Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch)
ilustraciones (algunas a color), diagramas
- Autores:
-
Barrera-Torres, Herman Fredy
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86512
- Palabra clave:
- 610 - Medicina y salud
570 - Biología::572 - Bioquímica
610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatría
Metilación de ADN
Epigénesis genética
Envejecimiento prematuro
Transducción de señal
DNA methylation
Epigenesis, genetic
Aging, premature
Signal transduction
Metilación de ADN
Progeria
Senescencia
Transducción de señales
SWR
DNA methylation
Senescence
Signal transduction
Síndrome de Wiedemann-Rauternstrauch
Trastorno metabólico neonatal
ARN Polimerasa III
Wiedemann-Rautenstrauch syndrome
Neonatal metabolic disorder
RNA Polymerase III
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_129a73d97e9f676b1bf679952a4418ed |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86512 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
dc.title.translated.eng.fl_str_mv |
Study of DNA methylation profile in patients with neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome) |
title |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
spellingShingle |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) 610 - Medicina y salud 570 - Biología::572 - Bioquímica 610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatría Metilación de ADN Epigénesis genética Envejecimiento prematuro Transducción de señal DNA methylation Epigenesis, genetic Aging, premature Signal transduction Metilación de ADN Progeria Senescencia Transducción de señales SWR DNA methylation Senescence Signal transduction Síndrome de Wiedemann-Rauternstrauch Trastorno metabólico neonatal ARN Polimerasa III Wiedemann-Rautenstrauch syndrome Neonatal metabolic disorder RNA Polymerase III |
title_short |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
title_full |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
title_fullStr |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
title_full_unstemmed |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
title_sort |
Estudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch) |
dc.creator.fl_str_mv |
Barrera-Torres, Herman Fredy |
dc.contributor.advisor.spa.fl_str_mv |
Arboleda Bustos, Gonzalo Humberto |
dc.contributor.author.spa.fl_str_mv |
Barrera-Torres, Herman Fredy |
dc.contributor.researchgroup.spa.fl_str_mv |
Muerte Celular |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud 570 - Biología::572 - Bioquímica 610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatría |
topic |
610 - Medicina y salud 570 - Biología::572 - Bioquímica 610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatría Metilación de ADN Epigénesis genética Envejecimiento prematuro Transducción de señal DNA methylation Epigenesis, genetic Aging, premature Signal transduction Metilación de ADN Progeria Senescencia Transducción de señales SWR DNA methylation Senescence Signal transduction Síndrome de Wiedemann-Rauternstrauch Trastorno metabólico neonatal ARN Polimerasa III Wiedemann-Rautenstrauch syndrome Neonatal metabolic disorder RNA Polymerase III |
dc.subject.decs.spa.fl_str_mv |
Metilación de ADN Epigénesis genética Envejecimiento prematuro Transducción de señal |
dc.subject.decs.eng.fl_str_mv |
DNA methylation Epigenesis, genetic Aging, premature Signal transduction |
dc.subject.proposal.spa.fl_str_mv |
Metilación de ADN Progeria Senescencia Transducción de señales SWR |
dc.subject.proposal.eng.fl_str_mv |
DNA methylation Senescence Signal transduction |
dc.subject.umls.spa.fl_str_mv |
Síndrome de Wiedemann-Rauternstrauch Trastorno metabólico neonatal ARN Polimerasa III |
dc.subject.umls.eng.fl_str_mv |
Wiedemann-Rautenstrauch syndrome Neonatal metabolic disorder RNA Polymerase III |
description |
ilustraciones (algunas a color), diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T13:49:11Z |
dc.date.available.none.fl_str_mv |
2024-07-17T13:49:11Z |
dc.date.issued.none.fl_str_mv |
2024-07-10 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86512 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86512 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Anton, L., Brown, A. G., Bartolomei, M. S., & Elovitz, M. A. (2014). Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas. PLOS ONE, 9(6), 100148. https://doi.org/10.1371/journal.pone.0100148 Aquino, E. M., Benton, M. C., Haupt, L. M., Sutherland, H. G., riffiths, L. R. G., & Lea, R. A. (2018). Current Understanding of DNA Methylation and Age-related Disease. OBM Genetics, 2(2), 1–1. https://doi.org/10.21926/obm.genet.1802016 Arboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): Report of three affected sibs. American Journal of Medical Genetics, Part A, 155(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019 Atzmon, G. (2015). Longevity genes: a blueprint of ageing. In Advances in Experimental Medicine and Biology0065-2598 (Vol. 847, Issue Chapter 159). http://www.springerlink.com/index/10.1007/978-0-387-73657-0_159%5Cnpapers2://publication/doi/10.1007/978-0-387-73657-0_159 Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020a). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of Ageing and Development, 192. https://doi.org/10.1016/j.mad.2020.111360 Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020b). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms Http://Www.Bases.Unal.Edu.Co/Subjects/Databases.Php?Letter=Allof Ageing and Development, 192(September). https://doi.org/10.1016/j.mad.2020.111360 Bergsma, T., & Rogaeva, E. (2020). DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 15, 263310552094222. https://doi.org/10.1177/2633105520942221 Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2), 297–309. https://doi.org/10.1042/BST20110766 Bezprozvanny, I. (2019). Calcium hypothesis of neurodegeneration – an update. Biochemical and Biophysical Research Communications, 520(4), 667. https://doi.org/10.1016/J.BBRC.2019.10.016 Borsig, L., & Läubli, H. (2019). Cell Adhesion During Tumorigenesis and Metastasis. Encyclopedia of Cancer, 307–314. https://doi.org/10.1016/B978-0-12-801238-3.64991-7 Calvanese, V., Lara, E., Kahn, A., & Fraga, M. F. (2009). The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 8(4), 268–276. https://doi.org/10.1016/j.arr.2009.03.004 Carvalho, T. S., & Lussi, A. (2017). Age‐related morphological, histological and functional changes in teeth. Journal of Oral Rehabilitation, 44(4), 291–298. https://doi.org/10.1111/joor.12474 Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P.-C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging, 8(9), 1844–1865. https://doi.org/10.18632/aging.101020 Chen, M., Fang, Y., Liang, M., Zhang, N., Zhang, X., Xu, L., Ren, X., Zhang, Q., Zhou, Y., Peng, S., Yu, J., Zeng, J., & Li, X. (2023). The activation of mTOR signalling modulates DNA methylation by enhancing DNMT1 translation in hepatocellular carcinoma. Journal of Translational Medicine, 21(1), 1–17. https://doi.org/10.1186/S12967-023-04103-9/FIGURES/8 Choukrallah, M. A., & Matthias, P. (2014). The interplay between chromatin and transcription factor networks during B cell development: Who pulls the trigger first? Frontiers in Immunology, 5(APR), 1–11. https://doi.org/10.3389/fimmu.2014.00156 Daniel, F. I., Cherubini, K., Yurgel, L. S., De Figueiredo, M. A. Z., & Salum, F. G. (2011). The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer, 117(4), 677–687. https://doi.org/10.1002/cncr.25482 Dutta, S., Goodrich, J. M., Dolinoy, D. C., & Ruden, D. M. (2023). Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes 2024, Vol. 15, Page 16, 15(1), 16. https://doi.org/10.3390/GENES15010016 Fennell, L., Dumenil, T., Wockner, L., Hartel, G., Nones, K., Bond, C., Borowsky, J., Liu, C., McKeone, D., Bowdler, L., Montgomery, G., Klein, K., Hoffmann, I., Patch, A. M., Kazakoff, S., Pearson, J., Waddell, N., Wirapati, P., Lochhead, P., … Whitehall, V. (2019). Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cmgh, 8(2), 269–290. https://doi.org/10.1016/j.jcmgh.2019.04.002 Funes, S. C., Fernández-Fierro, A., Rebolledo-Zelada, D., Mackern-Oberti, J. P., & Kalergis, A. M. (2021). Contribution of Dysregulated DNA Methylation to Autoimmunity. International Journal of Molecular Sciences, 22(21), 11892. https://doi.org/10.3390/ijms222111892 Gilbert, H. T. J., & Swift, J. (2019). The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Experimental Cell Research, 378(1), 98–103. https://doi.org/10.1016/j.yexcr.2019.03.002 Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: a premature aging disease caused by LMNA gene mutations. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.arr.2016.06.007.Hutchinson-Gilford Guastafierro, T., Bacalini, M. G., Marcoccia, A., Gentilini, D., Pisoni, S., Di Blasio, A. M., Corsi, A., Franceschi, C., Raimondo, D., Spanò, A., Garagnani, P., & Bondanini, F. (2017). Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clinical Epigenetics, 9(1), 1–10. https://doi.org/10.1186/s13148-017-0389-4 Han, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell Discovery, 4(1), 40. https://doi.org/10.1038/s41421-018-0044-z Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016 Hennekam, R. C. M. (2020). Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. European Journal of Medical Genetics, 63(11), 104028. https://doi.org/10.1016/j.ejmg.2020.104028 Hiraide, T., Nakashima, M., Ikeda, T., Tanaka, D., Osaka, H., & Saitsu, H. (2020). Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. Journal of Human Genetics, 65(10), 921–925. https://doi.org/10.1038/s10038-020-0786-y Hodjat, M., Khan, F., & Saadat, K. A. S. M. (2020). Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Research Reviews, 63(July), 101140. https://doi.org/10.1016/j.arr.2020.101140 Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115 Hu, S., Wu, J., Chen, L., & Shan, G. (2012). Signals from noncoding RNAs: Unconventional roles for conventional pol III transcripts. International Journal of Biochemistry and Cell Biology, 44(11), 1847–1851. https://doi.org/10.1016/j.biocel.2012.07.013 Huidobro, C., Fernandez, A. F., & Fraga, M. F. (2013). Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 34(4), 765–781. https://doi.org/10.1016/j.mam.2012.06.006 Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., & Webster, M. (2009). Genome-wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178. https://doi.org/10.1038/ng.298.Genome-wide Illumina. (2021). MethylationEPIC v1.0 LIMS Product Descriptor File (p. 50). Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133. https://doi.org/10.1038/nature09303 Ito, T., Kubiura-Ichimaru, M., Murakami, Y., Bogutz, A. B., Lefebvre, L., Suetake, I., Tajima, S., & Tada, M. (2022). DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLOS ONE, 17(1), e0262277. https://doi.org/10.1371/journal.pone.0262277 Jay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American Journal of Medical Genetics, Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960 Jeltsch, A., Ehrenhofer-Murray, A., Jurkowski, T. P., Lyko, F., Reuter, G., Ankri, S., Nellen, W., Schaefer, M., & Helm, M. (2017). Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biology, 14(9), 1108–1123. https://doi.org/10.1080/15476286.2016.1191737 Ji, Y., Xie, Y., Zhang, M., Zhou, J., Peng, L., Zheng, Y., & Shu, S. (2023). Role of SATB2 5’ Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, 7(2), 165–173. https://doi.org/10.14744/ejmo.2023.41377 Jin, B., & Robertson, K. D. (2013). DNA methyltransferases, DNA damage repair, and cancer. Advances in Experimental Medicine and Biology, 754, 3–29. https://doi.org/10.1007/978-1-4419-9967-2_1 Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., Corsi, S., Cohen, H., Felton, S., Bali, R., Horvath, S., & Raj, K. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nature Aging, 2(6), 484–493. https://doi.org/10.1038/s43587-022-00220-0 Kipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. A. (2004). What Can Progeroid Syndromes Tell Us About Human Aging? Science, 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587 Kling, T., & Carén, H. (2019). Methylation Analysis Using Microarrays: Analysis and Interpretation. In Methods in Molecular Biology (Vol. 1908, Issue July, pp. 205–217). Humana Press. https://doi.org/10.1007/978-1-4939-9004-7_14 Koval, A. P., Veniaminova, N. A., & Kramerov, D. A. (2011). Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene, 487(2), 113–117. https://doi.org/10.1016/j.gene.2011.08.001 Kuzmina, N. S., Lapteva, N. S., & Rubanovich, A. V. (2016). Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. Environmental Research, 146, 10–17. https://doi.org/10.1016/j.envres.2015.12.008 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., Levine, R., McEwan, P., … Chen, Y. J. (2001). Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium (Nature (2001) 409 (860-921)). Nature, 412(6846), 565–566. https://doi.org/10.1038/35087627 Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A., & Robbins, P. D. (2022). Immune Senescence, Immunosenescence and Aging. Frontiers in Aging, 3. https://doi.org/10.3389/fragi.2022.900028 Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. AGING, 10(4). www.aging-us.com Liu, N., Yang, R., Shi, Y., Chen, L., Liu, Y., Wang, Z., Liu, S., Ouyang, L., Wang, H., Lai, W., Mao, C., Wang, M., Cheng, Y., Liu, S., Wang, X., Zhou, H., Cao, Y., Xiao, D., & Tao, Y. (2020). The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduction and Targeted Therapy 2020 5:1, 5(1), 1–14. https://doi.org/10.1038/s41392-020-00249-w Liu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell, 19(10). https://doi.org/10.1111/acel.13229 Loaeza-Loaeza, J., Beltran, A. S., & Hernández-Sotelo, D. (2020). Dnmts and impact of cpg content, transcription factors, consensus motifs, lncrnas, and histone marks on dna methylation. In Genes (Vol. 11, Issue 11, pp. 1–19). MDPI AG. https://doi.org/10.3390/genes11111336 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039 Luo, R., Bai, C., Yang, L., Zheng, Z., Su, G., Gao, G., Wei, Z., Zuo, Y., & Li, G. (2018). Correction to: DNA methylation subpatterns at distinct regulatory regions in human early embryos (Open Biology (2018) 8 (180131) DOI: 10.1098/rsob.180131). Open Biology, 8(12), 1–9. https://doi.org/10.1098/rsob.180215 Magalingam, K. B., Somanath, S. D., & Radhakrishnan, A. K. (2023). A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson’s Disease. Experimental Neurobiology, 32(3), 119–132. https://doi.org/10.5607/en22035 Melo dos Santos, L. S., Trombetta-Lima, M., Eggen, B. J. L., & Demaria, M. (2024). Cellular senescence in brain aging and neurodegeneration. In Ageing Research Reviews (Vol. 93). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2023.102141 Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380 Minnerop, M., Kurzwelly, D., Wagner, H., Soehn, A. S., Reichbauer, J., Tao, F., Rattay, T. W., Peitz, M., Rehbach, K., Giorgetti, A., Pyle, A., Thiele, H., Altmüller, J., Timmann, D., Karaca, I., Lennarz, M., Baets, J., Hengel, H., Synofzik, M., … Schüle, R. (2017). Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 140(6), 1561–1578. https://doi.org/10.1093/brain/awx095 Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112 Morris, T., Stirling, L., Feber, A., & Teschendorff, A. (2024). Package ‘ ChAMP .’ Muse, M. E., Titus, A. J., Salas, L. A., Wilkins, O. M., Mullen, C., Gregory, K. J., Schneider, S. S., Crisi, G. M., Jawale, R. M., Otis, C. N., Christensen, B. C., & Arcaro, K. F. (2020). Enrichment of CpG island shore region hypermethylation in epigenetic breast field cancerization. Epigenetics, 15(10), 1093–1106. https://doi.org/10.1080/15592294.2020.1747748 Nelson, R. (2019). POLR3A Identified as Major Locus for Autosomal Recessive Wiedemann-Rautenstrauch Syndrome: New findings show “compelling evidence” that POLR3A mutations underlie the etiology of autosomal-recessive WRS. American Journal of Medical Genetics, Part A, 179(2), 146–147. https://doi.org/10.1002/ajmg.a.61040 Panja, S., Hayati, S., Epsi, N. J., Parrott, J. S., & Mitrofanova, A. (2018). Integrative (epi) Genomic Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate Cancer. EBioMedicine, 31, 110–121. https://doi.org/10.1016/j.ebiom.2018.04.007 Paolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann–Rautenstrauch syndrome: A phenotype analysis. American Journal of Medical Genetics, Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246 Paolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmuller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Muller, C., Novelli, A., … Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of Medical Genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528 Park, J. L., Lee, Y. S., Kunkeaw, N., Kim, S. Y., Kim, I. H., & Lee, Y. S. (2017). Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics, 9(2), 171–187. https://doi.org/10.2217/epi-2016-0108 Proud, C. G. (2019). Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harbor Perspectives in Biology, 11(7). https://doi.org/10.1101/CSHPERSPECT.A033050 Puig, N., & Agrelo, R. (2012). From aging to cancer: a DNA methylation journey. Ageing Research, 3(1), 4. https://doi.org/10.4081/ar.2012.e4 Rautenstrauch, T., Snigula, F., Krieg, T., Gay, S., & Müller, P. K. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101–111. https://doi.org/10.1007/BF00477545 Reale, A., Tagliatesta, S., Zardo, G., & Zampieri, M. (2022). Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mechanisms of Ageing and Development, 206(June), 111695. https://doi.org/10.1016/j.mad.2022.111695 Sakaki, M., Ebihara, Y., Okamura, K., Nakabayashi, K., Igarashi, A., Matsumoto, K., Hata, K., Kobayashi, Y., & Maehara, K. (2017). Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171431 Saneyasu, T., Fukuzo, S., Kitashiro, A., Nagata, K., Honda, K., & Kamisoyama, H. (2019). Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiology and Behavior, 210(August), 112644. https://doi.org/10.1016/j.physbeh.2019.112644 Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H. B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M. B., Li, Z., Shiloh, Y., Opresko, P. L., Egly, J. M., Kirkwood, T., Verdin, E., Bohr, V. A., Cox, L. S., Stevnsner, T., … Fang, E. F. (2022). New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 14(16), 6829–6839. https://doi.org/10.18632/AGING.204248 Silver, B. B., & Nelson, C. M. (2018). The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, 6. https://doi.org/10.3389/fcell.2018.00021 Spangle, J. M., Roberts, T. M., & Zhao, J. J. (2017). The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochimica et Biophysica Acta, 1868(1), 123. https://doi.org/10.1016/J.BBCAN.2017.03.002 Stasenko, D. V., Tatosyan, K. A., Borodulina, O. R., & Kramerov, D. A. (2023). Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes, 14(4), 802. https://doi.org/10.3390/genes14040802 Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 324(5929), 930–935. https://doi.org/10.1126/science.1170116 Temel, S. G., Ergoren, M. C., Manara, E., Paolacci, S., Tuncel, G., Gul, S., & Bertelli, M. (2020). Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann–Rautenstrauch syndrome. European Journal of Human Genetics, 28(12), 1675–1680. https://doi.org/10.1038/s41431-020-0673-1 Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019a). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153 Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019b). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153 Wambach, J. A., Wegner, D. J., Patni, N., Kircher, M., Willing, M. C., Baldridge, D., Xing, C., Agarwal, A. K., Vergano, S. A. S., Patel, C., Grange, D. K., Kenney, A., Najaf, T., Nickerson, D. A., Bamshad, M. J., Cole, F. S., & Garg, A. (2018). Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. American Journal of Human Genetics, 103(6), 968–975. https://doi.org/10.1016/j.ajhg.2018.10.010 Wan, R., Srikaram, P., Guntupalli, V., Hu, C., Chen, Q., & Gao, P. (2023). Cellular senescence in asthma: from pathogenesis to therapeutic challenges. www.thelancet.com Wang, Q., Xiong, F., Wu, G., Liu, W., Chen, J., Wang, B., & Chen, Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clinical Epigenetics, 14(1), 1–14. https://doi.org/10.1186/s13148-022-01382-9 Wang, Y., Huang, W., Zheng, S., Wang, L., Zhang, L., & Pei, X. (2024). Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Scientific Reports, 14(1), 1422. https://doi.org/10.1038/s41598-024-52087-3 Weidner, C., Lin, Q., Koch, C., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D., Jöckel, K.-H., Erbel, R., Mühleisen, T., Zenke, M., Brümmendorf, T., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24 Welsh, H., Batalha, C. M. P. F., Li, W., Mpye, K. L., Souza-Pinto, N. C., Naslavsky, M. S., & Parra, E. J. (2023). A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clinical Epigenetics, 15(1), 41. https://doi.org/10.1186/s13148-023-01459-z Wu, X., Chen, W., Lin, F., Huang, Q., Zhong, J., Gao, H., Song, Y., & Liang, H. (2019). DNA methylation profile is a quantitative measure of biological aging in children. Aging, 11(22), 10031–10051. https://doi.org/10.18632/aging.102399 Xiao, F.-H., Wang, H.-T., & Kong, Q.-P. (2019). Dynamic DNA Methylation During Aging: A “Prophet” of Age-Related Outcomes. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00107 Xie, W., Baylin, S. B., & Easwaran, H. (2019). DNA methylation in senescence, aging and cancer Origin of cancer epigenome from cycling aging cells (Vol. 6, Issue 2). www.impactjournals.com/oncoscience/ Yadav, M. L., & Mohapatra, B. (2018). Intergenic. Encyclopedia of Animal Cognition and Behavior, 1–5. https://doi.org/10.1007/978-3-319-47829-6_64-1 Yen, B. L., Hwa, H. L., Hsu, P. J., Chen, P. M., Wang, L. T., Jiang, S. S., Liu, K. J., Sytwu, H. K., & Yen, M. L. (2020). Hla-g expression in human mesenchymal stem cells (Mscs) is related to unique methylation pattern in the proximal promoter as well as gene body dna. International Journal of Molecular Sciences, 21(14), 1–14. https://doi.org/10.3390/ijms21145075 Yuan, T., Jiao, Y., de Jong, S., Ophoff, R. A., Beck, S., & Teschendorff, A. E. (2015). An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging. PLoS Genetics, 11(2), 1–21. https://doi.org/10.1371/journal.pgen.1004996 Yukawa, Y. (2023). Plant Molecular Biology Lab. https://www.nsc.nagoya-cu.ac.jp/~yyuk/e-index.html Zane, L., Sharma, V., & Misteli, T. (2014). Common features of chromatin in aging and cancer: cause or coincidence? Trends in Cell Biology, 24(11), 686–694. https://doi.org/10.1016/j.tcb.2014.07.001 Zhang, Y., Wang, Y., Luo, M., Xu, F., Lu, Y., Zhou, X., Cui, W., & Miao, L. (2019). Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides, 114(February), 29–37. https://doi.org/10.1016/j.peptides.2019.04.005 Zouali, M. (2021). DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clinical Immunology, 222, 108622. https://doi.org/10.1016/j.clim.2020.108622 Zuo, S., Shi, G., Fan, J., Fan, B., Zhang, X., Liu, S., Hao, Y., Wei, Z., Zhou, X., & Feng, S. (2021). Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 21(1). https://doi.org/10.3892/ETM.2020.9479 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
88 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86512/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86512/2/1072657220.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86512/3/1072657220.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a adeedaa5d9cdf9a4dfdde9007cccf355 75e2b4acc8605e3e958914ade5fcb8b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089943195058176 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arboleda Bustos, Gonzalo Humberto8d01100986b4e816de54bb4d3f52f1f0Barrera-Torres, Herman Fredycf9f887a3956c4bfcb732792fa3e1801Muerte Celular2024-07-17T13:49:11Z2024-07-17T13:49:11Z2024-07-10https://repositorio.unal.edu.co/handle/unal/86512Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (algunas a color), diagramasEl síndrome progeroide neonatal de Wiedemann-Rautenstrauch (SWR) se caracteriza por la manifestación de diversos signos de envejecimiento desde el nacimiento, con una esperanza de vida muy reducida, en promedio de 7 meses, lo que lo distingue de otros síndromes progeroides. La etiología del SWR se ha relacionado con mutaciones en el gen de la subunidad A de la ARN polimerasa III (POLR3A), crucial en la regulación de la expresión de ARN de transferencia (tARN), ARN ribosomal 5S (5SrARN), ARN nucleares pequeños (snARN) y otros, lo que resulta en una disminución de la funcionalidad del complejo ARN polimerasa III (POLR3) y alteraciones en la biogénesis ribosomal y la traducción de proteínas, entre otros procesos. La mutación puntual en el gen POLR3A tiene un impacto considerable en el perfil de metilación de ADN de regiones y genes específicos, ocasionando una expresión anómala de genes y cambios en las dinámicas moleculares. En el caso de una paciente de 6 años (POLR3A: c. 3G>T), se observa hipometilación anormal en regiones del cuerpo del gen, mientras que en una paciente de 25 años (POLR3A: c. 3772 3773 del), se observa una tendencia hacia la hipermetilación en las regiones promotoras y del cuerpo del gen. La metilación anormal de genes debido a la mutación de POLR3A incide principalmente en las proteínas de membrana plasmática, alterando procesos celulares cruciales como la transducción de señales y la transcripción de ADN codificante. Los genes significativamente metilados inducen procesos de senescencia celular. La alteración de la metilación normal en dinucleótidos CpG por el SWR provoca una aceleración o desaceleración en la determinación de la edad biológica mediante el uso de relojes epigenéticos, lo cual es característico de un síndrome progeroide. El estudio del SWR y sus implicaciones epigenéticas proporciona una oportunidad singular para comprender los procesos fisiopatológicos del envejecimiento humano. La identificación del gen y la vía metabólica asociada con este síndrome probablemente contribuirá a un nuevo conocimiento sobre la fisiopatología del envejecimiento humano, con potenciales implicaciones significativas en la investigación del envejecimiento en general. (Texto tomado de la fuente)The neonatal progeroid syndrome of Wiedemann-Rautenstrauch (SWR) is characterized by the manifestation of various aging signs from birth, with a greatly reduced life expectancy averaging 7 months, distinguishing it from other progeroid syndromes. The etiology of SWR has been linked to mutations in the gene encoding RNA polymerase III subunit A (POLR3A), crucial in the regulation of transfer RNA (tRNA), 5S ribosomal RNA (5SrRNA), small nuclear RNAs (snRNAs), and others, resulting in decreased functionality of RNA polymerase III (POLR3) complex and disruptions in ribosomal biogenesis and protein translation, among other processes. The single-point mutation in the POLR3A gene has a considerable impact on the DNA methylation profile of specific genes and regions, causing anomalous gene expression and changes in molecular dynamics. In the case of a 6-year-old patient (POLR3A: c. 3G>T), the study observed abnormal hypomethylation in the gene body regions, while in a 25-year-old patient (POLR3A: c. 3772 3773 del), a tendency toward hypermethylation in promoter and gene body regions was observed. Abnormal gene methylation due to POLR3A mutation primarily affects plasma membrane proteins, disrupting crucial cellular processes such as signal transduction and DNA transcription coding. Significantly methylated genes induce cellular senescence processes. The alteration of normal methylation in CpG dinucleotides by SWR causes acceleration or deceleration in the determination of biological age through the use of epigenetic clocks, which is characteristic of a progeroid syndrome. The study of SWR and its epigenetic implications provides a unique opportunity to understand the pathophysiological processes of human aging. The identification of the gene and the associated metabolic pathway with this syndrome will likely contribute to new knowledge of human aging pathophysiology, with potential significant implications for aging research in general. (Texto tomado de la fuente)Ministerio de Ciencia, Tecnología e Innovación Convocatoria 844-2019MaestríaMagíster en Ciencias-BioquímicaBiología del envejecimiento88 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud570 - Biología::572 - Bioquímica610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatríaMetilación de ADNEpigénesis genéticaEnvejecimiento prematuroTransducción de señalDNA methylationEpigenesis, geneticAging, prematureSignal transductionMetilación de ADNProgeriaSenescenciaTransducción de señalesSWRDNA methylationSenescenceSignal transductionSíndrome de Wiedemann-RauternstrauchTrastorno metabólico neonatalARN Polimerasa IIIWiedemann-Rautenstrauch syndromeNeonatal metabolic disorderRNA Polymerase IIIEstudio del perfil de metilación de ADN en pacientes con síndrome progeroide neonatal (síndrome de Wiedemann-Rautenstrauch)Study of DNA methylation profile in patients with neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAnton, L., Brown, A. G., Bartolomei, M. S., & Elovitz, M. A. (2014). Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas. PLOS ONE, 9(6), 100148. https://doi.org/10.1371/journal.pone.0100148Aquino, E. M., Benton, M. C., Haupt, L. M., Sutherland, H. G., riffiths, L. R. G., & Lea, R. A. (2018). Current Understanding of DNA Methylation and Age-related Disease. OBM Genetics, 2(2), 1–1. https://doi.org/10.21926/obm.genet.1802016Arboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): Report of three affected sibs. American Journal of Medical Genetics, Part A, 155(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019Atzmon, G. (2015). Longevity genes: a blueprint of ageing. In Advances in Experimental Medicine and Biology0065-2598 (Vol. 847, Issue Chapter 159). http://www.springerlink.com/index/10.1007/978-0-387-73657-0_159%5Cnpapers2://publication/doi/10.1007/978-0-387-73657-0_159Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020a). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of Ageing and Development, 192. https://doi.org/10.1016/j.mad.2020.111360Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020b). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms Http://Www.Bases.Unal.Edu.Co/Subjects/Databases.Php?Letter=Allof Ageing and Development, 192(September). https://doi.org/10.1016/j.mad.2020.111360Bergsma, T., & Rogaeva, E. (2020). DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 15, 263310552094222. https://doi.org/10.1177/2633105520942221Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2), 297–309. https://doi.org/10.1042/BST20110766Bezprozvanny, I. (2019). Calcium hypothesis of neurodegeneration – an update. Biochemical and Biophysical Research Communications, 520(4), 667. https://doi.org/10.1016/J.BBRC.2019.10.016Borsig, L., & Läubli, H. (2019). Cell Adhesion During Tumorigenesis and Metastasis. Encyclopedia of Cancer, 307–314. https://doi.org/10.1016/B978-0-12-801238-3.64991-7Calvanese, V., Lara, E., Kahn, A., & Fraga, M. F. (2009). The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 8(4), 268–276. https://doi.org/10.1016/j.arr.2009.03.004Carvalho, T. S., & Lussi, A. (2017). Age‐related morphological, histological and functional changes in teeth. Journal of Oral Rehabilitation, 44(4), 291–298. https://doi.org/10.1111/joor.12474Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P.-C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging, 8(9), 1844–1865. https://doi.org/10.18632/aging.101020Chen, M., Fang, Y., Liang, M., Zhang, N., Zhang, X., Xu, L., Ren, X., Zhang, Q., Zhou, Y., Peng, S., Yu, J., Zeng, J., & Li, X. (2023). The activation of mTOR signalling modulates DNA methylation by enhancing DNMT1 translation in hepatocellular carcinoma. Journal of Translational Medicine, 21(1), 1–17. https://doi.org/10.1186/S12967-023-04103-9/FIGURES/8Choukrallah, M. A., & Matthias, P. (2014). The interplay between chromatin and transcription factor networks during B cell development: Who pulls the trigger first? Frontiers in Immunology, 5(APR), 1–11. https://doi.org/10.3389/fimmu.2014.00156Daniel, F. I., Cherubini, K., Yurgel, L. S., De Figueiredo, M. A. Z., & Salum, F. G. (2011). The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer, 117(4), 677–687. https://doi.org/10.1002/cncr.25482Dutta, S., Goodrich, J. M., Dolinoy, D. C., & Ruden, D. M. (2023). Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes 2024, Vol. 15, Page 16, 15(1), 16. https://doi.org/10.3390/GENES15010016Fennell, L., Dumenil, T., Wockner, L., Hartel, G., Nones, K., Bond, C., Borowsky, J., Liu, C., McKeone, D., Bowdler, L., Montgomery, G., Klein, K., Hoffmann, I., Patch, A. M., Kazakoff, S., Pearson, J., Waddell, N., Wirapati, P., Lochhead, P., … Whitehall, V. (2019). Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cmgh, 8(2), 269–290. https://doi.org/10.1016/j.jcmgh.2019.04.002Funes, S. C., Fernández-Fierro, A., Rebolledo-Zelada, D., Mackern-Oberti, J. P., & Kalergis, A. M. (2021). Contribution of Dysregulated DNA Methylation to Autoimmunity. International Journal of Molecular Sciences, 22(21), 11892. https://doi.org/10.3390/ijms222111892Gilbert, H. T. J., & Swift, J. (2019). The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Experimental Cell Research, 378(1), 98–103. https://doi.org/10.1016/j.yexcr.2019.03.002Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: a premature aging disease caused by LMNA gene mutations. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.arr.2016.06.007.Hutchinson-GilfordGuastafierro, T., Bacalini, M. G., Marcoccia, A., Gentilini, D., Pisoni, S., Di Blasio, A. M., Corsi, A., Franceschi, C., Raimondo, D., Spanò, A., Garagnani, P., & Bondanini, F. (2017). Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clinical Epigenetics, 9(1), 1–10. https://doi.org/10.1186/s13148-017-0389-4Han, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell Discovery, 4(1), 40. https://doi.org/10.1038/s41421-018-0044-zHannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016Hennekam, R. C. M. (2020). Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. European Journal of Medical Genetics, 63(11), 104028. https://doi.org/10.1016/j.ejmg.2020.104028Hiraide, T., Nakashima, M., Ikeda, T., Tanaka, D., Osaka, H., & Saitsu, H. (2020). Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. Journal of Human Genetics, 65(10), 921–925. https://doi.org/10.1038/s10038-020-0786-yHodjat, M., Khan, F., & Saadat, K. A. S. M. (2020). Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Research Reviews, 63(July), 101140. https://doi.org/10.1016/j.arr.2020.101140Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115Hu, S., Wu, J., Chen, L., & Shan, G. (2012). Signals from noncoding RNAs: Unconventional roles for conventional pol III transcripts. International Journal of Biochemistry and Cell Biology, 44(11), 1847–1851. https://doi.org/10.1016/j.biocel.2012.07.013Huidobro, C., Fernandez, A. F., & Fraga, M. F. (2013). Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 34(4), 765–781. https://doi.org/10.1016/j.mam.2012.06.006Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., & Webster, M. (2009). Genome-wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178. https://doi.org/10.1038/ng.298.Genome-wideIllumina. (2021). MethylationEPIC v1.0 LIMS Product Descriptor File (p. 50).Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133. https://doi.org/10.1038/nature09303Ito, T., Kubiura-Ichimaru, M., Murakami, Y., Bogutz, A. B., Lefebvre, L., Suetake, I., Tajima, S., & Tada, M. (2022). DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLOS ONE, 17(1), e0262277. https://doi.org/10.1371/journal.pone.0262277Jay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American Journal of Medical Genetics, Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960Jeltsch, A., Ehrenhofer-Murray, A., Jurkowski, T. P., Lyko, F., Reuter, G., Ankri, S., Nellen, W., Schaefer, M., & Helm, M. (2017). Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biology, 14(9), 1108–1123. https://doi.org/10.1080/15476286.2016.1191737Ji, Y., Xie, Y., Zhang, M., Zhou, J., Peng, L., Zheng, Y., & Shu, S. (2023). Role of SATB2 5’ Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, 7(2), 165–173. https://doi.org/10.14744/ejmo.2023.41377Jin, B., & Robertson, K. D. (2013). DNA methyltransferases, DNA damage repair, and cancer. Advances in Experimental Medicine and Biology, 754, 3–29. https://doi.org/10.1007/978-1-4419-9967-2_1Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., Corsi, S., Cohen, H., Felton, S., Bali, R., Horvath, S., & Raj, K. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nature Aging, 2(6), 484–493. https://doi.org/10.1038/s43587-022-00220-0Kipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. A. (2004). What Can Progeroid Syndromes Tell Us About Human Aging? Science, 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587Kling, T., & Carén, H. (2019). Methylation Analysis Using Microarrays: Analysis and Interpretation. In Methods in Molecular Biology (Vol. 1908, Issue July, pp. 205–217). Humana Press. https://doi.org/10.1007/978-1-4939-9004-7_14Koval, A. P., Veniaminova, N. A., & Kramerov, D. A. (2011). Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene, 487(2), 113–117. https://doi.org/10.1016/j.gene.2011.08.001Kuzmina, N. S., Lapteva, N. S., & Rubanovich, A. V. (2016). Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. Environmental Research, 146, 10–17. https://doi.org/10.1016/j.envres.2015.12.008Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., Levine, R., McEwan, P., … Chen, Y. J. (2001). Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium (Nature (2001) 409 (860-921)). Nature, 412(6846), 565–566. https://doi.org/10.1038/35087627Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A., & Robbins, P. D. (2022). Immune Senescence, Immunosenescence and Aging. Frontiers in Aging, 3. https://doi.org/10.3389/fragi.2022.900028Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. AGING, 10(4). www.aging-us.comLiu, N., Yang, R., Shi, Y., Chen, L., Liu, Y., Wang, Z., Liu, S., Ouyang, L., Wang, H., Lai, W., Mao, C., Wang, M., Cheng, Y., Liu, S., Wang, X., Zhou, H., Cao, Y., Xiao, D., & Tao, Y. (2020). The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduction and Targeted Therapy 2020 5:1, 5(1), 1–14. https://doi.org/10.1038/s41392-020-00249-wLiu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell, 19(10). https://doi.org/10.1111/acel.13229Loaeza-Loaeza, J., Beltran, A. S., & Hernández-Sotelo, D. (2020). Dnmts and impact of cpg content, transcription factors, consensus motifs, lncrnas, and histone marks on dna methylation. In Genes (Vol. 11, Issue 11, pp. 1–19). MDPI AG. https://doi.org/10.3390/genes11111336López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039Luo, R., Bai, C., Yang, L., Zheng, Z., Su, G., Gao, G., Wei, Z., Zuo, Y., & Li, G. (2018). Correction to: DNA methylation subpatterns at distinct regulatory regions in human early embryos (Open Biology (2018) 8 (180131) DOI: 10.1098/rsob.180131). Open Biology, 8(12), 1–9. https://doi.org/10.1098/rsob.180215Magalingam, K. B., Somanath, S. D., & Radhakrishnan, A. K. (2023). A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson’s Disease. Experimental Neurobiology, 32(3), 119–132. https://doi.org/10.5607/en22035Melo dos Santos, L. S., Trombetta-Lima, M., Eggen, B. J. L., & Demaria, M. (2024). Cellular senescence in brain aging and neurodegeneration. In Ageing Research Reviews (Vol. 93). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2023.102141Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380Minnerop, M., Kurzwelly, D., Wagner, H., Soehn, A. S., Reichbauer, J., Tao, F., Rattay, T. W., Peitz, M., Rehbach, K., Giorgetti, A., Pyle, A., Thiele, H., Altmüller, J., Timmann, D., Karaca, I., Lennarz, M., Baets, J., Hengel, H., Synofzik, M., … Schüle, R. (2017). Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 140(6), 1561–1578. https://doi.org/10.1093/brain/awx095Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112Morris, T., Stirling, L., Feber, A., & Teschendorff, A. (2024). Package ‘ ChAMP .’Muse, M. E., Titus, A. J., Salas, L. A., Wilkins, O. M., Mullen, C., Gregory, K. J., Schneider, S. S., Crisi, G. M., Jawale, R. M., Otis, C. N., Christensen, B. C., & Arcaro, K. F. (2020). Enrichment of CpG island shore region hypermethylation in epigenetic breast field cancerization. Epigenetics, 15(10), 1093–1106. https://doi.org/10.1080/15592294.2020.1747748Nelson, R. (2019). POLR3A Identified as Major Locus for Autosomal Recessive Wiedemann-Rautenstrauch Syndrome: New findings show “compelling evidence” that POLR3A mutations underlie the etiology of autosomal-recessive WRS. American Journal of Medical Genetics, Part A, 179(2), 146–147. https://doi.org/10.1002/ajmg.a.61040Panja, S., Hayati, S., Epsi, N. J., Parrott, J. S., & Mitrofanova, A. (2018). Integrative (epi) Genomic Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate Cancer. EBioMedicine, 31, 110–121. https://doi.org/10.1016/j.ebiom.2018.04.007Paolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann–Rautenstrauch syndrome: A phenotype analysis. American Journal of Medical Genetics, Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246Paolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmuller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Muller, C., Novelli, A., … Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of Medical Genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528Park, J. L., Lee, Y. S., Kunkeaw, N., Kim, S. Y., Kim, I. H., & Lee, Y. S. (2017). Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics, 9(2), 171–187. https://doi.org/10.2217/epi-2016-0108Proud, C. G. (2019). Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harbor Perspectives in Biology, 11(7). https://doi.org/10.1101/CSHPERSPECT.A033050Puig, N., & Agrelo, R. (2012). From aging to cancer: a DNA methylation journey. Ageing Research, 3(1), 4. https://doi.org/10.4081/ar.2012.e4Rautenstrauch, T., Snigula, F., Krieg, T., Gay, S., & Müller, P. K. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101–111. https://doi.org/10.1007/BF00477545Reale, A., Tagliatesta, S., Zardo, G., & Zampieri, M. (2022). Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mechanisms of Ageing and Development, 206(June), 111695. https://doi.org/10.1016/j.mad.2022.111695Sakaki, M., Ebihara, Y., Okamura, K., Nakabayashi, K., Igarashi, A., Matsumoto, K., Hata, K., Kobayashi, Y., & Maehara, K. (2017). Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171431Saneyasu, T., Fukuzo, S., Kitashiro, A., Nagata, K., Honda, K., & Kamisoyama, H. (2019). Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiology and Behavior, 210(August), 112644. https://doi.org/10.1016/j.physbeh.2019.112644Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H. B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M. B., Li, Z., Shiloh, Y., Opresko, P. L., Egly, J. M., Kirkwood, T., Verdin, E., Bohr, V. A., Cox, L. S., Stevnsner, T., … Fang, E. F. (2022). New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 14(16), 6829–6839. https://doi.org/10.18632/AGING.204248Silver, B. B., & Nelson, C. M. (2018). The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, 6. https://doi.org/10.3389/fcell.2018.00021Spangle, J. M., Roberts, T. M., & Zhao, J. J. (2017). The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochimica et Biophysica Acta, 1868(1), 123. https://doi.org/10.1016/J.BBCAN.2017.03.002Stasenko, D. V., Tatosyan, K. A., Borodulina, O. R., & Kramerov, D. A. (2023). Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes, 14(4), 802. https://doi.org/10.3390/genes14040802Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 324(5929), 930–935. https://doi.org/10.1126/science.1170116Temel, S. G., Ergoren, M. C., Manara, E., Paolacci, S., Tuncel, G., Gul, S., & Bertelli, M. (2020). Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann–Rautenstrauch syndrome. European Journal of Human Genetics, 28(12), 1675–1680. https://doi.org/10.1038/s41431-020-0673-1Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019a). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019b). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153Wambach, J. A., Wegner, D. J., Patni, N., Kircher, M., Willing, M. C., Baldridge, D., Xing, C., Agarwal, A. K., Vergano, S. A. S., Patel, C., Grange, D. K., Kenney, A., Najaf, T., Nickerson, D. A., Bamshad, M. J., Cole, F. S., & Garg, A. (2018). Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. American Journal of Human Genetics, 103(6), 968–975. https://doi.org/10.1016/j.ajhg.2018.10.010Wan, R., Srikaram, P., Guntupalli, V., Hu, C., Chen, Q., & Gao, P. (2023). Cellular senescence in asthma: from pathogenesis to therapeutic challenges. www.thelancet.comWang, Q., Xiong, F., Wu, G., Liu, W., Chen, J., Wang, B., & Chen, Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clinical Epigenetics, 14(1), 1–14. https://doi.org/10.1186/s13148-022-01382-9Wang, Y., Huang, W., Zheng, S., Wang, L., Zhang, L., & Pei, X. (2024). Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Scientific Reports, 14(1), 1422. https://doi.org/10.1038/s41598-024-52087-3Weidner, C., Lin, Q., Koch, C., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D., Jöckel, K.-H., Erbel, R., Mühleisen, T., Zenke, M., Brümmendorf, T., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24Welsh, H., Batalha, C. M. P. F., Li, W., Mpye, K. L., Souza-Pinto, N. C., Naslavsky, M. S., & Parra, E. J. (2023). A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clinical Epigenetics, 15(1), 41. https://doi.org/10.1186/s13148-023-01459-zWu, X., Chen, W., Lin, F., Huang, Q., Zhong, J., Gao, H., Song, Y., & Liang, H. (2019). DNA methylation profile is a quantitative measure of biological aging in children. Aging, 11(22), 10031–10051. https://doi.org/10.18632/aging.102399Xiao, F.-H., Wang, H.-T., & Kong, Q.-P. (2019). Dynamic DNA Methylation During Aging: A “Prophet” of Age-Related Outcomes. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00107Xie, W., Baylin, S. B., & Easwaran, H. (2019). DNA methylation in senescence, aging and cancer Origin of cancer epigenome from cycling aging cells (Vol. 6, Issue 2). www.impactjournals.com/oncoscience/Yadav, M. L., & Mohapatra, B. (2018). Intergenic. Encyclopedia of Animal Cognition and Behavior, 1–5. https://doi.org/10.1007/978-3-319-47829-6_64-1Yen, B. L., Hwa, H. L., Hsu, P. J., Chen, P. M., Wang, L. T., Jiang, S. S., Liu, K. J., Sytwu, H. K., & Yen, M. L. (2020). Hla-g expression in human mesenchymal stem cells (Mscs) is related to unique methylation pattern in the proximal promoter as well as gene body dna. International Journal of Molecular Sciences, 21(14), 1–14. https://doi.org/10.3390/ijms21145075Yuan, T., Jiao, Y., de Jong, S., Ophoff, R. A., Beck, S., & Teschendorff, A. E. (2015). An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging. PLoS Genetics, 11(2), 1–21. https://doi.org/10.1371/journal.pgen.1004996Yukawa, Y. (2023). Plant Molecular Biology Lab. https://www.nsc.nagoya-cu.ac.jp/~yyuk/e-index.htmlZane, L., Sharma, V., & Misteli, T. (2014). Common features of chromatin in aging and cancer: cause or coincidence? Trends in Cell Biology, 24(11), 686–694. https://doi.org/10.1016/j.tcb.2014.07.001Zhang, Y., Wang, Y., Luo, M., Xu, F., Lu, Y., Zhou, X., Cui, W., & Miao, L. (2019). Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides, 114(February), 29–37. https://doi.org/10.1016/j.peptides.2019.04.005Zouali, M. (2021). DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clinical Immunology, 222, 108622. https://doi.org/10.1016/j.clim.2020.108622Zuo, S., Shi, G., Fan, J., Fan, B., Zhang, X., Liu, S., Hao, Y., Wei, Z., Zhou, X., & Feng, S. (2021). Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 21(1). https://doi.org/10.3892/ETM.2020.9479Estudio del Perfil de Metilación de ADN En Pacientes con Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)Ministerio de Ciencia, Tecnología e InnovaciónInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86512/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1072657220.2024.pdf1072657220.2024.pdfTesis de Magíster en Ciencias-Bioquímicaapplication/pdf2200559https://repositorio.unal.edu.co/bitstream/unal/86512/2/1072657220.2024.pdfadeedaa5d9cdf9a4dfdde9007cccf355MD52THUMBNAIL1072657220.2024.pdf.jpg1072657220.2024.pdf.jpgGenerated Thumbnailimage/jpeg4412https://repositorio.unal.edu.co/bitstream/unal/86512/3/1072657220.2024.pdf.jpg75e2b4acc8605e3e958914ade5fcb8b3MD53unal/86512oai:repositorio.unal.edu.co:unal/865122024-07-17 23:05:48.173Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |