urban Systems, vol. 56, pp. 48–58, 2016.[105] M. Ganeshmurthy and G. Suresh, “Path planning algorithm for autonomous mobile robot in dynamic environment,” in Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on. IEEE, 2015, pp. 1–6.[106] L. Chaymaa, F. Youssef, and B. Said, “Collaborative q-learning path planning for autonomous robots based on holonomic multi-agent system,” in Intelligent Systems: Theories and Applications (SITA), 2015 10th International Conference on. IEEE, 2015, pp. 1–6.[107] D. Megherbi and M. Kim, “A collaborative distributed multi-agent reinforcement learning technique for dynamic agent shortest path planning via selected sub-goals in complex cluttered environments,” in Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2015 IEEE International Inter-Disciplinary Conference on. IEEE, 2015, pp. 118–124.[108] S. E. Muldoon, C. Luo, F. Shen, and H. Mo, “Naturally inspired optimization algorithms as applied to mobile robotic path planning,” in Swarm Intelligence (SIS), 2014 IEEE Symposium on. IEEE, 2014, pp. 1–6.[109] C. Keonyup, L. Minchae, and S. Myoungho, “Local path planning for off-road autonomous driving with avoidance of static obstacles,” Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4, pp. 1599–1616, 2012.[110] B. Fethi and J. Tongdan, “An approach for collaborative path planning in multi-robot systems,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009, pp. 2356–2361.[111] Z. Lihui, “On the techniques of multi-agent path planning and the collaboration,” in Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol. 13. IEEE, 2010, pp. V13–430.[112] J. Chen and L. R. Li, “Path planning protocol for collaborative multi-robot systems,” in Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE International Symposium on. IEEE, 2005, pp. 721–726.[113] C. Kim, H. Yang, D. Kang, and D. Lee, “2-d cooperative localization with omni-directional mobile robots,” in 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Oct 2015, pp. 425–426.[114] S. Nestinger and M. Demetriou, “Adaptive collaborative estimation of multi-agent mobile robotic systems,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp. 1856–1861.[115] H. Chen, P. Hovareshti, and J. S. Baras, “Distributed collaborative controlled autonomous vehicle systems over wireless networks,” in Control & Automation (MED), 2010 18th Mediterranean Conference on. IEEE, 2010, pp. 1695–1700.[116] Z. Chuan, X. Jianqing, and Y. Xiangsheng, “An architecture for intelligent collaborative systems based on multi-agent,” in Computer Supported Cooperative Work in Design, 2008. CSCWD 2008. 12th International Conference on. IEEE, 2008, pp. 367–372.[117] N. Patricio and C. Enric, “A framework for the development of cooperative robotic applications,” in Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International Conference on. IEEE, 2005, pp. 901–906.[118] S. Jian, J. Ibañez, T. Chew, and C. Boon, “A collaborative-shared control system with safe obstacle avoidance capability,” in Robotics, Automation and Mechatronics, 2004 IEEE Conference on, vol. 1. IEEE, 2004, pp. 119–123.[119] K. Koji, I. Horoshi, and B. Matther, “Identifying and localizing robots in a multi-robot system environment,” in Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, vol. 2. IEEE, 1999, pp. 966–971.[120] A. Hajime, O. Koichi, I. Yoshiki, Y. Kazutaka, M. Akihiro, K. Hayato, and E. Isao, “Collaborative team organization using communication in a decentralized robotic system,” in Intelligent Robots and Systems’ 94.’Advanced Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International Conference on, vol. 2. IEEE, 1994, pp. 816–823.[121] Y. Liu, B. Yin, and D. Jia, “A multi-objective optimization method for aerospace product research and development process based on particle swarm optimization algorithm and critical path algorithm,” in Journal of Physics: Conference Series, vol. 1732, no. 1. IOP Publishing, 2021, p. 012076.[122] S. Ramabalan, V. Sathiya, and M. Chinnadurai, “Wheeled mobile robot trajectory planning using evolutionary techniques,” Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020, pp. 291–301, 2020.[123] O. A. Razzaq and A. Al-Araji, “Path planning and control strategy design for mobile robot based on hybrid swarm optimization algorithm,” International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021, 2021.[124] R. Szczepanski and T. Tarczewski, “Global path planning for mobile robot based on artificial bee colony and dijkstraâs algorithms,” 2020.[125] A. M. Pupo, “Diseño e implementación de una herramienta computacional para reconocimiento de minas antipersonal artesanales plásticas mediante técnicas de procesamiento digital de imágenes,” 2015.[126] M. Armada, R. E. Fernandez, H. Montes, J. F. Sarria, and C. Salinas, “Robots móviles para tareas de desminado humanitario,” 2013.[127] B. G. Santiago, “Robot hexápodo para la detección de minas antipersona artesanales tipo jeringa,” 2014.[128] A. Bedoya, G. Guzmán, and J. Chaves, “Propuesta de desarrollo robótico para el desminado humanitario,” Scientia et Technica, vol. 3, no. 49, pp. 239–244, 2011. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/1531[129] R. C. Ponticelli, Sistema de exploración de terrenos con robots móviles: aplicación en tareas de detección y localización de minas antipersonas. Universidad Complutense de Madrid, Servicio de Publicaciones, 2011.[130] E. Mercado and J. Saavedra, “Sistema de localización acústico para robots móviles basado en múltipes transmisores y un receptor,” Visión Electrónica: algo más que un estado sólido, vol. 1, no. 1, pp. 32–40, 2011.[131] C. A. Parra, C. A. Campo, J. D. Coronado, J. I. Rizo, and C. A. Otálora, “Una herramienta robotica para la detección y localización de minas antipersonales,” Revista de La Asociación de Ingenieros Javerianos, 2002.[132] M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lalbakhsh, M. Jamshidi, L. L. Spada, M. Mirmozafari, M. Dehghani, A. Sabet, S. Roshani, S. Roshani, N. Bayat-Makou, B. Mohamadzade, Z. Malek, A. Jamshidi, S. Kiani, H. Hashemi-Dezaki, and W. Mohyuddin, “Artificial intelligence and covid-19: Deep learning approaches for diagnosis and treatment,” IEEE Access, vol. 8, pp. 109 581–109 595, 2020.[133] A. A. R. Alsaeedy and E. K. P. Chong, “Detecting regions at risk for spreading covid-19 using existing cellular wireless network functionalities,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 187–189, 2020.[134] M. N. Islam and A. K. M. N. Islam, “A systematic review of the digital interventions for fighting covid-19: The bangladesh perspective,” IEEE Access, vol. 8, pp. 114 078–114 087, 2020.[135] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. Zheng, “A weakly-supervised framework for covid-19 classification and lesion localization from chest ct,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.[136] E. González, “Desarrollo de un algoritmo planificador de rutas con capacidad de implementación en diversas aplicaciones de la robótica móvil,” Thesis, Octubre 2015.[137] J. Goyal and K. Nagla, “A new approach of path planning for mobile robots,” in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2014, pp. 863–867.[138] S. V. Konakalla, “A star algorithm,” December 2014.[139] S. Yogang, S. Sanjay, S. Robert, H. Daniel, and K. Asiya, “A constrained a* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents,” Ocean Engineering, vol. 169, pp. 187–201, 2018.[140] D. Sundfeld, C. Razzolini, G. Teodoro, A. Boukerche, and A. C. Magalhaes, “Pa-star: A disk-assisted parallel a-star strategy with locality-sensitive hash for multiple sequence alignment,” Journal of Parallel and Distributed Computing, vol. 112, pp. 154–165, 2018.[141] D. Yang, B. Xu, K. Rao, and W. Sheng, “Passive infrared (pir)-based indoor position tracking for smart homes using accessibility maps and a-star algorithm,” Sensores, 2018.[142] P. Judea, “Heuristics: intelligent search strategies for computer problem solving,” Addison-Wesley Pub. Co., Inc., Reading, MA, 1984.[143] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, M. P. E. Limited, Ed., 2016.[144] A. Patelâs, “Introduction to a*,” Blog, 2012. [Online]. Available: http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html[145] A. González and H. Garzón, “Diseño, implementación y aplicación de una estrategia de búsqueda preferente por amplitud, para uso multidireccional sobre sistemas distribuidos o de procesamiento en paralelo usando un simulador de escenarios, construido para el trazado de rutas en robótica móvil,” mathesis, Nov. 2011. [Online]. Available: https://core.ac.uk/download/pdf/71396727.pdf[146] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in ai,” AI Magazine, vol. 25, no. 2, p. 99, 2004.[147] J. Chaves, J. Gómez, and E. González, “Two agents with gbfs algorithms working cooperatively to get a shortest path,” Scientia et Technica, vol. 25, no. 3, pp. 448–454, 2020.[148] R. Inam, K. Raizer, A. Hata, R. Souza, E. Forsman, E. Cao, and S. Wang, “Risk assessment for human-robot collaboration in an automated warehouse scenario,” in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 743–751.[149] M. Iwasa, Y. Toda, A. Saputra, and N. Kubota, “Path planning of the autonomous mobile robot by using real-time rolling risk estimation with fuzzy inference,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017, pp. 1–6.[150] M. Irie, K. Nagatani, and A. Gofuku, “Path evaluation for a mobile robot based on a risk of collision,” in Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No. 03EX694), vol. 1. IEEE, 2003, pp. 485–490.[151] Z. Qidan, W. Yebin, W. Guoqiang, and W. Xin, “An improved anytime rrts algorithm,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1. IEEE, 2009, pp. 268–272.[152] K. Nagatani, “Recent trends and issues of volcanic disaster response with mobile robots,” Journal of Robotics and Mechatronics, vol. 26, no. 4, pp. 436–441, 2014.[153] A. Gomez, H. Martinez, and M. Sanchez, “A fuzzy logic based language to model autonomous mobile robots,” in Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International, vol. 1. IEEE, 1999, pp. 550–555.[154] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised. Springer, 2017, vol. 118.[155] R. Singh, G. Singh, and V. Kumar, “Control of closed-loop differential drive mobile robot using forward and reverse kinematics,” in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020, pp. 430–433.[156] S. Y. Kadirova and T. R. Nenov, “Design of power wheelchair controller,” in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE AE), 2020, pp. 1–4.[157] S. Nurmaini, K. Dewi, and B. Tutuko, “Differential-drive mobile robot control design based-on linear feedback control law,” in IOP Conference Series: Materials Science and Engineering, vol. 190, no. 1. IOP Publishing, 2017, p. 012001.[158] K. Kothandaraman, “Motion planning and control of differential drive mobile robot,” mathesis, Wright State University, Dec. 2016. [Online]. Available: https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2841&context=etd_all[159] Mohd Saifizi Saidonr, H. Desa, and M. N. Rudzuan, “A differential steering control with proportional controller for an autonomous mobile robot,” in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 90–94.[160] R. Siegwart and I. Nourbakhsh, “Robot control basics.” [Online]. Available: https://cs.gmu.edu/~kosecka/cs485/lec04-control.pdf[161] M. Gheisarnejad and M. H. Khooban, “An intelligent non-integer pid controller-based deep reinforcement learning: Implementation and experimental results,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3609–3618, 2021.[162] W. Liu, X. Wang, and S. Liang, “Trajectory tracking control for wheeled mobile robots based on a cascaded system control method,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 396–401.[163] C. B. Jabeur and H. Seddik, “Implementation of snnpid optimized neural networks controller for a two-wheeled mobile robot,” in 2019 International Conference on Control, Automation and Diagnosis (ICCAD), 2019, pp. 1–6.[164] W. Serralheiro, “A motion control scheme for a wmr based on input-output feedback linearization and pid,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), 2019, pp. 222–227.[165] C. Lee, B. Su, C. Chang, T. Hsu, and W. Lee, “Applications of taguchi method to pid control for path tracking of a wheeled mobile robot,” in 2018 IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 453–456.[166] V. Gupta, N. Bendapudi, I. N. Kar, and S. K. Saha, “Three-stage computed-torque controller for trajectory tracking in non-holonomic wheeled mobile robot,” in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), 2018, pp. 144–149.[167] J. Heikkinen, T. Minav, and A. D. Stotckaia, “Self-tuning parameter fuzzy pid controller for autonomous differential drive mobile robot,” in 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 2017, pp. 382–385.[168] J. Singh and P. S. Chouhan, “A new approach for line following robot using radius of path curvature and differential drive kinematics,” in 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA), 2017, pp. 497–502.[169] C. S. Shijin and K. Udayakumar, “Speed control of wheeled mobile robots using pid with dynamic and kinematic modelling,” in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–7.[170] C. Pareja, “Diseño y construcción de un robot para la implementación y evaluación de algoritmos de planificación de rutas utilizando materiales de bajo costo,” Thesis, April 2017.[171] F. Hua, G. Li, F. Liu, and Y. Liu, “Mechanical design of a four-wheel independent drive and steering mobile robot platform,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2016, pp. 235–238.[172] A. Araujo, D. Portugal, M. Couceiro, J. Sales, and R. Rocha, “Desarrollo de un robot móvil compacto integrado en el middleware ros,” Revista Iberoamericana de Automótica e Informótica industrial, vol. 11, no. 3, pp. 315–326, 2014.[173] R. D. Chaglla and R. P. Pereira, “Diseño, construcción e implementación de un prototipo de robot móvil para el recorrido de trayectorias definidas por computador para el laboratorio de robótica industrial decem,” B.S. thesis, Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería en Mecatrónica, 2014.[174] V. Lopez, “Diseño y construcción de un robot móvil con navegación controlada a través de una aplicación móvil con interfaz de voz,” mathesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Oct. 2014. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/26237[175] E. Ramos, “Control punto a punto para el seguimiento de trayectorias de un robot móvil de ruedas tipo diferencial,” phdthesis, Instituto Politécnico Nacional, May 2011. [Online]. Available: http://www.repositoriodigital.ipn.mx/handle/123456789/12281[176] R. Ortigoza, E. R. Ramos, and R. Morales, “Modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial,” Latin-American Journal of Physics Education, vol. 4, no. 3, p. 39, 2010.[177] C. Tello and J. A. D. la Peña, “Construcción y localización en tiempo real de un robot móvil vía odometría en el seguimiento de trayectorias mediante control automático,” Ph.D. dissertation, 2010.[178] U. Cortesand, A. Castañeda, A. Benitez, and A. Diaz, “Control de Movimiento de un Robot Móvil Tipo Diferencial Robot uubetaot-32b 2015.[179] L. Y. Lopez, “Implementación del filtro de kalman para la localización de un robot móvil tipo lego nxt en labview,” Tecnura, vol. 16, pp. 68–75, 2012.[180] F. Aguado, Castaño, J. A. Casanova, E. Zalama, and J. Garcia, “Diseño y simulación de un filtro kalman para un robot móvil,” XXV Jornadas de Automatica, Ciudad Real, 2004.[181] J. Chaves, C. Pareja, and E. González, “Design and construction of a low cost wheeled mobile robot for implementation of path planning algorithms,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2018, pp. 1–6.[182] P. Robotics and E. Corporation, “Minimu-9 v5 gyro, accelerometer, and compass (lsm6ds33 and lis3mdl carrier),” Nov. 2016. [Online]. Available: https://www.pololu.com/product/2738[183] “Digital output magnetic sensor: ultra-low-power, high-performance 3-axis magnetometer,” May 2015.[184] D. Grimaldi, Y. Kurylyak, and F. Lamonaca, “Detection and parameters estimation of locally motion blurred objects,” in Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference on, vol. 1. IEEE, 2011, pp. 483–487.[185] L. Huei and L. Kun, “Motion blur removal and its application to vehicle speed detection,” in Image Processing, 2004. ICIP’04. 2004 International Conference on, vol. 5. IEEE, 2004, pp. 3407–3410.[186] A. Taherkhani and J. Mohammadi, “Mejora de estimación de la velocidad de objeto esfórico con la base de redes neuronales en el análisis por desenfoque de movimiento,” AFINIDAD, vol. 71, no. 563, pp. 42–47, 2014.[187] M. Javad, A. Rohollah et al., “Vehicle speed estimation based on the image motion blur using radon transform,” in Signal Processing Systems (ICSPS), 2010 2nd International Conference on, vol. 1. IEEE, 2010, pp. V1–243.[188] J. Yu, C. Li, K. Yang, and W. Chen, “Grg-mape and pcc-mape based on uncertainty-mathematical theory for path-loss model selection,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.[189] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson Prentice Hall, 2007.[190] N. Idiou, F. Benatia, and B. Brahimi, “Bias and rmse of archimedean copula using moment and l-moments methods,” in 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), 2020, pp. 55–58.[191] D. Purwanto, C. Eswaran, and R. Logeswaran, “A comparison of arima, neural network and linear regression models for the prediction of infant mortality rate,” in 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, pp. 34–39.[192] A. Hidalgo-Paniagua, J. P. Bandera, M. R. de Quintanilla, and A. Bandera, “Quad-rrt: A real-time gpu-based global path planner in large-scale real environments,” Expert Systems with Applications, vol. 99, pp. 141–154, 2018.[193] J. Camarena, “Análisis cinemático dinámico y control en tiempo real de un vehículo guiado automáticamente,” Master’s thesis, Centro Nacional de Investigacion y Desarrollo Tecnologico, 2009.[194] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993.[195] M. G. Bekker, “Off-the-road locomotion (1960),” Ann Arbor, Michigan: University of Michigan Press, 1960.[196] B. M. Gregory, “Introduction to terrain-vehicle systems,” 1969.[197] C. Gottesman and H. Intraub, “Constraints on spatial extrapolation in the mental representation of scenes: View-boundaries vs. object-boundaries,” Visual Cognition, vol. 10, no. 7, pp. 875–893, 2003.[198] L. B. Sanabria, Imagen mental y representacion espacial. Universidad Pedagógica nacional, 2015.[199] C. Thinus-Blanc and F. Gaunet, “Representation of space in blind persons: vision as a spatial sense,” Psychological bulletin, vol. 121, no. 1, p. 20, 1997.[200] T. S. Levitt and D. T. Lawton, “Qualitative navigation for mobile robots,” Artificial intelligence, vol. 44, no. 3, pp. 305–360, 1990.[201] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and S. Chien, “Decision-making in a robotic architecture for autonomy,” 2001.[202] S. Weiming and N. Douglas, “Sistemas basados en agentes para la fabricación inteligente: una encuesta de vanguardia,” Sistemas de conocimiento e información, 1999.[203] N. Jennings, M. J. Wooldridge, and N. Jennings, Tecnología del agente: fundaciones, aplicaciones y mercados, S. S. . B. Media, Ed., 1998.[204] J. A. Arcos, “Sistema de navegación y modelado del entorno para un robot móvil,” 2009.[205] C. Hu, H. Jing, R. Wang, F. Yan, and M. Chadli, “Robust h output-feedback control for path following of autonomous ground vehicles,” Mechanical Systems and Signal Processing, 2016.[206] S. Villalobos et al., Diseño y manejo de estructuras de datos en C. Mc Graw-Hill Interamericana, 1996. [Online]. Available: https://books.google.com.co/books?id=rrDRAAAACAAJ[207] M. A. Murray-Lasso, “Math puzzles, powerful ideas, algorithms and computers in teaching problem-solving,” Journal of applied research and technology, vol. 1, no. 3, pp. 215–234, 2003.[208] D. Guichard, “Combinatorics and graph theory,” Department of Mathematics Whitman College.[209] V. J. Molina, P. C. Torres, and P. C. Restrepo, “Técnicas de inteligencia artificial para la solución de laberintos de estructura desconocida,” Scientia et Technica, vol. 2, no. 39, 2008.[210] C. Keum-Bae and C. Seong-Yun, “The concept of collision-free motion planning using a dynamic collision map,” International Journal of Advanced Robotic Systems, vol. 11, no. 9, p. 145, 2014.[211] A. Kott, V. Saks, and A. Mercer, “A new technique enables dynamic replanning and rescheduling of aeromedical evacuation: Special articles on innovative applications,” The AI magazine, vol. 20, no. 1, pp. 43–53, 1999.[212] A. Stentz and I. C. Mellon, “Optimal and efficient path planning for unknown and dynamic environments,” International Journal of Robotics and Automation, vol. 10, pp. 89–100, 1993.[213] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national conference on Artificial intelligence. American Association for Artificial Intelligence, 2002, pp. 476–483.[214] T. Lozano and M. Wesley, “An algorithm for planning collision-free paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570, 1979.[215] M. Fernandez, “Algoritmos de búsqueda heurística en tiempo real. aplicación a la navegación en los juegos de vídeo,” 2005.[216] H. Manuel, K. Thomas, and H. Malte, “Search progress and potentially expanded states in greedy best-first search.” International Joint Conferences on Artificial Intelligence, 2018.[217] R. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,” Artificial Intelligence, vol. 27, no. 1, pp. 97 – 109, 1985. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0004370285900840[218] I Gavalda Jordi Duch and N. H. Tejedor, Inteligencia artificial. UOC Universitat Oberta de Catalunya, 2008. [Online]. Available: http://www.exabyteinformatica.com/uoc/Inteligencia_artificial/Inteligenca_artificial_ES/Inteligencia_artificial.pdf[219] E. M. Alvaro, M. M. D. Javier, and R. P. F. Javier, “Funciones que ganan partidas.” Universidad de Alcala, 2013. [Online]. Available: http://www2.uah.es/libretics/concurso2013/files2013/Trabajos/Funciones%20que%20ganan%20partidas.pdf[220] A. Sedeño and M. Colebrook, “A biobjective dijkstra algorithm,” European Journal of Operational Research, 2019.[221] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July 1968. [Online]. Available: http://ieeexplore.ieee.org.ezproxy.utp.edu.co/xpl/articleDetails.jsp?tp=&arnumber=4082128&queryText%3DA+Formal+Basis+for+the+Heuristic+Determination+of+Minimum+Cost+Paths[222] “Ai hall of fame,” Intelligent Systems, IEEE, vol. 26, no. 4, pp. 5–15, July 2011.[223] S. Koenig, “Agent-centered search,” AI Magazine, vol. 22, no. 4, p. 109, 2001.[224] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 23, pp. 189 – 211, 1990.[225] M. Shimbo and T. Ishida, “Controlling the learning process of real-time heuristic search,” Artificial Intelligence, vol. 146, no. 1, pp. 1 – 41, 2003.[226] K. Sven, F. David, and B. Colin, “Heuristic search-based replanning,” in AIPS, 2002, pp. 294–301.[227] L. M. and K. S., “Incremental replanning for mapping,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 1, 2002, pp. 667–672 vol.1.[228] S. Andrei and K. Kiyoshi, “Collision-free navigation with extended terrain maps,” in Transactions on Computational Science XXIII. Springer, 2014, pp. 139–156.[229] K. Oussama, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.[230] S. Karansher and F. Kikuo, “Map making by cooperating mobile robots,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on. IEEE, 1993, pp. 254–259.[231] E. Fernandez-Moral, V. Arevalo, and J. Gonzalez-Jimenez, “Mapeo métrico-topológico híbrido para slam monocular a gran escala,” in Informatics in Control, Automation and Robotics, Springer, Ed., 2015. [232] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.[233] J. Blanco, J. Gonzalez, and J. Fernandez-Madrigal, “Mapas subjetivos locales para slam métrico-topológico híbrido,” Robotica y Sistemas Autonomos, 2009.[234] A. Federico, L. Martin, T. Gonzalo, and B. Facundo, “Slam estado del arte,” 2007.[235] A. M. Romero, “Mapeado y localización topológicos mediante información visual,” phdthesis, Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial, May 2013. [Online]. Available: http://hdl.handle.net/10045/30275[236] J. Lim, J. Frahm, and M. Pollefeys, “Online environment mapping using metric-topological maps,” The International Journal of Robotics Research, 2012.[237] F. Lawrence, Strategy: A history. Oxford University Press, 2015.[238] E. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press, 1988.[239] D. Joseph, “Kinematics (joseph stiles beggs),” 1985.Universidad Tecnológica de PereiraLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79865/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL7914501.2021.pdf7914501.2021.pdfTesis de Doctorado en Ingeniería - Línea de Investigación en Automáticaapplication/pdf29142605https://repositorio.unal.edu.co/bitstream/unal/79865/2/7914501.2021.pdf664e7c9b9229714bb0455bfc97bce290MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79865/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL7914501.2021.pdf.jpg7914501.2021.pdf.jpgGenerated Thumbnailimage/jpeg5380https://repositorio.unal.edu.co/bitstream/unal/79865/4/7914501.2021.pdf.jpg61d1c836a57f4f44214bd5a2a4112b54MD54unal/79865oai:repositorio.unal.edu.co:unal/798652023-07-24 23:04:36.856Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |