Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas
Ilustraciones
- Autores:
-
Velez Villada, Angie Dahiana
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86993
- Palabra clave:
- 660 - Ingeniería química::663 - Tecnología de bebidas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
industria de bebidas
Frutas deshidratadas
Desarrollo de productos
Deshidratación de frutas
Productos naturales
microondas
polifenoles
ultrasonido
agraz
extracción
microwaves
ultrasound
extraction
polyphenols
agraz
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_09f8bf1aeb2a9e01d5525c233f083dec |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86993 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
dc.title.translated.eng.fl_str_mv |
Development of a beverage made from dehydrated mortiño (Vaccinium meridionale) leaves |
title |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
spellingShingle |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas 660 - Ingeniería química::663 - Tecnología de bebidas 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales industria de bebidas Frutas deshidratadas Desarrollo de productos Deshidratación de frutas Productos naturales microondas polifenoles ultrasonido agraz extracción microwaves ultrasound extraction polyphenols agraz |
title_short |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
title_full |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
title_fullStr |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
title_full_unstemmed |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
title_sort |
Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas |
dc.creator.fl_str_mv |
Velez Villada, Angie Dahiana |
dc.contributor.advisor.none.fl_str_mv |
Rojano, Benjamin Alberto Alzate Arbeláez, Andrés Felipe |
dc.contributor.author.none.fl_str_mv |
Velez Villada, Angie Dahiana |
dc.contributor.researchgroup.spa.fl_str_mv |
Química de Los Productos Naturales y Los Alimentos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::663 - Tecnología de bebidas 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales |
topic |
660 - Ingeniería química::663 - Tecnología de bebidas 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales industria de bebidas Frutas deshidratadas Desarrollo de productos Deshidratación de frutas Productos naturales microondas polifenoles ultrasonido agraz extracción microwaves ultrasound extraction polyphenols agraz |
dc.subject.lemb.none.fl_str_mv |
industria de bebidas Frutas deshidratadas Desarrollo de productos Deshidratación de frutas Productos naturales |
dc.subject.proposal.spa.fl_str_mv |
microondas polifenoles ultrasonido agraz extracción |
dc.subject.proposal.eng.fl_str_mv |
microwaves ultrasound extraction polyphenols agraz |
description |
Ilustraciones |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-18T18:59:24Z |
dc.date.available.none.fl_str_mv |
2024-10-18T18:59:24Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86993 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86993 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
AGRONET. (2021a). Productores asociados les sacan más provecho a los cultivos de agraz. https://agronet.gov.co/Noticias/Paginas/Productores-asociados-les-sacan-más-provecho-a-los cultivos-de-agraz.aspx AGRONET. (2021b). Reporte: área, producción y rendimiento nacional por cultivo. https://agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002 Alean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-Arbelaez, A. F., & Rojano, B. (2022). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 40(3), 559–570. https://doi.org/10.1080/07373937.2020.1817933 Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55(8), 2173–2184. https://doi.org/10.1007/s00231-019-02570-9 Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294, 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085 Amarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin. In Advances in Food and Nutrition Research (Vol. 90, pp. 1–81). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2019.02.011 Arango-Varela, S. S., Luzardo-Ocampo, I., & Maldonado-Celis, M. E. (2022). Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM induced colorectal cancer in vivo. Food Research International, 157(March 2021), 111244. https://doi.org/10.1016/j.foodres.2022.111244 Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L., Łuczaj, W., Majekova, M., Odysseos, A. D., Rackova, L., Skrzydlewska, E., Stefek, M., Štrosová, M., Tirzitis, G., Venskutonis, P. R., Viskupicova, J., Vraka, P. S., & Žarković, N. (2010). Natural and synthetic antioxidants: An updated overview. Free Radical Research, 44(10), 1216–1262. https://doi.org/10.3109/10715762.2010.508495 Aybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565. https://doi.org/10.1016/j.indcrop.2012.09.022 Ballard, C. R., & Maróstica, M. R. (2019). Health Benefits of Flavonoids. In Bioactive Compounds (pp. 185–201). Elsevier. https://doi.org/10.1016/B978-0-12-814774-0.00010-4 Bastos, A. V. S., Amaral, A. M., Gomes, F. H. F., Xavier, W., & Resende, O. (2019). Drying Kinetics of Cecropia pachystachya Leaves. Floresta e Ambiente, 26(3). https://doi.org/10.1590/2179- 8087.042218 Benzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6 Bertelli, A., Biagi, M., Corsini, M., Baini, G., Cappellucci, G., & Miraldi, E. (2021). Polyphenols: From Theory to Practice. Foods, 10(11), 2595. https://doi.org/10.3390/foods10112595 Bhuyan, D. J., Vuong, Q. V., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2017). Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. Separation Science and Technology, 52(1), 100–112. https://doi.org/10.1080/01496395.2016.1250777 Binici, H. İ., Şat, İ. G., & Aoudeh, E. (2021). The effect of different drying methods on nutritional composition and antioxidant activity of purslane (Portulaca oleracea). TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 45(5), 680–689. https://doi.org/10.3906/tar-2012-60 Bizuayehu, D., Atlabachew, M., & Ali, M. T. (2016). Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis). SpringerPlus, 5(1), 412. https://doi.org/10.1186/s40064-016-2056-1 Borda-Yepes, V. H., Chejne, F., Daza-Olivella, L. V., Alzate-Arbelaez, A. F., Rojano, B. A., & Raghavan, V. G. S. (2019). Effect of microwave and infrared drying over polyphenol content in Vaccinium meridionale (Swartz) dry leaves. Journal of Food Process Engineering, 42(1), e12939. https://doi.org/10.1111/jfpe.12939 Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 Calderón Oliver, M., & Ponce Alquicira, E. (2021). Environmentally Friendly Techniques and Their Comparison in the Extraction of Natural Antioxidants from Green Tea, Rosemary, Clove, and Oregano. Molecules, 26(7), 1869. https://doi.org/10.3390/molecules26071869 Buelga-Santo, C., & González-Paramás, A. M. (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants (E. J. Vandamme & J. L. Revuelta, Eds.; 1st ed., pp. 469–471). Wiley-VHC. Carrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in Food Dehydration. https://doi.org/10.1201/9781420052534.ch5 Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012 Celis, M. E. M., Tobón, Y. N. F., Agudeio, C., Arango, S. S., & Rojano, B. (2017). Andean berry (vaccinium meridionale swartz). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition, 2(July 2018), 869–881. https://doi.org/10.1002/9781119158042.ch40 Chahbani, A., Zouari, N., Elhatmi, H., Jridi, M., & Fakhfakh, N. (2023). Microwave drying of garlic (Allium sativum L.) leaves: kinetics modelling and changes in phenolic compounds profile. Heat and Mass Transfer. https://doi.org/10.1007/s00231-023-03359-7 Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887 Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic‐assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742–1751. https://doi.org/10.1111/1750-3841.15111 Corantioquia. (2003). Conozcamos y usemos el mortiño (Vol. 3). Corrêa, P. C., Botelho, F. M., Oliveira, G. H. H., Goneli, A. L. D., Resende, O., & Campos, S. D. C. (2011). Mathematical modeling of the drying process of corn ears. Acta Scientiarum. Agronomy, 33(4). https://doi.org/10.4025/actasciagron.v33i4.7079 Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.x Cutrim, C. S., & Cortez, M. A. S. (2018a). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564– 578. https://doi.org/10.1111/1471-0307.12515 Da Porto, C., & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059 Dadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Microwave Drying Kinetics of Okra. Drying Technology, 25(5), 917–924. https://doi.org/10.1080/07373930701372254 Dang, T. T., Van Vuong, Q., Schreider, M. J., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161–3173. https://doi.org/10.1007/s10811-017-1162-y David, D., Alzate, A. F., Rojano, B., Copete-Pertuz, L. S., Echeverry, R., Gutierrez, J., & Zapata Vahos, I. C. (2022). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). Bionatura, 7(4). https://doi.org/10.21931/RB/2022.07.04.51 Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817–1827. https://doi.org/10.1007/s00231-016-1943-x Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219. Dini, I. (2019). An overview of functional beverages. Functional and Medicinal Beverages, 1–40. Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25– 35. https://doi.org/10.1007/s00231-016-1791-8 Doymaz, İ., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves ( Salvia officinalis). Quality Assurance and Safety of Crops & Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257 Edenharder, R., von Petersdorff, I., & Rauscher, R. (1993). Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5- f] quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutation Research, 287(2), 261–274. https://doi.org/10.1016/0027-5107(93)90019-C Erbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063 Fan, F. Y., Sang, L. X., Jiang, M., & McPhee, D. J. (2017). Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 22(3). https://doi.org/10.3390/molecules22030484 Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003 Fernandes, R. P. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pugine, S. M. P., Munekata, P. E. S., Lorenzo, J. M., & de Melo, M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451–460. https://doi.org/10.1007/s13197-015-1994-x Flieger, J., Flieger, W., & Baj, J. (2021). Antioxidants : Classification , Natural Sources , Activity / Capacity. Materials, 14(4135), 1–54. García, C. Leonardo., & Ligarreto, G. Adolfo. (2014). Effect of fruit size on the growth and development of Andean blueberry (Vaccinium meridionale Swartz) seedlings from four locations in the Colombian Andes. Agronomia Colombiana, 32(1), 14–21. https://doi.org/10.15446/agron.colomb.v32n1.38714 Garzón, G. A., Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. (2021). Utilization of Vaccinium meridionale S. pomace as an eco‐friendly and functional colorant in Greek‐style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750- 3841.15872 Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017 Gaukel, V., Siebert, T., & Erle, U. (2017). Microwave-assisted drying. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08- 100528-6.00008-5 Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti Inflammatory Activity of Apigenin. Antioxidants, 8(2). https://doi.org/10.3390/ANTIOX8020035 González, L. K., Rugeles, L. N., & Magnitskiy, S. (2018). Effect of different sources of nitrogen on the vegetative growth of andean blueberry (Vaccinium meridionale swartz). Agronomia Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304 Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3 Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food and Bioprocess Technology, 6(3), 806–817. https://doi.org/10.1007/s11947-012-0877-7 Hihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509. Huang, X., Dou, J., Li, D., & Wang, L. (2018). Effects of superfine grinding on properties of sugar beet pulp powders. LWT, 87, 203–209. https://doi.org/10.1016/j.lwt.2017.08.067 Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques—Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003 Jiang, L., Xu, Q.-X., Qiao, M., Ma, F.-F., Thakur, K., & Wei, Z.-J. (2017). Effect of superfine grinding on properties of Vaccinium bracteatum Thunb leaves powder. Food Science and Biotechnology, 26(6), 1571–1578. https://doi.org/10.1007/s10068-017-0126-y Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380. https://doi.org/10.1016/j.seppur.2017.01.055 Khaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465– 1480. https://doi.org/10.1080/07373937.2018.1510417 Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419 Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2). https://doi.org/10.3390/NU12020457 Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750 Lai, S., Cui, Q., Sun, Y., Liu, R., & Niu, Y. (2024). Effects of Particle Size Distribution on the Physicochemical, Functional, and Structural Properties of Alfalfa Leaf Powder. Agriculture, 14(4), 634. https://doi.org/10.3390/agriculture14040634 Lee, L.-S., Lee, N., Kim, Y., Lee, C.-H., Hong, S., Jeon, Y.-W., & Kim, Y.-E. (2013). Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology. Molecules, 18(11), 13530–13545. https://doi.org/10.3390/molecules181113530 Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science and Nutrition, 9(8), 4568–4577. https://doi.org/10.1002/fsn3.2444 Lopera, Y. E., Gaviria, C., & Rojano, B. (2009). Fermentación alcohólica del zumo de mortiño (Vaccinium Meridionale Sw). Simposio internacional de producción de alcoholes y levaduras. López, G. G., Brousse, M. M., & Linares, A. R. (2023). Kinetic modelling of total phenolic compounds from Ilex paraguariensis (St. Hil.) leaves: Conventional and ultrasound assisted extraction. Food and Bioproducts Processing, 139, 75–88. https://doi.org/10.1016/j.fbp.2023.03.003 Maleš, I., Pedisić, S., Zorić, Z., Elez-Garofulić, I., Repajić, M., You, L., Vladimir-Knežević, S., Butorac, D., & Dragović-Uzelac, V. (2022). The medicinal and aromatic plants as ingredients in functional beverage production. Journal of Functional Foods, 96, 105210. https://doi.org/10.1016/j.jff.2022.105210 Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727 Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260. Mbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945 Medina-Cano, C. I., Lobo Arias, M., Castaño Colorado, Á. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Ciencia & Tecnología Agropecuaria, 16(1), 65–77. https://doi.org/10.21930/rcta.vol16_num1_art:390 Medina-Jaramillo, C., Quintero-Pimiento, C., Gómez-Hoyos, C., Zuluaga-Gallego, R., & López Córdoba, A. (2020). Alginate-edible coatings for application on wild andean blueberries (Vaccinium meridionale swartz): Effect of the addition of nanofibrils isolated from cocoa by products. Polymers, 12(4). https://doi.org/10.3390/POLYM12040824 Mello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978- 0-444-59420-4.00002-7 Mishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035 Morante- Carriel, J., Agnieszka Obrebska, A., Bru-Martínez, R., Carranza Patiño, M., Pico-Saltos, R., & Nieto Rodriguez, E. (2014). Distribución, localización e inhibidores de las polifenol oxidasas en frutos y vegetales usados como alimento distribution, location and inhibitors of polyphenol oxidases in fruits and vegetables used as food. Ciencia y Tecnología, 7(1). Mordor Intelligence. (2024a). Tamaño del mercado de agua embotellada y análisis de participación tendencias de crecimiento y pronósticos (2024-2029). https://www.mordorintelligence.com/es/industry-reports/bottled-water-market Mordor Intelligence. (2024b). Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024-2029) . Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024- 2029) Source: https://www.mordorintelligence.com/es/industry-reports/functional-beverage market Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95–111. https://doi.org/10.1016/j.chroma.2004.08.059 Natarajan, S. B., Chandran, S. P., Khan, S. H., Natarajan, P., & Rengarajan, K. (2019). Versatile Health Benefits of Catechin from Green Tea (Camellia sinensis). Current Nutrition & Food Science, 15(1), 3–10. https://doi.org/10.2174/1573401313666171003150503 Nguyen, Q.-V., Doan, M.-D., Bui Thi, B.-H., Nguyen, M.-T., Tran Minh, D., Nguyen, A.-D., Le, T.-M., Nguyen, T.-H., Nguyen, T.-D., Tran, V.-C., & Hoang, V.-C. (2023). The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology, 41(8), 1291–1302. https://doi.org/10.1080/07373937.2022.2145305 Okwunodulu, I. N., Obioma, V. N., Okwunodulu, F. U., Ndife, J., & Wabali, V. (2023). Functional combo juice drink from ginger, garlic turmeric and pine apple juice blends: Bioactive compounds, anti-oxidant activity, physicochemical elucidation and their sensorial expectations. Food Chemistry Advances, 3(July), 100391. https://doi.org/10.1016/j.focha.2023.100391 ONU. (2015). Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ Onyebuchi, C., & Kavaz, D. (2020). Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, 10(1), 21760. https://doi.org/10.1038/s41598-020-78847-5 Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High-Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9 Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586o Palma, A., Díaz, M. J., Ruiz-Montoya, M., Morales, E., & Giráldez, I. (2021). Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrasonics Sonochemistry, 76, 105654. https://doi.org/10.1016/j.ultsonch.2021.105654 Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41 Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166 Pinho, E., Grootveld, M., Soares, G., & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101(1), 121–135. https://doi.org/10.1016/j.carbpol.2013.08.078 Polaris Market Research. (2022). Natural Antioxidants Market Size Global Report, 2022 - 2030. https://www.polarismarketresearch.com/industry-analysis/global-natural-antioxidants-market Potisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. Asia-Pacific Journal of Science and Technology, 20(1), 12–25. Puttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave‐assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054 Rababah, T. M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150. Rajha, H. N., Darra, N. El, Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05(04), 397–409. https://doi.org/10.4236/fns.2014.54048 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3 Roca, M., Chen, K., & Pérez-Gálvez, A. (2016). Chlorophylls. In Handbook on Natural Pigments in Food and Beverages (pp. 125–158). Elsevier. https://doi.org/10.1016/B978-0-08-100371- 8.00006-3 Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001 Routray, W., Orsat, V., & Gariepy, Y. (2014). Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technology, 32(16), 1888–1904. https://doi.org/10.1080/07373937.2014.919002 Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057 Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants, March. https://doi.org/10.5772/intechopen.85270 Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453. https://doi.org/10.1016/j.enconman.2010.10.007 Selahvarzi, A., Ramezan, Y., Sanjabi, M. R., Namdar, B., Akbarmivehie, M., Mirsaeedghazi, H., & Azarikia, F. (2022). Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink: Antioxidant effect of optimized pomegranate and orange peel extracts in the functional drink. Food Bioscience, 49(June), 101918. https://doi.org/10.1016/j.fbio.2022.101918 Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531 Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158. Sirichan, T., Kijpatanasilp, I., Asadatorn, N., & Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83. https://doi.org/10.1016/j.ultsonch.2022.105916 Sokhansanj, S., & Jayas, D. S. (2014). Drying of foodstuffs. Handbook of Industrial Drying, Fourth Edition, 521–544. https://doi.org/10.1201/b17208 Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8 Statista Research Department. (2024). Functional water - statistics & facts. https://www.statista.com/topics/3306/functional-water/#statisticChapter Ștefănescu, R., Laczkó-Zöld, E., Ősz, B. E., & Vari, C. E. (2023). An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics, 15(1), 1– 23. https://doi.org/10.3390/pharmaceutics15010016 Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309 Thirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications. InTech. https://doi.org/10.5772/intechopen.79766 Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012 Valenzuela V., C., & Pérez M., P. (2016). Actualización en el uso de antioxidantes naturales derivados de frutas y verduras para prolongar la vida útil de la carne y productos cárneos. Revista Chilena de Nutricion, 43(2), 188–195. https://doi.org/10.4067/S0717- 75182016000200012 Vrancheva, R., Ivanov, I., Badjakov, I., Dincheva, I., Georgiev, V., & Pavlov, A. (2020). Optimization of polyphenols extraction process with antioxidant properties from wild Vaccinium myrtillus L. (bilberry) and Vaccinium vitis-idaea L. (lingonberry) leaves. Food Science and Applied Biotechnology, 3(2), 149–156. https://doi.org/10.30721/fsab2020.v3.i2.98 Wu, H., Chai, Z., Hutabarat, R. P., Zeng, Q., Niu, L., Li, D., Yu, H., & Huang, W. (2019). Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Research International, 122, 548–560. https://doi.org/10.1016/j.foodres.2019.05.015 Xiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214, 242–247. https://doi.org/10.1016/j.foodchem.2016.07.096 Yap, J. Y., Hii, C. L., Ong, S. P., Lim, K. H., Abas, F., & Pin, K. Y. (2020). Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture, 100(7), 2932–2937. https://doi.org/10.1002/jsfa.10320 Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831 Youssef, K. M., & Mokhtar, S. M. (2014). Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. Journal of Nutrition & Food Sciences, 04(06). https://doi.org/10.4172/2155-9600.1000322 Zapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004 Zapata-Vahos, I. C., Villacorta, V., Maldonado, M. E., Castro Restrepo, D., & Rojano, B. (2015a). Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. Journal of Medicinal Plants Research, 9(13), 445–453. https://doi.org/10.5897/JMPR2014.5744 Zeb, A. (2021). Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. In Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. https://doi.org/10.1007/978-3- 030-74768-8 Zhang, Y., Li, R., Shang, G., Zhu, H., Mahmood, N., & Liu, Y. (2021). Mechanical grinding alters physicochemical, structural, and functional properties of tobacco (Nicotiana tabacum L.) leaf powders. Industrial Crops and Products, 173, 114149. https://doi.org/10.1016/j.indcrop.2021.114149 Zhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT, 87, 450–456. https://doi.org/10.1016/j.lwt.2017.09.016 Zulkifli, S. A., Abd Gani, S. S., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4), 787. https://doi.org/10.3390/molecules25040787 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
87 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86993/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86993/2/1026161108.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86993/3/1026161108.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5ed5ac24101f4c224c9cd0097da2c757 d0382b0fce2eed75c558dfb48086fc30 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089424683663360 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojano, Benjamin Alberto45a3fe081762f4ddf3837332e3478537Alzate Arbeláez, Andrés Felipe091e2aa8995cdcf07284340aac473badVelez Villada, Angie Dahiana8c72566da17effe13965351098f1ecd5Química de Los Productos Naturales y Los Alimentos2024-10-18T18:59:24Z2024-10-18T18:59:24Z2024https://repositorio.unal.edu.co/handle/unal/86993Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEl consumo de frutos de Vaccinium meridionale ha incrementado por su alto contenido de metabolitos bioactivos, sin embargo, esto incrementa el volumen de subproductos como las hojas de poda. Estas hojas son ricas en compuestos antioxidantes como catequinas y ácidos fenólicos, con propiedades antinflamatorias, retardantes de la oxidación lipídica y la contaminación microbiana. No obstante, para desarrollar un producto de calidad a partir de este subproducto, es de gran relevancia optimizar los procesos de secado y extractivos para obtener un extracto rico en antioxidantes. En este trabajo, se deshidrataron hojas de V. meridionale mediante secado por microondas (440, 660 y 800W) y convectivo (40 y 60°C); los datos de secado se ajustaron a modelos semi-empiricos. Se evalúo el contenido de metabolitos antioxidantes (fenoles y flavonoides totales) y la capacidad antioxidante (ABTS, DPPH y FRAP). Se optimizaron las metodologías de ultrasonido y agitación, en cuanto a metabolitos antioxidantes. El extracto con mejores características se incluyó en una bebida, se evaluaron sus parámetros fisicoquímicos y capacidad antioxidante. La condición de mayor conservación de los metabolitos y capacidad antioxidantes fue microondas a una potencia de 600W. Las condiciones óptimas de extracción fueron 70 min a 72°C en ultrasonido, y 138 min a 72°C en agitación. La bebida cumplió con un aporte del 10% del valor ORAC recomendado y no presentó aspectos sensoriales objetables. La obtención del extracto y su inclusión en una bebida representa una alternativa innovadora y viable para la utilización de este subproducto generando un producto con un alto valor agregado que podría industrializarse. (Tomado de la fuente)The consumption of fruits of Vaccinium meridionale has increased due to its high content of bioactive metabolites, however, this increases the volume of byproducts such as pruning leaves. These leaves are rich in antioxidant compounds such as catechins and phenolic acids, with anti-inflammatory properties, retardants of lipid oxidation and microbial contamination. However, in order to develop a quality product from this byproduct, it is very important to optimize drying and extractive processes to obtain an extract rich in antioxidants. In this work, sheets of V. meridionale were dehydrated by microwave drying (440, 660 and 800W) and convective (40 and 60°C); drying data were adjusted to semi empirical models. The content of antioxidant metabolites (total phenols and flavonoids) and antioxidant capacity (ABTS, DPPH and FRAP) were evaluated. Ultrasound and agitation methodologies were optimized for antioxidant metabolites. The extract with better characteristics was included in a drink, its physicochemical parameters and antioxidant capacity were evaluated. The condition of greater conservation of metabolites and antioxidant capacity was microwave at a power of 600W. Optimum extraction conditions were 70 min at 72°C in ultrasound, and 138 min at 72°C in agitation. The drink met a 10% contribution of the recommended ORAC value and did not present objectionable sensory aspects. Obtaining the extract and its inclusion in a drink represents an innovative and viable alternative for the use of this by-product generating a product with a high added value that could be industrialised.MaestríaMagister en Ciencia y Tecnología de AlimentosProductos Naturales y AntioxidantesAgro Ingeniería Y Alimentos.Sede Medellín87 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::663 - Tecnología de bebidas630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesindustria de bebidasFrutas deshidratadasDesarrollo de productosDeshidratación de frutasProductos naturalesmicroondaspolifenolesultrasonidoagrazextracciónmicrowavesultrasoundextractionpolyphenolsagrazDesarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadasDevelopment of a beverage made from dehydrated mortiño (Vaccinium meridionale) leavesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAGRONET. (2021a). Productores asociados les sacan más provecho a los cultivos de agraz. https://agronet.gov.co/Noticias/Paginas/Productores-asociados-les-sacan-más-provecho-a-los cultivos-de-agraz.aspxAGRONET. (2021b). Reporte: área, producción y rendimiento nacional por cultivo. https://agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002Alean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-Arbelaez, A. F., & Rojano, B. (2022). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 40(3), 559–570. https://doi.org/10.1080/07373937.2020.1817933Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55(8), 2173–2184. https://doi.org/10.1007/s00231-019-02570-9Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294, 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085Amarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin. In Advances in Food and Nutrition Research (Vol. 90, pp. 1–81). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2019.02.011Arango-Varela, S. S., Luzardo-Ocampo, I., & Maldonado-Celis, M. E. (2022). Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM induced colorectal cancer in vivo. Food Research International, 157(March 2021), 111244. https://doi.org/10.1016/j.foodres.2022.111244Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L., Łuczaj, W., Majekova, M., Odysseos, A. D., Rackova, L., Skrzydlewska, E., Stefek, M., Štrosová, M., Tirzitis, G., Venskutonis, P. R., Viskupicova, J., Vraka, P. S., & Žarković, N. (2010). Natural and synthetic antioxidants: An updated overview. Free Radical Research, 44(10), 1216–1262. https://doi.org/10.3109/10715762.2010.508495Aybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565. https://doi.org/10.1016/j.indcrop.2012.09.022Ballard, C. R., & Maróstica, M. R. (2019). Health Benefits of Flavonoids. In Bioactive Compounds (pp. 185–201). Elsevier. https://doi.org/10.1016/B978-0-12-814774-0.00010-4Bastos, A. V. S., Amaral, A. M., Gomes, F. H. F., Xavier, W., & Resende, O. (2019). Drying Kinetics of Cecropia pachystachya Leaves. Floresta e Ambiente, 26(3). https://doi.org/10.1590/2179- 8087.042218Benzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6Bertelli, A., Biagi, M., Corsini, M., Baini, G., Cappellucci, G., & Miraldi, E. (2021). Polyphenols: From Theory to Practice. Foods, 10(11), 2595. https://doi.org/10.3390/foods10112595Bhuyan, D. J., Vuong, Q. V., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2017). Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. Separation Science and Technology, 52(1), 100–112. https://doi.org/10.1080/01496395.2016.1250777Binici, H. İ., Şat, İ. G., & Aoudeh, E. (2021). The effect of different drying methods on nutritional composition and antioxidant activity of purslane (Portulaca oleracea). TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 45(5), 680–689. https://doi.org/10.3906/tar-2012-60Bizuayehu, D., Atlabachew, M., & Ali, M. T. (2016). Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis). SpringerPlus, 5(1), 412. https://doi.org/10.1186/s40064-016-2056-1Borda-Yepes, V. H., Chejne, F., Daza-Olivella, L. V., Alzate-Arbelaez, A. F., Rojano, B. A., & Raghavan, V. G. S. (2019). Effect of microwave and infrared drying over polyphenol content in Vaccinium meridionale (Swartz) dry leaves. Journal of Food Process Engineering, 42(1), e12939. https://doi.org/10.1111/jfpe.12939Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5Calderón Oliver, M., & Ponce Alquicira, E. (2021). Environmentally Friendly Techniques and Their Comparison in the Extraction of Natural Antioxidants from Green Tea, Rosemary, Clove, and Oregano. Molecules, 26(7), 1869. https://doi.org/10.3390/molecules26071869Buelga-Santo, C., & González-Paramás, A. M. (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants (E. J. Vandamme & J. L. Revuelta, Eds.; 1st ed., pp. 469–471). Wiley-VHC.Carrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in Food Dehydration. https://doi.org/10.1201/9781420052534.ch5Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012Celis, M. E. M., Tobón, Y. N. F., Agudeio, C., Arango, S. S., & Rojano, B. (2017). Andean berry (vaccinium meridionale swartz). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition, 2(July 2018), 869–881. https://doi.org/10.1002/9781119158042.ch40Chahbani, A., Zouari, N., Elhatmi, H., Jridi, M., & Fakhfakh, N. (2023). Microwave drying of garlic (Allium sativum L.) leaves: kinetics modelling and changes in phenolic compounds profile. Heat and Mass Transfer. https://doi.org/10.1007/s00231-023-03359-7Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic‐assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742–1751. https://doi.org/10.1111/1750-3841.15111Corantioquia. (2003). Conozcamos y usemos el mortiño (Vol. 3).Corrêa, P. C., Botelho, F. M., Oliveira, G. H. H., Goneli, A. L. D., Resende, O., & Campos, S. D. C. (2011). Mathematical modeling of the drying process of corn ears. Acta Scientiarum. Agronomy, 33(4). https://doi.org/10.4025/actasciagron.v33i4.7079Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.xCutrim, C. S., & Cortez, M. A. S. (2018a). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564– 578. https://doi.org/10.1111/1471-0307.12515Da Porto, C., & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059Dadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Microwave Drying Kinetics of Okra. Drying Technology, 25(5), 917–924. https://doi.org/10.1080/07373930701372254Dang, T. T., Van Vuong, Q., Schreider, M. J., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161–3173. https://doi.org/10.1007/s10811-017-1162-yDavid, D., Alzate, A. F., Rojano, B., Copete-Pertuz, L. S., Echeverry, R., Gutierrez, J., & Zapata Vahos, I. C. (2022). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). Bionatura, 7(4). https://doi.org/10.21931/RB/2022.07.04.51Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817–1827. https://doi.org/10.1007/s00231-016-1943-xDerringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.Dini, I. (2019). An overview of functional beverages. Functional and Medicinal Beverages, 1–40.Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25– 35. https://doi.org/10.1007/s00231-016-1791-8Doymaz, İ., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves ( Salvia officinalis). Quality Assurance and Safety of Crops & Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257Edenharder, R., von Petersdorff, I., & Rauscher, R. (1993). Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5- f] quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutation Research, 287(2), 261–274. https://doi.org/10.1016/0027-5107(93)90019-CErbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063Fan, F. Y., Sang, L. X., Jiang, M., & McPhee, D. J. (2017). Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 22(3). https://doi.org/10.3390/molecules22030484Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003Fernandes, R. P. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pugine, S. M. P., Munekata, P. E. S., Lorenzo, J. M., & de Melo, M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451–460. https://doi.org/10.1007/s13197-015-1994-xFlieger, J., Flieger, W., & Baj, J. (2021). Antioxidants : Classification , Natural Sources , Activity / Capacity. Materials, 14(4135), 1–54.García, C. Leonardo., & Ligarreto, G. Adolfo. (2014). Effect of fruit size on the growth and development of Andean blueberry (Vaccinium meridionale Swartz) seedlings from four locations in the Colombian Andes. Agronomia Colombiana, 32(1), 14–21. https://doi.org/10.15446/agron.colomb.v32n1.38714Garzón, G. A., Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. (2021). Utilization of Vaccinium meridionale S. pomace as an eco‐friendly and functional colorant in Greek‐style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750- 3841.15872Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017Gaukel, V., Siebert, T., & Erle, U. (2017). Microwave-assisted drying. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08- 100528-6.00008-5Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti Inflammatory Activity of Apigenin. Antioxidants, 8(2). https://doi.org/10.3390/ANTIOX8020035González, L. K., Rugeles, L. N., & Magnitskiy, S. (2018). Effect of different sources of nitrogen on the vegetative growth of andean blueberry (Vaccinium meridionale swartz). Agronomia Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food and Bioprocess Technology, 6(3), 806–817. https://doi.org/10.1007/s11947-012-0877-7Hihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509.Huang, X., Dou, J., Li, D., & Wang, L. (2018). Effects of superfine grinding on properties of sugar beet pulp powders. LWT, 87, 203–209. https://doi.org/10.1016/j.lwt.2017.08.067Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques—Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003Jiang, L., Xu, Q.-X., Qiao, M., Ma, F.-F., Thakur, K., & Wei, Z.-J. (2017). Effect of superfine grinding on properties of Vaccinium bracteatum Thunb leaves powder. Food Science and Biotechnology, 26(6), 1571–1578. https://doi.org/10.1007/s10068-017-0126-yJovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380. https://doi.org/10.1016/j.seppur.2017.01.055Khaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465– 1480. https://doi.org/10.1080/07373937.2018.1510417Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2). https://doi.org/10.3390/NU12020457Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750Lai, S., Cui, Q., Sun, Y., Liu, R., & Niu, Y. (2024). Effects of Particle Size Distribution on the Physicochemical, Functional, and Structural Properties of Alfalfa Leaf Powder. Agriculture, 14(4), 634. https://doi.org/10.3390/agriculture14040634Lee, L.-S., Lee, N., Kim, Y., Lee, C.-H., Hong, S., Jeon, Y.-W., & Kim, Y.-E. (2013). Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology. Molecules, 18(11), 13530–13545. https://doi.org/10.3390/molecules181113530Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science and Nutrition, 9(8), 4568–4577. https://doi.org/10.1002/fsn3.2444Lopera, Y. E., Gaviria, C., & Rojano, B. (2009). Fermentación alcohólica del zumo de mortiño (Vaccinium Meridionale Sw). Simposio internacional de producción de alcoholes y levaduras.López, G. G., Brousse, M. M., & Linares, A. R. (2023). Kinetic modelling of total phenolic compounds from Ilex paraguariensis (St. Hil.) leaves: Conventional and ultrasound assisted extraction. Food and Bioproducts Processing, 139, 75–88. https://doi.org/10.1016/j.fbp.2023.03.003Maleš, I., Pedisić, S., Zorić, Z., Elez-Garofulić, I., Repajić, M., You, L., Vladimir-Knežević, S., Butorac, D., & Dragović-Uzelac, V. (2022). The medicinal and aromatic plants as ingredients in functional beverage production. Journal of Functional Foods, 96, 105210. https://doi.org/10.1016/j.jff.2022.105210Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260.Mbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945Medina-Cano, C. I., Lobo Arias, M., Castaño Colorado, Á. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Ciencia & Tecnología Agropecuaria, 16(1), 65–77. https://doi.org/10.21930/rcta.vol16_num1_art:390Medina-Jaramillo, C., Quintero-Pimiento, C., Gómez-Hoyos, C., Zuluaga-Gallego, R., & López Córdoba, A. (2020). Alginate-edible coatings for application on wild andean blueberries (Vaccinium meridionale swartz): Effect of the addition of nanofibrils isolated from cocoa by products. Polymers, 12(4). https://doi.org/10.3390/POLYM12040824Mello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978- 0-444-59420-4.00002-7Mishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035Morante- Carriel, J., Agnieszka Obrebska, A., Bru-Martínez, R., Carranza Patiño, M., Pico-Saltos, R., & Nieto Rodriguez, E. (2014). Distribución, localización e inhibidores de las polifenol oxidasas en frutos y vegetales usados como alimento distribution, location and inhibitors of polyphenol oxidases in fruits and vegetables used as food. Ciencia y Tecnología, 7(1).Mordor Intelligence. (2024a). Tamaño del mercado de agua embotellada y análisis de participación tendencias de crecimiento y pronósticos (2024-2029). https://www.mordorintelligence.com/es/industry-reports/bottled-water-marketMordor Intelligence. (2024b). Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024-2029) . Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024- 2029) Source: https://www.mordorintelligence.com/es/industry-reports/functional-beverage marketNaczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95–111. https://doi.org/10.1016/j.chroma.2004.08.059Natarajan, S. B., Chandran, S. P., Khan, S. H., Natarajan, P., & Rengarajan, K. (2019). Versatile Health Benefits of Catechin from Green Tea (Camellia sinensis). Current Nutrition & Food Science, 15(1), 3–10. https://doi.org/10.2174/1573401313666171003150503Nguyen, Q.-V., Doan, M.-D., Bui Thi, B.-H., Nguyen, M.-T., Tran Minh, D., Nguyen, A.-D., Le, T.-M., Nguyen, T.-H., Nguyen, T.-D., Tran, V.-C., & Hoang, V.-C. (2023). The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology, 41(8), 1291–1302. https://doi.org/10.1080/07373937.2022.2145305Okwunodulu, I. N., Obioma, V. N., Okwunodulu, F. U., Ndife, J., & Wabali, V. (2023). Functional combo juice drink from ginger, garlic turmeric and pine apple juice blends: Bioactive compounds, anti-oxidant activity, physicochemical elucidation and their sensorial expectations. Food Chemistry Advances, 3(July), 100391. https://doi.org/10.1016/j.focha.2023.100391ONU. (2015). Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/Onyebuchi, C., & Kavaz, D. (2020). Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, 10(1), 21760. https://doi.org/10.1038/s41598-020-78847-5Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High-Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586oPalma, A., Díaz, M. J., Ruiz-Montoya, M., Morales, E., & Giráldez, I. (2021). Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrasonics Sonochemistry, 76, 105654. https://doi.org/10.1016/j.ultsonch.2021.105654Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166Pinho, E., Grootveld, M., Soares, G., & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101(1), 121–135. https://doi.org/10.1016/j.carbpol.2013.08.078Polaris Market Research. (2022). Natural Antioxidants Market Size Global Report, 2022 - 2030. https://www.polarismarketresearch.com/industry-analysis/global-natural-antioxidants-marketPotisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. Asia-Pacific Journal of Science and Technology, 20(1), 12–25.Puttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave‐assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054Rababah, T. M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150.Rajha, H. N., Darra, N. El, Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05(04), 397–409. https://doi.org/10.4236/fns.2014.54048Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3Roca, M., Chen, K., & Pérez-Gálvez, A. (2016). Chlorophylls. In Handbook on Natural Pigments in Food and Beverages (pp. 125–158). Elsevier. https://doi.org/10.1016/B978-0-08-100371- 8.00006-3Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001Routray, W., Orsat, V., & Gariepy, Y. (2014). Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technology, 32(16), 1888–1904. https://doi.org/10.1080/07373937.2014.919002Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants, March. https://doi.org/10.5772/intechopen.85270Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453. https://doi.org/10.1016/j.enconman.2010.10.007Selahvarzi, A., Ramezan, Y., Sanjabi, M. R., Namdar, B., Akbarmivehie, M., Mirsaeedghazi, H., & Azarikia, F. (2022). Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink: Antioxidant effect of optimized pomegranate and orange peel extracts in the functional drink. Food Bioscience, 49(June), 101918. https://doi.org/10.1016/j.fbio.2022.101918Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158.Sirichan, T., Kijpatanasilp, I., Asadatorn, N., & Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83. https://doi.org/10.1016/j.ultsonch.2022.105916Sokhansanj, S., & Jayas, D. S. (2014). Drying of foodstuffs. Handbook of Industrial Drying, Fourth Edition, 521–544. https://doi.org/10.1201/b17208Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8Statista Research Department. (2024). Functional water - statistics & facts. https://www.statista.com/topics/3306/functional-water/#statisticChapterȘtefănescu, R., Laczkó-Zöld, E., Ősz, B. E., & Vari, C. E. (2023). An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics, 15(1), 1– 23. https://doi.org/10.3390/pharmaceutics15010016Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309Thirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications. InTech. https://doi.org/10.5772/intechopen.79766Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012Valenzuela V., C., & Pérez M., P. (2016). Actualización en el uso de antioxidantes naturales derivados de frutas y verduras para prolongar la vida útil de la carne y productos cárneos. Revista Chilena de Nutricion, 43(2), 188–195. https://doi.org/10.4067/S0717- 75182016000200012Vrancheva, R., Ivanov, I., Badjakov, I., Dincheva, I., Georgiev, V., & Pavlov, A. (2020). Optimization of polyphenols extraction process with antioxidant properties from wild Vaccinium myrtillus L. (bilberry) and Vaccinium vitis-idaea L. (lingonberry) leaves. Food Science and Applied Biotechnology, 3(2), 149–156. https://doi.org/10.30721/fsab2020.v3.i2.98Wu, H., Chai, Z., Hutabarat, R. P., Zeng, Q., Niu, L., Li, D., Yu, H., & Huang, W. (2019). Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Research International, 122, 548–560. https://doi.org/10.1016/j.foodres.2019.05.015Xiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214, 242–247. https://doi.org/10.1016/j.foodchem.2016.07.096Yap, J. Y., Hii, C. L., Ong, S. P., Lim, K. H., Abas, F., & Pin, K. Y. (2020). Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture, 100(7), 2932–2937. https://doi.org/10.1002/jsfa.10320Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831Youssef, K. M., & Mokhtar, S. M. (2014). Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. Journal of Nutrition & Food Sciences, 04(06). https://doi.org/10.4172/2155-9600.1000322Zapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004Zapata-Vahos, I. C., Villacorta, V., Maldonado, M. E., Castro Restrepo, D., & Rojano, B. (2015a). Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. Journal of Medicinal Plants Research, 9(13), 445–453. https://doi.org/10.5897/JMPR2014.5744Zeb, A. (2021). Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. In Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. https://doi.org/10.1007/978-3- 030-74768-8Zhang, Y., Li, R., Shang, G., Zhu, H., Mahmood, N., & Liu, Y. (2021). Mechanical grinding alters physicochemical, structural, and functional properties of tobacco (Nicotiana tabacum L.) leaf powders. Industrial Crops and Products, 173, 114149. https://doi.org/10.1016/j.indcrop.2021.114149Zhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT, 87, 450–456. https://doi.org/10.1016/j.lwt.2017.09.016Zulkifli, S. A., Abd Gani, S. S., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4), 787. https://doi.org/10.3390/molecules25040787EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86993/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026161108.2024.pdf1026161108.2024.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf2153089https://repositorio.unal.edu.co/bitstream/unal/86993/2/1026161108.2024.pdf5ed5ac24101f4c224c9cd0097da2c757MD52THUMBNAIL1026161108.2024.pdf.jpg1026161108.2024.pdf.jpgGenerated Thumbnailimage/jpeg4449https://repositorio.unal.edu.co/bitstream/unal/86993/3/1026161108.2024.pdf.jpgd0382b0fce2eed75c558dfb48086fc30MD53unal/86993oai:repositorio.unal.edu.co:unal/869932024-10-18 23:31:11.724Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |