Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca

ilustraciones a color, diagramas, fotografías

Autores:
Navarrete Osorio, Luisa Fernanda
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85355
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85355
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::664 - Tecnología de alimentos
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Suero lácteo-Microbiología
Penicillium
Farmacorresistencia fúngica
Whey-Microbiology
Drug resistance, fungal
Arepas de maíz-Microbiología
Arepas de yuca-Microbiología
Corn Griddle cake-Microbiology
Cassava griddle cake-Microbiology
Efecto antifúngico
Lactosuero
Arepa de maíz y yuca
Penicillium
Antifungal effect
Whey
Corn and cassava arepa
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0ca3bb1ee1827e03aa2b7863214a55a9
oai_identifier_str oai:repositorio.unal.edu.co:unal/85355
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
dc.title.translated.eng.fl_str_mv Assessment of the antifungal effect of whey on Penicillium sp. in corn and cassava arepas
title Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
spellingShingle Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
660 - Ingeniería química::664 - Tecnología de alimentos
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Suero lácteo-Microbiología
Penicillium
Farmacorresistencia fúngica
Whey-Microbiology
Drug resistance, fungal
Arepas de maíz-Microbiología
Arepas de yuca-Microbiología
Corn Griddle cake-Microbiology
Cassava griddle cake-Microbiology
Efecto antifúngico
Lactosuero
Arepa de maíz y yuca
Penicillium
Antifungal effect
Whey
Corn and cassava arepa
title_short Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
title_full Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
title_fullStr Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
title_full_unstemmed Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
title_sort Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
dc.creator.fl_str_mv Navarrete Osorio, Luisa Fernanda
dc.contributor.advisor.spa.fl_str_mv Ospina Sánchez, Sonia Amparo
Zuluaga Domínguez, Carlos Mario
dc.contributor.author.spa.fl_str_mv Navarrete Osorio, Luisa Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Biopolímeros y Biofuncionales
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::664 - Tecnología de alimentos
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
topic 660 - Ingeniería química::664 - Tecnología de alimentos
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Suero lácteo-Microbiología
Penicillium
Farmacorresistencia fúngica
Whey-Microbiology
Drug resistance, fungal
Arepas de maíz-Microbiología
Arepas de yuca-Microbiología
Corn Griddle cake-Microbiology
Cassava griddle cake-Microbiology
Efecto antifúngico
Lactosuero
Arepa de maíz y yuca
Penicillium
Antifungal effect
Whey
Corn and cassava arepa
dc.subject.decs.spa.fl_str_mv Suero lácteo-Microbiología
Penicillium
Farmacorresistencia fúngica
dc.subject.decs.eng.fl_str_mv Whey-Microbiology
Drug resistance, fungal
dc.subject.lemb.spa.fl_str_mv Arepas de maíz-Microbiología
Arepas de yuca-Microbiología
dc.subject.lemb.eng.fl_str_mv Corn Griddle cake-Microbiology
Cassava griddle cake-Microbiology
dc.subject.proposal.spa.fl_str_mv Efecto antifúngico
Lactosuero
Arepa de maíz y yuca
dc.subject.proposal.other.fl_str_mv Penicillium
dc.subject.proposal.eng.fl_str_mv Antifungal effect
Whey
Corn and cassava arepa
description ilustraciones a color, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-17T19:02:18Z
dc.date.available.none.fl_str_mv 2024-01-17T19:02:18Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85355
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85355
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417
Ayed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53. https://doi.org/10.1016/j.fbio.2023.102642
Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016
Caicedo-Perea, C., Solis-Molina, M., & Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2). https://doi.org/10.23850/22565035.3985
Campos, C. (1995). Estabilidad del ácido sórbico durante la preservación y el almacenamiento de alimentos. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2705_Campos.pdf
Carrillo, L. (2003). Penicillium. In Los hongos de los alimentos y forrajes (pp. 61–69).
Carvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293
Casquete, R., Benito, M. J., Córdoba, M. de G., Ruiz-Moyano, S., Galván, A. I., & Martín, A. (2018). Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT, 89, 179–185. https://doi.org/10.1016/j.lwt.2017.10.053
Cauvain, S. P., & Young, L. S. (2010). Chemical and physical deterioration of bakery products. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 381–412). Elsevier Inc. https://doi.org/10.1533/9781845699260.3.381
Chatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β lactoglobulin and α-lactalbumin-Technological implications for processing. In International Dairy Journal (Vol. 16, Issue 11, pp. 1229–1240). https://doi.org/10.1016/j.idairyj.2006.06.001
Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. In Current Opinion in Biotechnology (Vol. 49, pp. 23–28). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2017.07.011
Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144
Corpas, E., & Tapasco, O. (2012). EVALUACIÓN DE CONSERVANTES PARA LIMITAR EL RECUENTO DE MOHOS EN AREPAS BAJO DOS CONDICIONES AMBIENTALES. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 249– 256.
Corpas, E., & Tapasco, O. (2013). COMPORTAMIENTO DE MOHOS EN AREPA BLANCA ASADA EN RELACIÓN AL TIEMPO DE ALMACENAMIENTO EN REFRIGERACIÓN. ResearchGate. https://www.researchgate.net/publication/267211323
Cotter, P. D., Hill, C., & Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/https://doi.org/10.1038/nrmicro1273
Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. In Biocatalysis and Agricultural Biotechnology (Vol. 28). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101750
Dinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. In Trends in Food Science and Technology (Vol. 103, pp. 57–67). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.06.017
Dopazo, V., Illueca, F., Luz, C., Musto, L., Moreno, A., Calpe, J., & Meca, G. (2023). Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT, 174. https://doi.org/10.1016/j.lwt.2023.114427
Dziezak, J. D. (2015). Acids: Natural Acids and Acidulants. In Encyclopedia of Food and Health (pp. 15–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00004-0
Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. In Molecular Immunology (Vol. 40, Issue 7, pp. 395–405). Elsevier Ltd. https://doi.org/10.1016/S0161-5890(03)00152-4
Fernandez, G. (2021). Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. In Fungal Biology Industrially Important Fungi forrSustainable Development. Volume 1: Biodiversity and Ecological Perspectives (Vol. 1, pp. 335– 354). https://doi.org/https://doi.org/10.1007/978-3-030-67561-5
Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & León Peláez, A. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85–92. https://doi.org/10.1016/j.ijfoodmicro.2016.06.03
Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. In Current Opinion in Food Science (Vol. 29, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2019.06.010
García-García, R., & Searle, S. S. (2015). Preservatives: Food Use. In Encyclopedia of Food and Health (pp. 505–509). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00568-7
Gómez, A. (2007). Alimentos y micotoxinas: Implicaciones en la seguridad alimentaria. Farmacia y Espacio de Salud, 21, 49–53
Gómez, C. (2021, September 23). La apuesta de Bimbo con su nueva línea de arepas colombianas. Portafolio. https://www.portafolio.co/negocios/empresas/bimbo-entra en-el-mercado-de-las-arepas-556559
González-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi hard cheese during ripening. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01957
Gurtler, J. B., & Mai, T. L. (2014). Preservatives: Traditional Preservatives - Organic Acids. In Encyclopedia of Food Microbiology: Second Edition (pp. 119–130). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00260-3
Han, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food Packaging: A Comprehensive Review and Future Trends. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 4, pp. 860–877). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12343
Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. In Small Ruminant Research (Vol. 101, Issues 1–3, pp. 196–204). https://doi.org/10.1016/j.smallrumres.2011.09.040
Hossaini, A., Larsen, J.-J., & Larsen, J. C. (2000). Lack of Oestrogenic Efects of Food Preservatives (Parabens) in Uterotrophic Assays. Food and Chemical Toxicology, 38, 319–323. https://doi.org/10.1016/s0278-6915(99)00160-x
ICBF, & FAO. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años (2nd ed.)
NTC 5372: Arepas de maíz refrigeradas. Especificaciones de producto., Pub. L. No. NTC 5372:2007 (2007).
Jenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. In Biochimie (Vol. 91, Issue 1, pp. 19–29). https://doi.org/10.1016/j.biochi.2008.05.015
Kagliwal, L. D., Jadhav, S. B., Singhal, R. S., & Kulkarni, P. R. (2014). Preservatives: Permitted Preservatives - Propionic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 99–101). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730- 0.00270-6
Kapoor, R., Jash, A., & Rizvi, S. S. H. (2021). Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110060
Liceaga-Gesualdo, A., Li-Chan, E. C. Y., & Skura, B. J. (2001). Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Research International, 34, 501–506. www.elsevier.com/locate/foodres
Luz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108717
Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. In Journal of Dairy Science (Vol. 93, Issue 2, pp. 437–455). https://doi.org/10.3168/jds.2009-2566
Magan, N., Arroyo, M., & Aldred, D. (2003). Natural antifungal agents for bakery products. In Natural Antimicrobials for the Minimal Processing of Foods (pp. 272–280). Elsevier. https://doi.org/10.1533/9781855737037.272
Mani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as Agents to Prevent Food Spoilage. In Microbial Contamination and Food Degradation (pp. 235– 270). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00008-1
Marqués, M. (2015). Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUE S%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1
Martinez, E. (2003). Estudio de especies micotoxígenas del género Penicillium: Penicillium verrucosum Dierckx.
Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217
McDonough, C. M., Alviola, J. N., & Waniska, R. D. (2015). Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas: Wheat Flour and Corn Products (pp. 195–200). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50009-8
Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. F. P. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. In Journal of Functional Foods (Vol. 87). Elsevier Ltd. https://doi.org/10.1016/j.jff.2021.104760
Monari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., & Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226834
Morais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., & Silveira, J. N. (2015). Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme:substrate ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-z
Moro, C. B., Lemos, J. G., Gasperini, A. M., Stefanello, A., Garcia, M. V., & Copetti, M. V. (2022). Efficacy of weak acid preservatives on spoilage fungi of bakery products. International Journal of Food Microbiology, 374. https://doi.org/10.1016/j.ijfoodmicro.2022.109723
Nielsen, P. V, & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. In International Journal of Food Microbiology (Vol. 60). www.elsevier.nl/locate/ijfoodmicro
Novozymes. (2023). Novozymes Food & beverages solutions. https://www.novozymes.com/en/products/dairy/dairy-protein/formea-t
Ogbadu, L. J. (2014). Preservatives: Permitted Preservatives - Benzoic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 76–81). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00265-2
Oshima, S., Hirano, A., Kamikado, H., Nishimura, J., Kawai, Y., & Saito, T. (2014). Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. Journal of Applied Microbiology, 116(5), 1218–1228. https://doi.org/10.1111/jam.12454
Oxford. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools
Ozhelvaci, F., & Steczkiewicz, K. (2023). Identification and classification of papain-like cysteine proteinases. Journal of Biological Chemistry, 299(6). https://doi.org/10.1016/j.jbc.2023.104801
Parra, R. (2008). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía Medellín, 62(1), 4967–4982. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472009000100021&lng=en&tlng=es
Pawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. In Advances in Food and Nutrition Research (Vol. 66, pp. 217–238). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394597-6.00005-7
Perry, R. J., Borders, C. B., Cline, G. W., Zhang, X. M., Alves, T. C., Petersen, K. F., Rothman, D. L., Kibbey, R. G., & Shulman, G. I. (2016). Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. Journal of Biological Chemistry, 291(23), 12161–12170. https://doi.org/10.1074/jbc.M116.720631
Pino, S. (2020). Calidad Microbiológica del Pan: Bacillus cereus. https://uvadoc.uva.es/bitstream/handle/10324/42184/TFG-M N2026.pdf?sequence=1&isAllowed=y
Pitt, J. (2002). Biology and ecology of toxigenic species. Mycotoxins and Food Safety, 29– 41.
Poveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011
ProColombia. (2014). Logística de perecederos y cadena de frío en Colombia.
ProColombia. (2019). Las ‘exportaciones de nostalgia’ hacen su agosto en diciembre. https://prensa.procolombia.co/las-exportaciones-de-nostalgia-hacen-su-agosto-en diciembre
Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021a). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009
Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021b). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009
Quintero, A. (2018). ¿Sobrevivirá la arepa? ALMA MATER, 675, 13–13.
Restrepo Flórez, C., Álvarez, M., Álvarez, G., Salazar, C., & Efectos, J. A. (2012). Efectos del empacado en atmósferas modificadas para la conservación de arepa de maíz. Revista Lasallista de Investigación, 9(2), 102–111. http://www.redalyc.org/articulo.oa?id=69525875006
Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. In Annual Review of Microbiology (Vol. 56, pp. 117–137). https://doi.org/10.1146/annurev.micro.56.012302.161024
Rivas Alfonzo, B. (2014). El Casabe y la Arepa: Alimentos Prehispánicos de la Culinaria Indígena Venezolana. PASOS Revista de Turismo y Patrimonio Cultural, 12(2), 433– 442. https://doi.org/10.25145/j.pasos.2014.12.031
Rodríguez, H., Higuita, J., & Bonilla, K. (2018). Innovación en la industria de la arepa de maíz en Colombia. In G. Hoyos (Ed.), Algunos componentes generales, particulares y singulares del maíz en Colombia y México. (1st ed., pp. 113–129).
Saldarriaga, G. (1999). La inserción del maíz en el gusto de la sociedad colonial del Nuevo Reino de Granada. Historia y Sociedad, 6, 84–106. https://revistas.unal.edu.co/index.php/hisysoc/article/view/23108
Sánchez, L. (2021). Diseño de una estrategia de producción de conidios termotolerantes para el hongo entomopatógeno Metarhizium rileyi Nm017.
Serna-Saldivar, S. O., & Rooney, L. W. (2015). Industrial Production of Maize Tortillas and Snacks. In Tortillas: Wheat Flour and Corn Products (pp. 247–281). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50013-X
Siebert, A., Cholewiński, G., Trzonkowski, P., & Rachon, J. (2020). Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. European Journal of Medicinal Chemistry, 189. https://doi.org/10.1016/j.ejmech.2020.112091
Sigma-Aldrich. (2023). Trypsin from bovine pancreas. https://www.sigmaaldrich.com/CO/es/product/sigma/t1005?gclid=CjwKCAjwh8mlBhB _EiwAsztdBGfbtbjPt7XWdb6WK-me--Oe_iVoj0T6Q9wJuo5PcR_bPutpEh gfRoCGnUQAvD_BwE&gclsrc=aw.ds
Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00594
Soares, C., Calado, T., & Venâncio, A. (2013). Producción de micotoxinas por aislamientos de Aspergillus niger procedentes de muestras de maíz recogido en tres regiones portuguesas. Revista Iberoamericana de Micologia, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002
Stratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 166(1), 126– 134. https://doi.org/10.1016/j.ijfoodmicro.2013.06.025
Suhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95(1), 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004
Surekha, M., & Reddy, S. M. (2014). Preservatives: Classification and Properties. In Encyclopedia of Food Microbiology: Second Edition (pp. 69–75). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00257-3
Tavares, T., & Malcata, F. X. (2015). Whey and Whey Powders: Fermentation of Whey. In Encyclopedia of Food and Health (pp. 486–492). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00749-2
Thomas, L. V., & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives - Sorbic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 102–107). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00268-8
Tibasosa, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno en la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. https://repository.javeriana.edu.co/handle/10554/36984
Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. In Sci. Transl. Med (Vol. 11, Issue 0120). http://stm.sciencemag.org/
Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. In Trends in Food Science and Technology (Vol. 106, pp. 298–311). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.022
Universidad Nacional Autónoma de México (UNAM). (2020). Género Penicillium. Proyecto PAPIME PE206620: Mohos Productores de Micotoxinas. https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/penicillium.html
Vilgis, T. A. (2015). Soft matter food physics - The physics of food and cooking. Reports on Progress in Physics, 78(12). https://doi.org/10.1088/0034-4885/78/12/124602
Wei, F., Mortimer, M., Cheng, H., Sang, N., & Guo, L. H. (2021). Parabens as chemicals of emerging concern in the environment and humans: A review. In Science of the Total Environment (Vol. 778). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146150
Xu, Y. xin, Zhang, S. hui, Zhang, S. zhi, Yang, M. ying, Zhao, X., Sun, M. zhu, & Feng, X. zeng. (2022). Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113791
Carvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 120 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85355/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85355/2/1151959608.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85355/3/1151959608.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
738623efad75dfa357e5c314b638e32c
9af0e9e49baedc430b3801d5559250f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089878875406336
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Sánchez, Sonia Amparo116924f4f0abca4647115a08c2e62940Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Navarrete Osorio, Luisa Fernandad48df37a013e9fe6765f29c2477f115eBiopolímeros y Biofuncionales2024-01-17T19:02:18Z2024-01-17T19:02:18Z2023https://repositorio.unal.edu.co/handle/unal/85355Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasLas arepas son productos que se obtienen a partir de la masa de maíz blanca, amarilla o mezcla de ambas previamente cocida, mezclada con otros ingredientes como sal, queso entre otros, posteriormente asadas o horneadas; una de las principales limitantes en su producción y comercialización es la contaminación con mohos, antes del final de su vida útil; por lo que se han evaluado soluciones como el uso de nuevos conservantes. En este contexto, estudios encaminados al aprovechamiento del lactosuero, que es un subproducto proveniente de la elaboración de quesos, demuestran que puede funcionar como conservante natural si es hidrolizado con proteasas, puesto que, algunos péptidos provenientes de esta hidrólisis se asocian con un efecto antimicrobiano y antifúngico. Por tal motivo, la presente investigación tuvo como objetivo evaluar el potencial antifúngico del lactosuero WPC 80 pretratado mediante hidrólisis con proteasas, sobre Penicillium sp. en arepas de maíz y de yuca; para tal propósito, el lactosuero WPC 80 fue hidrolizado con cinco tipos de proteasas comerciales (Formea®, Alcalase®, Protamex®, Papaína y Tripsina de páncreas bovino) determinando su efecto antifúngico en medio de cultivo y en arepas de maíz y yuca, analizando a su vez el impacto de su uso en las características sensoriales (sabor y acidez) y fisicoquímicas (Porcentaje de humedad y pH) de estos productos; obteniendo finalmente como resultado que, de todos los hidrolizados evaluados el hidrolizado con tripsina presentó efecto antifúngico, siendo este mucho menor al efecto del ácido sórbico pero similar al del propionato de calcio. De su aplicación en arepas de maíz y yuca, se evidenció que su mezcla con ácido sórbico ambos a 500 ppm, limitaba el crecimiento de mohos tanto en refrigeración como en un ambiente con variación de temperatura y humedad relativa, logrando alcanzar una vida útil igual o superior a la exhibida por arepas con mezcla de conservantes (ácido sórbico 874 ppm y propionato de calcio 499 ppm) y con sólo ácido sórbico a 500 ppm, además el uso de este hidrolizado no produjo impacto negativo en las características fisicoquímicas y sensoriales analizadas. En conclusión, el hidrolizado del lactosuero WPC 80 con tripsina, es una opción para incrementar la vida útil de arepas que contienen ácido sórbico como conservante, en especial si se requiere un producto que se pueda almacenar fuera de nevera y con bajas concentraciones de conservantes sintéticos. (Texto tomado de la fuente)Arepas are products made from the dough of white corn, yellow corn, or a combination of both, previously cooked and mixed with other ingredients such as salt, cheese, among others, and then baked or grilled. One of the main limitations in their production and commercialization is mold contamination before the end of their shelf life. Therefore, solutions such as the use of new preservatives have been evaluated. In this context, studies aimed at the utilization of whey, a byproduct of cheese production, demonstrate that it can function as a natural preservative when hydrolyzed with proteases, since some peptides resulting from this hydrolysis are associated with antimicrobial and antifungal effects. For this reason, the objective of this research was to evaluate the antifungal potential of pre-treated whey protein concentrate (WPC) 80 through hydrolysis with proteases against Penicillium sp. in corn and cassava arepas. For this purpose, WPC 80 was hydrolyzed with five types of commercial proteases (Formea®, Alcalase®, Protamex®, Papain, and bovine pancreatic Trypsin), determining their antifungal effect in culture media and in corn and cassava arepas. The impact of its use on the sensory characteristics (flavor and acidity) and physicochemical properties (moisture content and pH) of these products was also analyzed. The results showed that, among all the hydrolysates evaluated, the hydrolysate with Trypsin presented an antifungal effect, which was much lower than the effect of sorbic acid but similar to that of calcium propionate. When applied to corn and cassava arepas, it was observed that the combination of the hydrolysate with Trypsin and sorbic acid, both at 500 ppm, inhibited mold growth both under refrigeration and in an environment with temperature and relative humidity variations, achieving a shelf life equal to or greater than that exhibited by arepas with a mixture of preservatives (sorbic acid 874 ppm and calcium propionate 499 ppm) and arepas with sorbic acid alone at 500 ppm. Furthermore, the use of this hydrolysate did not have a negative impact on the analyzed physicochemical and sensory characteristics. In conclusion, the hydrolysate of WPC 80 with Trypsin is an option to extend the shelf life of arepas containing sorbic acid as a preservative, especially if a product that can be stored outside the refrigerator and without high concentrations of synthetic preservatives is required.MaestríaMagíster en Ciencias-MicrobiologíaBioprocesos y Bioprospección120 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentos570 - Biología::572 - Bioquímica570 - Biología::579 - Historia natural microorganismos, hongos, algasSuero lácteo-MicrobiologíaPenicilliumFarmacorresistencia fúngicaWhey-MicrobiologyDrug resistance, fungalArepas de maíz-MicrobiologíaArepas de yuca-MicrobiologíaCorn Griddle cake-MicrobiologyCassava griddle cake-MicrobiologyEfecto antifúngicoLactosueroArepa de maíz y yucaPenicilliumAntifungal effectWheyCorn and cassava arepaEvaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yucaAssessment of the antifungal effect of whey on Penicillium sp. in corn and cassava arepasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAxel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417Ayed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53. https://doi.org/10.1016/j.fbio.2023.102642Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016Caicedo-Perea, C., Solis-Molina, M., & Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2). https://doi.org/10.23850/22565035.3985Campos, C. (1995). Estabilidad del ácido sórbico durante la preservación y el almacenamiento de alimentos. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2705_Campos.pdfCarrillo, L. (2003). Penicillium. In Los hongos de los alimentos y forrajes (pp. 61–69).Carvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293Casquete, R., Benito, M. J., Córdoba, M. de G., Ruiz-Moyano, S., Galván, A. I., & Martín, A. (2018). Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT, 89, 179–185. https://doi.org/10.1016/j.lwt.2017.10.053Cauvain, S. P., & Young, L. S. (2010). Chemical and physical deterioration of bakery products. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 381–412). Elsevier Inc. https://doi.org/10.1533/9781845699260.3.381Chatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β lactoglobulin and α-lactalbumin-Technological implications for processing. In International Dairy Journal (Vol. 16, Issue 11, pp. 1229–1240). https://doi.org/10.1016/j.idairyj.2006.06.001Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. In Current Opinion in Biotechnology (Vol. 49, pp. 23–28). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2017.07.011Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144Corpas, E., & Tapasco, O. (2012). EVALUACIÓN DE CONSERVANTES PARA LIMITAR EL RECUENTO DE MOHOS EN AREPAS BAJO DOS CONDICIONES AMBIENTALES. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 249– 256.Corpas, E., & Tapasco, O. (2013). COMPORTAMIENTO DE MOHOS EN AREPA BLANCA ASADA EN RELACIÓN AL TIEMPO DE ALMACENAMIENTO EN REFRIGERACIÓN. ResearchGate. https://www.researchgate.net/publication/267211323Cotter, P. D., Hill, C., & Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/https://doi.org/10.1038/nrmicro1273Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. In Biocatalysis and Agricultural Biotechnology (Vol. 28). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101750Dinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. In Trends in Food Science and Technology (Vol. 103, pp. 57–67). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.06.017Dopazo, V., Illueca, F., Luz, C., Musto, L., Moreno, A., Calpe, J., & Meca, G. (2023). Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT, 174. https://doi.org/10.1016/j.lwt.2023.114427Dziezak, J. D. (2015). Acids: Natural Acids and Acidulants. In Encyclopedia of Food and Health (pp. 15–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00004-0Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. In Molecular Immunology (Vol. 40, Issue 7, pp. 395–405). Elsevier Ltd. https://doi.org/10.1016/S0161-5890(03)00152-4Fernandez, G. (2021). Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. In Fungal Biology Industrially Important Fungi forrSustainable Development. Volume 1: Biodiversity and Ecological Perspectives (Vol. 1, pp. 335– 354). https://doi.org/https://doi.org/10.1007/978-3-030-67561-5Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & León Peláez, A. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85–92. https://doi.org/10.1016/j.ijfoodmicro.2016.06.03Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. In Current Opinion in Food Science (Vol. 29, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2019.06.010García-García, R., & Searle, S. S. (2015). Preservatives: Food Use. In Encyclopedia of Food and Health (pp. 505–509). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00568-7Gómez, A. (2007). Alimentos y micotoxinas: Implicaciones en la seguridad alimentaria. Farmacia y Espacio de Salud, 21, 49–53Gómez, C. (2021, September 23). La apuesta de Bimbo con su nueva línea de arepas colombianas. Portafolio. https://www.portafolio.co/negocios/empresas/bimbo-entra en-el-mercado-de-las-arepas-556559González-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi hard cheese during ripening. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01957Gurtler, J. B., & Mai, T. L. (2014). Preservatives: Traditional Preservatives - Organic Acids. In Encyclopedia of Food Microbiology: Second Edition (pp. 119–130). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00260-3Han, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food Packaging: A Comprehensive Review and Future Trends. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 4, pp. 860–877). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12343Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. In Small Ruminant Research (Vol. 101, Issues 1–3, pp. 196–204). https://doi.org/10.1016/j.smallrumres.2011.09.040Hossaini, A., Larsen, J.-J., & Larsen, J. C. (2000). Lack of Oestrogenic Efects of Food Preservatives (Parabens) in Uterotrophic Assays. Food and Chemical Toxicology, 38, 319–323. https://doi.org/10.1016/s0278-6915(99)00160-xICBF, & FAO. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años (2nd ed.)NTC 5372: Arepas de maíz refrigeradas. Especificaciones de producto., Pub. L. No. NTC 5372:2007 (2007).Jenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. In Biochimie (Vol. 91, Issue 1, pp. 19–29). https://doi.org/10.1016/j.biochi.2008.05.015Kagliwal, L. D., Jadhav, S. B., Singhal, R. S., & Kulkarni, P. R. (2014). Preservatives: Permitted Preservatives - Propionic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 99–101). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730- 0.00270-6Kapoor, R., Jash, A., & Rizvi, S. S. H. (2021). Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110060Liceaga-Gesualdo, A., Li-Chan, E. C. Y., & Skura, B. J. (2001). Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Research International, 34, 501–506. www.elsevier.com/locate/foodresLuz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108717Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. In Journal of Dairy Science (Vol. 93, Issue 2, pp. 437–455). https://doi.org/10.3168/jds.2009-2566Magan, N., Arroyo, M., & Aldred, D. (2003). Natural antifungal agents for bakery products. In Natural Antimicrobials for the Minimal Processing of Foods (pp. 272–280). Elsevier. https://doi.org/10.1533/9781855737037.272Mani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as Agents to Prevent Food Spoilage. In Microbial Contamination and Food Degradation (pp. 235– 270). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00008-1Marqués, M. (2015). Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUE S%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1Martinez, E. (2003). Estudio de especies micotoxígenas del género Penicillium: Penicillium verrucosum Dierckx.Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217McDonough, C. M., Alviola, J. N., & Waniska, R. D. (2015). Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas: Wheat Flour and Corn Products (pp. 195–200). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50009-8Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. F. P. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. In Journal of Functional Foods (Vol. 87). Elsevier Ltd. https://doi.org/10.1016/j.jff.2021.104760Monari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., & Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226834Morais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., & Silveira, J. N. (2015). Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme:substrate ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-zMoro, C. B., Lemos, J. G., Gasperini, A. M., Stefanello, A., Garcia, M. V., & Copetti, M. V. (2022). Efficacy of weak acid preservatives on spoilage fungi of bakery products. International Journal of Food Microbiology, 374. https://doi.org/10.1016/j.ijfoodmicro.2022.109723Nielsen, P. V, & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. In International Journal of Food Microbiology (Vol. 60). www.elsevier.nl/locate/ijfoodmicroNovozymes. (2023). Novozymes Food & beverages solutions. https://www.novozymes.com/en/products/dairy/dairy-protein/formea-tOgbadu, L. J. (2014). Preservatives: Permitted Preservatives - Benzoic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 76–81). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00265-2Oshima, S., Hirano, A., Kamikado, H., Nishimura, J., Kawai, Y., & Saito, T. (2014). Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. Journal of Applied Microbiology, 116(5), 1218–1228. https://doi.org/10.1111/jam.12454Oxford. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and toolsOzhelvaci, F., & Steczkiewicz, K. (2023). Identification and classification of papain-like cysteine proteinases. Journal of Biological Chemistry, 299(6). https://doi.org/10.1016/j.jbc.2023.104801Parra, R. (2008). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía Medellín, 62(1), 4967–4982. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472009000100021&lng=en&tlng=esPawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. In Advances in Food and Nutrition Research (Vol. 66, pp. 217–238). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394597-6.00005-7Perry, R. J., Borders, C. B., Cline, G. W., Zhang, X. M., Alves, T. C., Petersen, K. F., Rothman, D. L., Kibbey, R. G., & Shulman, G. I. (2016). Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. Journal of Biological Chemistry, 291(23), 12161–12170. https://doi.org/10.1074/jbc.M116.720631Pino, S. (2020). Calidad Microbiológica del Pan: Bacillus cereus. https://uvadoc.uva.es/bitstream/handle/10324/42184/TFG-M N2026.pdf?sequence=1&isAllowed=yPitt, J. (2002). Biology and ecology of toxigenic species. Mycotoxins and Food Safety, 29– 41.Poveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011ProColombia. (2014). Logística de perecederos y cadena de frío en Colombia.ProColombia. (2019). Las ‘exportaciones de nostalgia’ hacen su agosto en diciembre. https://prensa.procolombia.co/las-exportaciones-de-nostalgia-hacen-su-agosto-en diciembreQian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021a). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021b). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009Quintero, A. (2018). ¿Sobrevivirá la arepa? ALMA MATER, 675, 13–13.Restrepo Flórez, C., Álvarez, M., Álvarez, G., Salazar, C., & Efectos, J. A. (2012). Efectos del empacado en atmósferas modificadas para la conservación de arepa de maíz. Revista Lasallista de Investigación, 9(2), 102–111. http://www.redalyc.org/articulo.oa?id=69525875006Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. In Annual Review of Microbiology (Vol. 56, pp. 117–137). https://doi.org/10.1146/annurev.micro.56.012302.161024Rivas Alfonzo, B. (2014). El Casabe y la Arepa: Alimentos Prehispánicos de la Culinaria Indígena Venezolana. PASOS Revista de Turismo y Patrimonio Cultural, 12(2), 433– 442. https://doi.org/10.25145/j.pasos.2014.12.031Rodríguez, H., Higuita, J., & Bonilla, K. (2018). Innovación en la industria de la arepa de maíz en Colombia. In G. Hoyos (Ed.), Algunos componentes generales, particulares y singulares del maíz en Colombia y México. (1st ed., pp. 113–129).Saldarriaga, G. (1999). La inserción del maíz en el gusto de la sociedad colonial del Nuevo Reino de Granada. Historia y Sociedad, 6, 84–106. https://revistas.unal.edu.co/index.php/hisysoc/article/view/23108Sánchez, L. (2021). Diseño de una estrategia de producción de conidios termotolerantes para el hongo entomopatógeno Metarhizium rileyi Nm017.Serna-Saldivar, S. O., & Rooney, L. W. (2015). Industrial Production of Maize Tortillas and Snacks. In Tortillas: Wheat Flour and Corn Products (pp. 247–281). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50013-XSiebert, A., Cholewiński, G., Trzonkowski, P., & Rachon, J. (2020). Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. European Journal of Medicinal Chemistry, 189. https://doi.org/10.1016/j.ejmech.2020.112091Sigma-Aldrich. (2023). Trypsin from bovine pancreas. https://www.sigmaaldrich.com/CO/es/product/sigma/t1005?gclid=CjwKCAjwh8mlBhB _EiwAsztdBGfbtbjPt7XWdb6WK-me--Oe_iVoj0T6Q9wJuo5PcR_bPutpEh gfRoCGnUQAvD_BwE&gclsrc=aw.dsSilva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00594Soares, C., Calado, T., & Venâncio, A. (2013). Producción de micotoxinas por aislamientos de Aspergillus niger procedentes de muestras de maíz recogido en tres regiones portuguesas. Revista Iberoamericana de Micologia, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002Stratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 166(1), 126– 134. https://doi.org/10.1016/j.ijfoodmicro.2013.06.025Suhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95(1), 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004Surekha, M., & Reddy, S. M. (2014). Preservatives: Classification and Properties. In Encyclopedia of Food Microbiology: Second Edition (pp. 69–75). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00257-3Tavares, T., & Malcata, F. X. (2015). Whey and Whey Powders: Fermentation of Whey. In Encyclopedia of Food and Health (pp. 486–492). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00749-2Thomas, L. V., & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives - Sorbic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 102–107). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00268-8Tibasosa, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno en la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. https://repository.javeriana.edu.co/handle/10554/36984Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. In Sci. Transl. Med (Vol. 11, Issue 0120). http://stm.sciencemag.org/Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. In Trends in Food Science and Technology (Vol. 106, pp. 298–311). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.022Universidad Nacional Autónoma de México (UNAM). (2020). Género Penicillium. Proyecto PAPIME PE206620: Mohos Productores de Micotoxinas. https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/penicillium.htmlVilgis, T. A. (2015). Soft matter food physics - The physics of food and cooking. Reports on Progress in Physics, 78(12). https://doi.org/10.1088/0034-4885/78/12/124602Wei, F., Mortimer, M., Cheng, H., Sang, N., & Guo, L. H. (2021). Parabens as chemicals of emerging concern in the environment and humans: A review. In Science of the Total Environment (Vol. 778). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146150Xu, Y. xin, Zhang, S. hui, Zhang, S. zhi, Yang, M. ying, Zhao, X., Sun, M. zhu, & Feng, X. zeng. (2022). Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113791Carvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85355/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1151959608.2023.pdf1151959608.2023.pdfTesis de Maestría en Ciencias Microbiologíaapplication/pdf3126965https://repositorio.unal.edu.co/bitstream/unal/85355/2/1151959608.2023.pdf738623efad75dfa357e5c314b638e32cMD52THUMBNAIL1151959608.2023.pdf.jpg1151959608.2023.pdf.jpgGenerated Thumbnailimage/jpeg4573https://repositorio.unal.edu.co/bitstream/unal/85355/3/1151959608.2023.pdf.jpg9af0e9e49baedc430b3801d5559250f8MD53unal/85355oai:repositorio.unal.edu.co:unal/853552024-01-17 23:03:44.199Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=