Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca
ilustraciones a color, diagramas, fotografías
- Autores:
-
Navarrete Osorio, Luisa Fernanda
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85355
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Suero lácteo-Microbiología
Penicillium
Farmacorresistencia fúngica
Whey-Microbiology
Drug resistance, fungal
Arepas de maíz-Microbiología
Arepas de yuca-Microbiología
Corn Griddle cake-Microbiology
Cassava griddle cake-Microbiology
Efecto antifúngico
Lactosuero
Arepa de maíz y yuca
Penicillium
Antifungal effect
Whey
Corn and cassava arepa
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0ca3bb1ee1827e03aa2b7863214a55a9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85355 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
dc.title.translated.eng.fl_str_mv |
Assessment of the antifungal effect of whey on Penicillium sp. in corn and cassava arepas |
title |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
spellingShingle |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca 660 - Ingeniería química::664 - Tecnología de alimentos 570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas Suero lácteo-Microbiología Penicillium Farmacorresistencia fúngica Whey-Microbiology Drug resistance, fungal Arepas de maíz-Microbiología Arepas de yuca-Microbiología Corn Griddle cake-Microbiology Cassava griddle cake-Microbiology Efecto antifúngico Lactosuero Arepa de maíz y yuca Penicillium Antifungal effect Whey Corn and cassava arepa |
title_short |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
title_full |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
title_fullStr |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
title_full_unstemmed |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
title_sort |
Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca |
dc.creator.fl_str_mv |
Navarrete Osorio, Luisa Fernanda |
dc.contributor.advisor.spa.fl_str_mv |
Ospina Sánchez, Sonia Amparo Zuluaga Domínguez, Carlos Mario |
dc.contributor.author.spa.fl_str_mv |
Navarrete Osorio, Luisa Fernanda |
dc.contributor.researchgroup.spa.fl_str_mv |
Biopolímeros y Biofuncionales |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos 570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos 570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas Suero lácteo-Microbiología Penicillium Farmacorresistencia fúngica Whey-Microbiology Drug resistance, fungal Arepas de maíz-Microbiología Arepas de yuca-Microbiología Corn Griddle cake-Microbiology Cassava griddle cake-Microbiology Efecto antifúngico Lactosuero Arepa de maíz y yuca Penicillium Antifungal effect Whey Corn and cassava arepa |
dc.subject.decs.spa.fl_str_mv |
Suero lácteo-Microbiología Penicillium Farmacorresistencia fúngica |
dc.subject.decs.eng.fl_str_mv |
Whey-Microbiology Drug resistance, fungal |
dc.subject.lemb.spa.fl_str_mv |
Arepas de maíz-Microbiología Arepas de yuca-Microbiología |
dc.subject.lemb.eng.fl_str_mv |
Corn Griddle cake-Microbiology Cassava griddle cake-Microbiology |
dc.subject.proposal.spa.fl_str_mv |
Efecto antifúngico Lactosuero Arepa de maíz y yuca |
dc.subject.proposal.other.fl_str_mv |
Penicillium |
dc.subject.proposal.eng.fl_str_mv |
Antifungal effect Whey Corn and cassava arepa |
description |
ilustraciones a color, diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-17T19:02:18Z |
dc.date.available.none.fl_str_mv |
2024-01-17T19:02:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85355 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85355 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417 Ayed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53. https://doi.org/10.1016/j.fbio.2023.102642 Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016 Caicedo-Perea, C., Solis-Molina, M., & Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2). https://doi.org/10.23850/22565035.3985 Campos, C. (1995). Estabilidad del ácido sórbico durante la preservación y el almacenamiento de alimentos. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2705_Campos.pdf Carrillo, L. (2003). Penicillium. In Los hongos de los alimentos y forrajes (pp. 61–69). Carvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293 Casquete, R., Benito, M. J., Córdoba, M. de G., Ruiz-Moyano, S., Galván, A. I., & Martín, A. (2018). Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT, 89, 179–185. https://doi.org/10.1016/j.lwt.2017.10.053 Cauvain, S. P., & Young, L. S. (2010). Chemical and physical deterioration of bakery products. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 381–412). Elsevier Inc. https://doi.org/10.1533/9781845699260.3.381 Chatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β lactoglobulin and α-lactalbumin-Technological implications for processing. In International Dairy Journal (Vol. 16, Issue 11, pp. 1229–1240). https://doi.org/10.1016/j.idairyj.2006.06.001 Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. In Current Opinion in Biotechnology (Vol. 49, pp. 23–28). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2017.07.011 Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144 Corpas, E., & Tapasco, O. (2012). EVALUACIÓN DE CONSERVANTES PARA LIMITAR EL RECUENTO DE MOHOS EN AREPAS BAJO DOS CONDICIONES AMBIENTALES. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 249– 256. Corpas, E., & Tapasco, O. (2013). COMPORTAMIENTO DE MOHOS EN AREPA BLANCA ASADA EN RELACIÓN AL TIEMPO DE ALMACENAMIENTO EN REFRIGERACIÓN. ResearchGate. https://www.researchgate.net/publication/267211323 Cotter, P. D., Hill, C., & Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/https://doi.org/10.1038/nrmicro1273 Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. In Biocatalysis and Agricultural Biotechnology (Vol. 28). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101750 Dinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. In Trends in Food Science and Technology (Vol. 103, pp. 57–67). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.06.017 Dopazo, V., Illueca, F., Luz, C., Musto, L., Moreno, A., Calpe, J., & Meca, G. (2023). Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT, 174. https://doi.org/10.1016/j.lwt.2023.114427 Dziezak, J. D. (2015). Acids: Natural Acids and Acidulants. In Encyclopedia of Food and Health (pp. 15–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00004-0 Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. In Molecular Immunology (Vol. 40, Issue 7, pp. 395–405). Elsevier Ltd. https://doi.org/10.1016/S0161-5890(03)00152-4 Fernandez, G. (2021). Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. In Fungal Biology Industrially Important Fungi forrSustainable Development. Volume 1: Biodiversity and Ecological Perspectives (Vol. 1, pp. 335– 354). https://doi.org/https://doi.org/10.1007/978-3-030-67561-5 Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & León Peláez, A. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85–92. https://doi.org/10.1016/j.ijfoodmicro.2016.06.03 Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. In Current Opinion in Food Science (Vol. 29, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2019.06.010 García-García, R., & Searle, S. S. (2015). Preservatives: Food Use. In Encyclopedia of Food and Health (pp. 505–509). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00568-7 Gómez, A. (2007). Alimentos y micotoxinas: Implicaciones en la seguridad alimentaria. Farmacia y Espacio de Salud, 21, 49–53 Gómez, C. (2021, September 23). La apuesta de Bimbo con su nueva línea de arepas colombianas. Portafolio. https://www.portafolio.co/negocios/empresas/bimbo-entra en-el-mercado-de-las-arepas-556559 González-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi hard cheese during ripening. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01957 Gurtler, J. B., & Mai, T. L. (2014). Preservatives: Traditional Preservatives - Organic Acids. In Encyclopedia of Food Microbiology: Second Edition (pp. 119–130). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00260-3 Han, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food Packaging: A Comprehensive Review and Future Trends. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 4, pp. 860–877). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12343 Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. In Small Ruminant Research (Vol. 101, Issues 1–3, pp. 196–204). https://doi.org/10.1016/j.smallrumres.2011.09.040 Hossaini, A., Larsen, J.-J., & Larsen, J. C. (2000). Lack of Oestrogenic Efects of Food Preservatives (Parabens) in Uterotrophic Assays. Food and Chemical Toxicology, 38, 319–323. https://doi.org/10.1016/s0278-6915(99)00160-x ICBF, & FAO. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años (2nd ed.) NTC 5372: Arepas de maíz refrigeradas. Especificaciones de producto., Pub. L. No. NTC 5372:2007 (2007). Jenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. In Biochimie (Vol. 91, Issue 1, pp. 19–29). https://doi.org/10.1016/j.biochi.2008.05.015 Kagliwal, L. D., Jadhav, S. B., Singhal, R. S., & Kulkarni, P. R. (2014). Preservatives: Permitted Preservatives - Propionic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 99–101). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730- 0.00270-6 Kapoor, R., Jash, A., & Rizvi, S. S. H. (2021). Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110060 Liceaga-Gesualdo, A., Li-Chan, E. C. Y., & Skura, B. J. (2001). Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Research International, 34, 501–506. www.elsevier.com/locate/foodres Luz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108717 Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. In Journal of Dairy Science (Vol. 93, Issue 2, pp. 437–455). https://doi.org/10.3168/jds.2009-2566 Magan, N., Arroyo, M., & Aldred, D. (2003). Natural antifungal agents for bakery products. In Natural Antimicrobials for the Minimal Processing of Foods (pp. 272–280). Elsevier. https://doi.org/10.1533/9781855737037.272 Mani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as Agents to Prevent Food Spoilage. In Microbial Contamination and Food Degradation (pp. 235– 270). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00008-1 Marqués, M. (2015). Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUE S%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1 Martinez, E. (2003). Estudio de especies micotoxígenas del género Penicillium: Penicillium verrucosum Dierckx. Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217 McDonough, C. M., Alviola, J. N., & Waniska, R. D. (2015). Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas: Wheat Flour and Corn Products (pp. 195–200). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50009-8 Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. F. P. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. In Journal of Functional Foods (Vol. 87). Elsevier Ltd. https://doi.org/10.1016/j.jff.2021.104760 Monari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., & Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226834 Morais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., & Silveira, J. N. (2015). Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme:substrate ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-z Moro, C. B., Lemos, J. G., Gasperini, A. M., Stefanello, A., Garcia, M. V., & Copetti, M. V. (2022). Efficacy of weak acid preservatives on spoilage fungi of bakery products. International Journal of Food Microbiology, 374. https://doi.org/10.1016/j.ijfoodmicro.2022.109723 Nielsen, P. V, & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. In International Journal of Food Microbiology (Vol. 60). www.elsevier.nl/locate/ijfoodmicro Novozymes. (2023). Novozymes Food & beverages solutions. https://www.novozymes.com/en/products/dairy/dairy-protein/formea-t Ogbadu, L. J. (2014). Preservatives: Permitted Preservatives - Benzoic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 76–81). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00265-2 Oshima, S., Hirano, A., Kamikado, H., Nishimura, J., Kawai, Y., & Saito, T. (2014). Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. Journal of Applied Microbiology, 116(5), 1218–1228. https://doi.org/10.1111/jam.12454 Oxford. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools Ozhelvaci, F., & Steczkiewicz, K. (2023). Identification and classification of papain-like cysteine proteinases. Journal of Biological Chemistry, 299(6). https://doi.org/10.1016/j.jbc.2023.104801 Parra, R. (2008). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía Medellín, 62(1), 4967–4982. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472009000100021&lng=en&tlng=es Pawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. In Advances in Food and Nutrition Research (Vol. 66, pp. 217–238). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394597-6.00005-7 Perry, R. J., Borders, C. B., Cline, G. W., Zhang, X. M., Alves, T. C., Petersen, K. F., Rothman, D. L., Kibbey, R. G., & Shulman, G. I. (2016). Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. Journal of Biological Chemistry, 291(23), 12161–12170. https://doi.org/10.1074/jbc.M116.720631 Pino, S. (2020). Calidad Microbiológica del Pan: Bacillus cereus. https://uvadoc.uva.es/bitstream/handle/10324/42184/TFG-M N2026.pdf?sequence=1&isAllowed=y Pitt, J. (2002). Biology and ecology of toxigenic species. Mycotoxins and Food Safety, 29– 41. Poveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011 ProColombia. (2014). Logística de perecederos y cadena de frío en Colombia. ProColombia. (2019). Las ‘exportaciones de nostalgia’ hacen su agosto en diciembre. https://prensa.procolombia.co/las-exportaciones-de-nostalgia-hacen-su-agosto-en diciembre Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021a). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009 Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021b). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009 Quintero, A. (2018). ¿Sobrevivirá la arepa? ALMA MATER, 675, 13–13. Restrepo Flórez, C., Álvarez, M., Álvarez, G., Salazar, C., & Efectos, J. A. (2012). Efectos del empacado en atmósferas modificadas para la conservación de arepa de maíz. Revista Lasallista de Investigación, 9(2), 102–111. http://www.redalyc.org/articulo.oa?id=69525875006 Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. In Annual Review of Microbiology (Vol. 56, pp. 117–137). https://doi.org/10.1146/annurev.micro.56.012302.161024 Rivas Alfonzo, B. (2014). El Casabe y la Arepa: Alimentos Prehispánicos de la Culinaria Indígena Venezolana. PASOS Revista de Turismo y Patrimonio Cultural, 12(2), 433– 442. https://doi.org/10.25145/j.pasos.2014.12.031 Rodríguez, H., Higuita, J., & Bonilla, K. (2018). Innovación en la industria de la arepa de maíz en Colombia. In G. Hoyos (Ed.), Algunos componentes generales, particulares y singulares del maíz en Colombia y México. (1st ed., pp. 113–129). Saldarriaga, G. (1999). La inserción del maíz en el gusto de la sociedad colonial del Nuevo Reino de Granada. Historia y Sociedad, 6, 84–106. https://revistas.unal.edu.co/index.php/hisysoc/article/view/23108 Sánchez, L. (2021). Diseño de una estrategia de producción de conidios termotolerantes para el hongo entomopatógeno Metarhizium rileyi Nm017. Serna-Saldivar, S. O., & Rooney, L. W. (2015). Industrial Production of Maize Tortillas and Snacks. In Tortillas: Wheat Flour and Corn Products (pp. 247–281). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50013-X Siebert, A., Cholewiński, G., Trzonkowski, P., & Rachon, J. (2020). Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. European Journal of Medicinal Chemistry, 189. https://doi.org/10.1016/j.ejmech.2020.112091 Sigma-Aldrich. (2023). Trypsin from bovine pancreas. https://www.sigmaaldrich.com/CO/es/product/sigma/t1005?gclid=CjwKCAjwh8mlBhB _EiwAsztdBGfbtbjPt7XWdb6WK-me--Oe_iVoj0T6Q9wJuo5PcR_bPutpEh gfRoCGnUQAvD_BwE&gclsrc=aw.ds Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00594 Soares, C., Calado, T., & Venâncio, A. (2013). Producción de micotoxinas por aislamientos de Aspergillus niger procedentes de muestras de maíz recogido en tres regiones portuguesas. Revista Iberoamericana de Micologia, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002 Stratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 166(1), 126– 134. https://doi.org/10.1016/j.ijfoodmicro.2013.06.025 Suhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95(1), 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004 Surekha, M., & Reddy, S. M. (2014). Preservatives: Classification and Properties. In Encyclopedia of Food Microbiology: Second Edition (pp. 69–75). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00257-3 Tavares, T., & Malcata, F. X. (2015). Whey and Whey Powders: Fermentation of Whey. In Encyclopedia of Food and Health (pp. 486–492). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00749-2 Thomas, L. V., & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives - Sorbic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 102–107). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00268-8 Tibasosa, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno en la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. https://repository.javeriana.edu.co/handle/10554/36984 Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. In Sci. Transl. Med (Vol. 11, Issue 0120). http://stm.sciencemag.org/ Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. In Trends in Food Science and Technology (Vol. 106, pp. 298–311). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.022 Universidad Nacional Autónoma de México (UNAM). (2020). Género Penicillium. Proyecto PAPIME PE206620: Mohos Productores de Micotoxinas. https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/penicillium.html Vilgis, T. A. (2015). Soft matter food physics - The physics of food and cooking. Reports on Progress in Physics, 78(12). https://doi.org/10.1088/0034-4885/78/12/124602 Wei, F., Mortimer, M., Cheng, H., Sang, N., & Guo, L. H. (2021). Parabens as chemicals of emerging concern in the environment and humans: A review. In Science of the Total Environment (Vol. 778). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146150 Xu, Y. xin, Zhang, S. hui, Zhang, S. zhi, Yang, M. ying, Zhao, X., Sun, M. zhu, & Feng, X. zeng. (2022). Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113791 Carvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
120 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85355/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85355/2/1151959608.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85355/3/1151959608.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 738623efad75dfa357e5c314b638e32c 9af0e9e49baedc430b3801d5559250f8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089878875406336 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Sánchez, Sonia Amparo116924f4f0abca4647115a08c2e62940Zuluaga Domínguez, Carlos Marioe62c6eaefb21c224237f001387877fd5Navarrete Osorio, Luisa Fernandad48df37a013e9fe6765f29c2477f115eBiopolímeros y Biofuncionales2024-01-17T19:02:18Z2024-01-17T19:02:18Z2023https://repositorio.unal.edu.co/handle/unal/85355Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasLas arepas son productos que se obtienen a partir de la masa de maíz blanca, amarilla o mezcla de ambas previamente cocida, mezclada con otros ingredientes como sal, queso entre otros, posteriormente asadas o horneadas; una de las principales limitantes en su producción y comercialización es la contaminación con mohos, antes del final de su vida útil; por lo que se han evaluado soluciones como el uso de nuevos conservantes. En este contexto, estudios encaminados al aprovechamiento del lactosuero, que es un subproducto proveniente de la elaboración de quesos, demuestran que puede funcionar como conservante natural si es hidrolizado con proteasas, puesto que, algunos péptidos provenientes de esta hidrólisis se asocian con un efecto antimicrobiano y antifúngico. Por tal motivo, la presente investigación tuvo como objetivo evaluar el potencial antifúngico del lactosuero WPC 80 pretratado mediante hidrólisis con proteasas, sobre Penicillium sp. en arepas de maíz y de yuca; para tal propósito, el lactosuero WPC 80 fue hidrolizado con cinco tipos de proteasas comerciales (Formea®, Alcalase®, Protamex®, Papaína y Tripsina de páncreas bovino) determinando su efecto antifúngico en medio de cultivo y en arepas de maíz y yuca, analizando a su vez el impacto de su uso en las características sensoriales (sabor y acidez) y fisicoquímicas (Porcentaje de humedad y pH) de estos productos; obteniendo finalmente como resultado que, de todos los hidrolizados evaluados el hidrolizado con tripsina presentó efecto antifúngico, siendo este mucho menor al efecto del ácido sórbico pero similar al del propionato de calcio. De su aplicación en arepas de maíz y yuca, se evidenció que su mezcla con ácido sórbico ambos a 500 ppm, limitaba el crecimiento de mohos tanto en refrigeración como en un ambiente con variación de temperatura y humedad relativa, logrando alcanzar una vida útil igual o superior a la exhibida por arepas con mezcla de conservantes (ácido sórbico 874 ppm y propionato de calcio 499 ppm) y con sólo ácido sórbico a 500 ppm, además el uso de este hidrolizado no produjo impacto negativo en las características fisicoquímicas y sensoriales analizadas. En conclusión, el hidrolizado del lactosuero WPC 80 con tripsina, es una opción para incrementar la vida útil de arepas que contienen ácido sórbico como conservante, en especial si se requiere un producto que se pueda almacenar fuera de nevera y con bajas concentraciones de conservantes sintéticos. (Texto tomado de la fuente)Arepas are products made from the dough of white corn, yellow corn, or a combination of both, previously cooked and mixed with other ingredients such as salt, cheese, among others, and then baked or grilled. One of the main limitations in their production and commercialization is mold contamination before the end of their shelf life. Therefore, solutions such as the use of new preservatives have been evaluated. In this context, studies aimed at the utilization of whey, a byproduct of cheese production, demonstrate that it can function as a natural preservative when hydrolyzed with proteases, since some peptides resulting from this hydrolysis are associated with antimicrobial and antifungal effects. For this reason, the objective of this research was to evaluate the antifungal potential of pre-treated whey protein concentrate (WPC) 80 through hydrolysis with proteases against Penicillium sp. in corn and cassava arepas. For this purpose, WPC 80 was hydrolyzed with five types of commercial proteases (Formea®, Alcalase®, Protamex®, Papain, and bovine pancreatic Trypsin), determining their antifungal effect in culture media and in corn and cassava arepas. The impact of its use on the sensory characteristics (flavor and acidity) and physicochemical properties (moisture content and pH) of these products was also analyzed. The results showed that, among all the hydrolysates evaluated, the hydrolysate with Trypsin presented an antifungal effect, which was much lower than the effect of sorbic acid but similar to that of calcium propionate. When applied to corn and cassava arepas, it was observed that the combination of the hydrolysate with Trypsin and sorbic acid, both at 500 ppm, inhibited mold growth both under refrigeration and in an environment with temperature and relative humidity variations, achieving a shelf life equal to or greater than that exhibited by arepas with a mixture of preservatives (sorbic acid 874 ppm and calcium propionate 499 ppm) and arepas with sorbic acid alone at 500 ppm. Furthermore, the use of this hydrolysate did not have a negative impact on the analyzed physicochemical and sensory characteristics. In conclusion, the hydrolysate of WPC 80 with Trypsin is an option to extend the shelf life of arepas containing sorbic acid as a preservative, especially if a product that can be stored outside the refrigerator and without high concentrations of synthetic preservatives is required.MaestríaMagíster en Ciencias-MicrobiologíaBioprocesos y Bioprospección120 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentos570 - Biología::572 - Bioquímica570 - Biología::579 - Historia natural microorganismos, hongos, algasSuero lácteo-MicrobiologíaPenicilliumFarmacorresistencia fúngicaWhey-MicrobiologyDrug resistance, fungalArepas de maíz-MicrobiologíaArepas de yuca-MicrobiologíaCorn Griddle cake-MicrobiologyCassava griddle cake-MicrobiologyEfecto antifúngicoLactosueroArepa de maíz y yucaPenicilliumAntifungal effectWheyCorn and cassava arepaEvaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yucaAssessment of the antifungal effect of whey on Penicillium sp. in corn and cassava arepasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAxel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417Ayed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53. https://doi.org/10.1016/j.fbio.2023.102642Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016Caicedo-Perea, C., Solis-Molina, M., & Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2). https://doi.org/10.23850/22565035.3985Campos, C. (1995). Estabilidad del ácido sórbico durante la preservación y el almacenamiento de alimentos. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2705_Campos.pdfCarrillo, L. (2003). Penicillium. In Los hongos de los alimentos y forrajes (pp. 61–69).Carvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293Casquete, R., Benito, M. J., Córdoba, M. de G., Ruiz-Moyano, S., Galván, A. I., & Martín, A. (2018). Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT, 89, 179–185. https://doi.org/10.1016/j.lwt.2017.10.053Cauvain, S. P., & Young, L. S. (2010). Chemical and physical deterioration of bakery products. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 381–412). Elsevier Inc. https://doi.org/10.1533/9781845699260.3.381Chatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β lactoglobulin and α-lactalbumin-Technological implications for processing. In International Dairy Journal (Vol. 16, Issue 11, pp. 1229–1240). https://doi.org/10.1016/j.idairyj.2006.06.001Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. In Current Opinion in Biotechnology (Vol. 49, pp. 23–28). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2017.07.011Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144Corpas, E., & Tapasco, O. (2012). EVALUACIÓN DE CONSERVANTES PARA LIMITAR EL RECUENTO DE MOHOS EN AREPAS BAJO DOS CONDICIONES AMBIENTALES. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 249– 256.Corpas, E., & Tapasco, O. (2013). COMPORTAMIENTO DE MOHOS EN AREPA BLANCA ASADA EN RELACIÓN AL TIEMPO DE ALMACENAMIENTO EN REFRIGERACIÓN. ResearchGate. https://www.researchgate.net/publication/267211323Cotter, P. D., Hill, C., & Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/https://doi.org/10.1038/nrmicro1273Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. In Biocatalysis and Agricultural Biotechnology (Vol. 28). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101750Dinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. In Trends in Food Science and Technology (Vol. 103, pp. 57–67). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.06.017Dopazo, V., Illueca, F., Luz, C., Musto, L., Moreno, A., Calpe, J., & Meca, G. (2023). Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT, 174. https://doi.org/10.1016/j.lwt.2023.114427Dziezak, J. D. (2015). Acids: Natural Acids and Acidulants. In Encyclopedia of Food and Health (pp. 15–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00004-0Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. In Molecular Immunology (Vol. 40, Issue 7, pp. 395–405). Elsevier Ltd. https://doi.org/10.1016/S0161-5890(03)00152-4Fernandez, G. (2021). Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. In Fungal Biology Industrially Important Fungi forrSustainable Development. Volume 1: Biodiversity and Ecological Perspectives (Vol. 1, pp. 335– 354). https://doi.org/https://doi.org/10.1007/978-3-030-67561-5Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & León Peláez, A. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85–92. https://doi.org/10.1016/j.ijfoodmicro.2016.06.03Garcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. In Current Opinion in Food Science (Vol. 29, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2019.06.010García-García, R., & Searle, S. S. (2015). Preservatives: Food Use. In Encyclopedia of Food and Health (pp. 505–509). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00568-7Gómez, A. (2007). Alimentos y micotoxinas: Implicaciones en la seguridad alimentaria. Farmacia y Espacio de Salud, 21, 49–53Gómez, C. (2021, September 23). La apuesta de Bimbo con su nueva línea de arepas colombianas. Portafolio. https://www.portafolio.co/negocios/empresas/bimbo-entra en-el-mercado-de-las-arepas-556559González-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi hard cheese during ripening. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01957Gurtler, J. B., & Mai, T. L. (2014). Preservatives: Traditional Preservatives - Organic Acids. In Encyclopedia of Food Microbiology: Second Edition (pp. 119–130). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00260-3Han, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food Packaging: A Comprehensive Review and Future Trends. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 4, pp. 860–877). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12343Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. In Small Ruminant Research (Vol. 101, Issues 1–3, pp. 196–204). https://doi.org/10.1016/j.smallrumres.2011.09.040Hossaini, A., Larsen, J.-J., & Larsen, J. C. (2000). Lack of Oestrogenic Efects of Food Preservatives (Parabens) in Uterotrophic Assays. Food and Chemical Toxicology, 38, 319–323. https://doi.org/10.1016/s0278-6915(99)00160-xICBF, & FAO. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años (2nd ed.)NTC 5372: Arepas de maíz refrigeradas. Especificaciones de producto., Pub. L. No. NTC 5372:2007 (2007).Jenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. In Biochimie (Vol. 91, Issue 1, pp. 19–29). https://doi.org/10.1016/j.biochi.2008.05.015Kagliwal, L. D., Jadhav, S. B., Singhal, R. S., & Kulkarni, P. R. (2014). Preservatives: Permitted Preservatives - Propionic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 99–101). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730- 0.00270-6Kapoor, R., Jash, A., & Rizvi, S. S. H. (2021). Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110060Liceaga-Gesualdo, A., Li-Chan, E. C. Y., & Skura, B. J. (2001). Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Research International, 34, 501–506. www.elsevier.com/locate/foodresLuz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108717Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. In Journal of Dairy Science (Vol. 93, Issue 2, pp. 437–455). https://doi.org/10.3168/jds.2009-2566Magan, N., Arroyo, M., & Aldred, D. (2003). Natural antifungal agents for bakery products. In Natural Antimicrobials for the Minimal Processing of Foods (pp. 272–280). Elsevier. https://doi.org/10.1533/9781855737037.272Mani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as Agents to Prevent Food Spoilage. In Microbial Contamination and Food Degradation (pp. 235– 270). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00008-1Marqués, M. (2015). Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUE S%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1Martinez, E. (2003). Estudio de especies micotoxígenas del género Penicillium: Penicillium verrucosum Dierckx.Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217McDonough, C. M., Alviola, J. N., & Waniska, R. D. (2015). Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas: Wheat Flour and Corn Products (pp. 195–200). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50009-8Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. F. P. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. In Journal of Functional Foods (Vol. 87). Elsevier Ltd. https://doi.org/10.1016/j.jff.2021.104760Monari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., & Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226834Morais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., & Silveira, J. N. (2015). Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme:substrate ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-zMoro, C. B., Lemos, J. G., Gasperini, A. M., Stefanello, A., Garcia, M. V., & Copetti, M. V. (2022). Efficacy of weak acid preservatives on spoilage fungi of bakery products. International Journal of Food Microbiology, 374. https://doi.org/10.1016/j.ijfoodmicro.2022.109723Nielsen, P. V, & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. In International Journal of Food Microbiology (Vol. 60). www.elsevier.nl/locate/ijfoodmicroNovozymes. (2023). Novozymes Food & beverages solutions. https://www.novozymes.com/en/products/dairy/dairy-protein/formea-tOgbadu, L. J. (2014). Preservatives: Permitted Preservatives - Benzoic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 76–81). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00265-2Oshima, S., Hirano, A., Kamikado, H., Nishimura, J., Kawai, Y., & Saito, T. (2014). Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. Journal of Applied Microbiology, 116(5), 1218–1228. https://doi.org/10.1111/jam.12454Oxford. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and toolsOzhelvaci, F., & Steczkiewicz, K. (2023). Identification and classification of papain-like cysteine proteinases. Journal of Biological Chemistry, 299(6). https://doi.org/10.1016/j.jbc.2023.104801Parra, R. (2008). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía Medellín, 62(1), 4967–4982. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472009000100021&lng=en&tlng=esPawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. In Advances in Food and Nutrition Research (Vol. 66, pp. 217–238). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394597-6.00005-7Perry, R. J., Borders, C. B., Cline, G. W., Zhang, X. M., Alves, T. C., Petersen, K. F., Rothman, D. L., Kibbey, R. G., & Shulman, G. I. (2016). Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. Journal of Biological Chemistry, 291(23), 12161–12170. https://doi.org/10.1074/jbc.M116.720631Pino, S. (2020). Calidad Microbiológica del Pan: Bacillus cereus. https://uvadoc.uva.es/bitstream/handle/10324/42184/TFG-M N2026.pdf?sequence=1&isAllowed=yPitt, J. (2002). Biology and ecology of toxigenic species. Mycotoxins and Food Safety, 29– 41.Poveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011ProColombia. (2014). Logística de perecederos y cadena de frío en Colombia.ProColombia. (2019). Las ‘exportaciones de nostalgia’ hacen su agosto en diciembre. https://prensa.procolombia.co/las-exportaciones-de-nostalgia-hacen-su-agosto-en diciembreQian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021a). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021b). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009Quintero, A. (2018). ¿Sobrevivirá la arepa? ALMA MATER, 675, 13–13.Restrepo Flórez, C., Álvarez, M., Álvarez, G., Salazar, C., & Efectos, J. A. (2012). Efectos del empacado en atmósferas modificadas para la conservación de arepa de maíz. Revista Lasallista de Investigación, 9(2), 102–111. http://www.redalyc.org/articulo.oa?id=69525875006Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. In Annual Review of Microbiology (Vol. 56, pp. 117–137). https://doi.org/10.1146/annurev.micro.56.012302.161024Rivas Alfonzo, B. (2014). El Casabe y la Arepa: Alimentos Prehispánicos de la Culinaria Indígena Venezolana. PASOS Revista de Turismo y Patrimonio Cultural, 12(2), 433– 442. https://doi.org/10.25145/j.pasos.2014.12.031Rodríguez, H., Higuita, J., & Bonilla, K. (2018). Innovación en la industria de la arepa de maíz en Colombia. In G. Hoyos (Ed.), Algunos componentes generales, particulares y singulares del maíz en Colombia y México. (1st ed., pp. 113–129).Saldarriaga, G. (1999). La inserción del maíz en el gusto de la sociedad colonial del Nuevo Reino de Granada. Historia y Sociedad, 6, 84–106. https://revistas.unal.edu.co/index.php/hisysoc/article/view/23108Sánchez, L. (2021). Diseño de una estrategia de producción de conidios termotolerantes para el hongo entomopatógeno Metarhizium rileyi Nm017.Serna-Saldivar, S. O., & Rooney, L. W. (2015). Industrial Production of Maize Tortillas and Snacks. In Tortillas: Wheat Flour and Corn Products (pp. 247–281). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50013-XSiebert, A., Cholewiński, G., Trzonkowski, P., & Rachon, J. (2020). Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. European Journal of Medicinal Chemistry, 189. https://doi.org/10.1016/j.ejmech.2020.112091Sigma-Aldrich. (2023). Trypsin from bovine pancreas. https://www.sigmaaldrich.com/CO/es/product/sigma/t1005?gclid=CjwKCAjwh8mlBhB _EiwAsztdBGfbtbjPt7XWdb6WK-me--Oe_iVoj0T6Q9wJuo5PcR_bPutpEh gfRoCGnUQAvD_BwE&gclsrc=aw.dsSilva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00594Soares, C., Calado, T., & Venâncio, A. (2013). Producción de micotoxinas por aislamientos de Aspergillus niger procedentes de muestras de maíz recogido en tres regiones portuguesas. Revista Iberoamericana de Micologia, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002Stratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 166(1), 126– 134. https://doi.org/10.1016/j.ijfoodmicro.2013.06.025Suhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95(1), 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004Surekha, M., & Reddy, S. M. (2014). Preservatives: Classification and Properties. In Encyclopedia of Food Microbiology: Second Edition (pp. 69–75). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00257-3Tavares, T., & Malcata, F. X. (2015). Whey and Whey Powders: Fermentation of Whey. In Encyclopedia of Food and Health (pp. 486–492). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00749-2Thomas, L. V., & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives - Sorbic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 102–107). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00268-8Tibasosa, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno en la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. https://repository.javeriana.edu.co/handle/10554/36984Tirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. In Sci. Transl. Med (Vol. 11, Issue 0120). http://stm.sciencemag.org/Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. In Trends in Food Science and Technology (Vol. 106, pp. 298–311). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.022Universidad Nacional Autónoma de México (UNAM). (2020). Género Penicillium. Proyecto PAPIME PE206620: Mohos Productores de Micotoxinas. https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/penicillium.htmlVilgis, T. A. (2015). Soft matter food physics - The physics of food and cooking. Reports on Progress in Physics, 78(12). https://doi.org/10.1088/0034-4885/78/12/124602Wei, F., Mortimer, M., Cheng, H., Sang, N., & Guo, L. H. (2021). Parabens as chemicals of emerging concern in the environment and humans: A review. In Science of the Total Environment (Vol. 778). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146150Xu, Y. xin, Zhang, S. hui, Zhang, S. zhi, Yang, M. ying, Zhao, X., Sun, M. zhu, & Feng, X. zeng. (2022). Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113791Carvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85355/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1151959608.2023.pdf1151959608.2023.pdfTesis de Maestría en Ciencias Microbiologíaapplication/pdf3126965https://repositorio.unal.edu.co/bitstream/unal/85355/2/1151959608.2023.pdf738623efad75dfa357e5c314b638e32cMD52THUMBNAIL1151959608.2023.pdf.jpg1151959608.2023.pdf.jpgGenerated Thumbnailimage/jpeg4573https://repositorio.unal.edu.co/bitstream/unal/85355/3/1151959608.2023.pdf.jpg9af0e9e49baedc430b3801d5559250f8MD53unal/85355oai:repositorio.unal.edu.co:unal/853552024-01-17 23:03:44.199Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |