Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas
ilustraciones, fotografías a color
- Autores:
-
Palencia Argel, Marcela Patricia
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83727
- Palabra clave:
- Bebidas
Tecnología de alimentos
Beverages
Frutos rojos
bacterias de ácido láctico
bebida no láctea
compuestos bioactivos
prebiótico
probiótico
Berries
lactic acid bacteria
non-dairy beverage
bioactive compounds
prebiotic
probiotic
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_0923665846c177afe8c05cf5b556ca82 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83727 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
dc.title.translated.eng.fl_str_mv |
Development of a natural beverage with synbiotic potential using anthocyanin-rich fruits |
title |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
spellingShingle |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas Bebidas Tecnología de alimentos Beverages Frutos rojos bacterias de ácido láctico bebida no láctea compuestos bioactivos prebiótico probiótico Berries lactic acid bacteria non-dairy beverage bioactive compounds prebiotic probiotic |
title_short |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
title_full |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
title_fullStr |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
title_full_unstemmed |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
title_sort |
Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas |
dc.creator.fl_str_mv |
Palencia Argel, Marcela Patricia |
dc.contributor.advisor.none.fl_str_mv |
Fuenmayor Bobadilla, Carlos Alberto Díaz Moreno, Amanda Consuelo |
dc.contributor.author.none.fl_str_mv |
Palencia Argel, Marcela Patricia |
dc.contributor.researchgroup.spa.fl_str_mv |
Caracterización y funcionalidad de alimentos / desarrollo de nuevos productos |
dc.subject.lemb.spa.fl_str_mv |
Bebidas Tecnología de alimentos |
topic |
Bebidas Tecnología de alimentos Beverages Frutos rojos bacterias de ácido láctico bebida no láctea compuestos bioactivos prebiótico probiótico Berries lactic acid bacteria non-dairy beverage bioactive compounds prebiotic probiotic |
dc.subject.lemb.eng.fl_str_mv |
Beverages |
dc.subject.proposal.spa.fl_str_mv |
Frutos rojos bacterias de ácido láctico bebida no láctea compuestos bioactivos prebiótico probiótico |
dc.subject.proposal.eng.fl_str_mv |
Berries lactic acid bacteria non-dairy beverage bioactive compounds prebiotic probiotic |
description |
ilustraciones, fotografías a color |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-01-28 |
dc.date.accessioned.none.fl_str_mv |
2023-04-18T16:29:10Z |
dc.date.available.none.fl_str_mv |
2023-04-18T16:29:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83727 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83727 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aadil, R., Zeng, X., Han, Z., & Sun, D. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206. https://doi.org/10.1016/j.foodchem.2013.06.008 Ah-Hen, K., Mathias-Rettig, K., Gómez-Pérez, L., Riquelme-Asenjo, G., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2018). Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. Journal of Food Measurement and Characterization, 12(1), 602–615. https://doi.org/10.1007/s11694-017-9673-4 Alqurashi, R., Alarifi, S., Walton, G., Costabile, A., Rowland, I., & Commane, D. (2017). In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chemistry, 234, 190–198. https://doi.org/10.1016/j.foodchem.2017.04.164 Alves Filho, E., Cullen, P., Frias, J., Bourke, P., Tiwari, B., Brito, E., Rodrigues, S., & Fernandes, F. (2016). Evaluation of plasma, high-pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science & Technology, 51(9), 2034–2040. https://doi.org/10.1111/IJFS.13175 Anjum, N., Maqsood, S., Masud, T., Ahmad, A., Sohail, A., & Momin, A. (2014). Lactobacillus acidophilus: Characterization of the Species and Application in Food Production. Critical Reviews in Food Science and Nutrition, 54(9), 1241–1251. https://doi.org/10.1080/10408398.2011.621169 Ashaolu, T. (2020). Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomedicine & Pharmacotherapy, 130, 110625. https://doi.org/10.1016/J.BIOPHA.2020.110625 Ávila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & Pascual-Teresa, S. (2009). Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453–1461. https://doi.org/10.1016/J.FOODRES.2009.07.026 Axelsson, L. (2004). Lactic Acid Bacteria: Classification and Physiology. In S. Salminen & A. von Wright (Eds.), Lactic Acid Bacteria (3rd ed.). CRC Press. https://doi.org/10.1201/9780824752033/LACTIC-ACID-BACTERIA-SEPPO-SALMINEN-ATTE-VON-WRIGHT Axelsson, L., & Ahrné, S. (2000). Lactic Acid Bacteria. In F. G. Priest & M. Goodfellow (Eds.), Applied Microbial Systematics (pp. 367–388). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_13 BCC Research. (2022, June). Global Functional Foods and Beverages Market Size Analysis Report. https://www.bccresearch.com/market-research/food-and-beverage/functional-food-market.html Bernal Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2017). Probióticos y prebióticos en matrices de origen vegetal: Avances en el desarrollo de bebidas de frutas. Revista Chile Nutrucion, 44(4), 383–392. https://doi.org/10.4067/s0717-75182017000400383 Bernal-Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2019). Inclusion of prebiotics on the viability of a commercial Lactobacillus casei subsp. rhamnosus culture in a tropical fruit beverage. Journal of Food Science and Technology, 56(2), 987–994. https://doi.org/10.1007/s13197-018-03565-w Bhadekar, R., & Bhola, J. (2019). Nonconventional Preservation Techniques: Current Trends and Future Prospects. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 115–147). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00004-5 Bhat, R., Kamaruddin, N., Min-Tze, L., & Karim, A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300. https://doi.org/10.1016/j.ultsonch.2011.04.002 Biswas, D., Wideman, N., O’Bryan, C., Muthaiyan, A., Lingbeck, J., Crandall, P., & Ricke, S. (2012). Pasteurized blueberry (vaccinium corymbosum) juice inhibits growth of bacterial pathogens in milk but allows survival of probiotic bacteria. Journal of Food Safety, 32(2), 204–209. https://doi.org/10.1111/j.1745-4565.2012.00369.x Boto-Ordóñez, M., Urpi-Sarda, M., Queipo-Ortuño, M., Tulipani, S., Tinahones, F., & Andres-Lacueva, C. (2014). High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food and Function, 5(8), 1932–1938. https://doi.org/10.1039/c4fo00029c Burdulis, D., Sarkinas, A., Jasutiené, I., Stackevicené, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits - PubMed. Acta Poloniae Pharmaceutica ñ Drug Research, 66(4), 399–408. https://pubmed.ncbi.nlm.nih.gov/19702172/ Canuto, G., Oliveira, D., da Conceição, L., Farah, J., & Tavares, M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. https://doi.org/10.1016/J.FOODCHEM.2015.06.095 Cassani, L., Tomadoni, B., & del Rosario Moreira, M. (2020). Green ultrasound-assisted processing for extending the shelf-life of prebiotic-rich strawberry juices. Journal of the Science of Food and Agriculture, 100(15), 5518–5526. https://doi.org/10.1002/JSFA.10604 Castillo-Escandón, V., Fernández-Michel, S., Cueto-Wong, M., & Ramos-Clamont, G. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada En Ciencias Químico-Biológicas, 22(0), 1–17. https://doi.org/10.22201/fesz.23958723e.2019.0.173 Cervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C., Zafra-Rojas, Q., & Cruz-Cansino, N. (2017). Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371–379. https://doi.org/10.1016/J.ULTSONCH.2016.06.009 Charoux, C., Inguglia, E., O’Donnell, C., & Tiwari, B. (2019). Ultrasonic Waves: Inactivation of Foodborne Microorganisms Using Power Ultrasound. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22930-2 Chemat, F., Zill-E-Huma, & Khan, M. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023 Chen, G., Li, C., & Chen, K. (2016). Fructooligosaccharides: A Review on Their Mechanisms of Action and Effects. In Studies in Natural Products Chemistry (Vol. 48, pp. 209–229). Elsevier. https://doi.org/10.1016/B978-0-444-63602-7.00006-0 Cheng, L., Soh, C., Liew, S., & Teh, F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104(4), 1396–1401. https://doi.org/10.1016/j.foodchem.2007.02.001 Chiang, S., & Pan, T. (2011). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93(3), 903–916. https://doi.org/10.1007/S00253-011-3753-X Cisowska, A., Wojnicz, D., & Hendrich, A. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149–156. https://doi.org/10.1177/1934578x1100600136 Coman, M., Oancea, A., Verdenelli, M., Cecchini, C., Bahrim, G., Orpianesi, C., Cresci, A., & Silvi, S. (2018). Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European Food Research and Technology, 244(4), 735–745. https://doi.org/10.1007/s00217-017-2997-9 Costa, M., Fonteles, T., de Jesus, A., & Rodrigues, S. (2013). Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139(1–4), 261–266. https://doi.org/10.1016/j.foodchem.2013.01.059 Cummings, J., Macfarlane, G., & Englyst, H. (2001). Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, 73(2), 415s–420s. https://doi.org/10.1093/AJCN/73.2.415S Cunningham, M., Azcarate-Peril, M., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H., Hunter, K., Manurung, S., Obis, D., Petrova, M., Steinert, R., Swanson, K., van Sinderen, D., Vulevic, J., & Gibson, G. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/J.TIM.2021.01.003 D’Amico, D., Silk, T., Wu, J., & Guo, M. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69(3), 556–563. https://doi.org/10.4315/0362-028X-69.3.556 de Figueiredo, F., de Barros Ranke, F., & de Oliva-Neto, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT, 118, 108761. https://doi.org/10.1016/J.LWT.2019.108761 de Oliveira, A., dos Santos, F., Olbrich, K., Martins, V., Castro, D., Pessanha, M., Conte, C., de Oliveira, S., de Oliveira, L., de Oliveira, R., & Miranda, E. (2020). Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT, 118, 108756. https://doi.org/10.1016/j.lwt.2019.108756 de Souza, E., Rodrigues, T., dos Santos, A., Lacerda, N., & de Brito, J. (2018). Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A review. Critical Reviews in Food Science and Nutrition, 59(10), 1645–1659. https://doi.org/10.1080/10408398.2018.1425285 de Souza, V., Pereira, P., da Silva, T., de Oliveira Lima, L., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368. https://doi.org/10.1016/j.foodchem.2014.01.125 di Cagno, R., Minervini, G., Rizzello, C., de Angelis, M., & Gobbetti, M. (2011). Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 28(5), 1062–1071. https://doi.org/10.1016/j.fm.2011.02.011 Durazzo, A., Lucarini, M., Novellino, E., Daliu, P., & Santini, A. (2019). Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytotherapy Research, 33(7), 1754–1769. https://doi.org/10.1002/ptr.6380 Ercan, S., & Soysal, Ç. (2013). Use of ultrasound in food preservation. Natural Science, 5, 5–13. https://doi.org/10.4236/ns.2013.58A2002 Ertan, K., Türkyılmaz, M., & Özkan, M. (2020). Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners. Food Chemistry, 310, 125856. https://doi.org/10.1016/J.FOODCHEM.2019.125856 Faria, A., Fernandes, I., Norberto, S., Mateus, N., & Calhau, C. (2014). Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry, 62(29), 6898–6902. https://doi.org/10.1021/jf501808a Farias, D., Fernandes, F., Neri-Numa, I., & Pastore, G. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/J.TIFS.2019.09.004 Feng, X., Zhou, Z., Wang, X., Bi, X., Ma, Y., & Xing, Y. (2020). Comparison of High Hydrostatic Pressure, Ultrasound, and Heat Treatments on the Quality of Strawberry–Apple–Lemon Juice Blend. Foods, 9(2), 218. https://doi.org/10.3390/FOODS9020218 Fennema, O., Parkin, K., & Damodaran, S. (2008). Fennema´s Food Chemistry (4th ed.). CRC Press Taylor & Francis Group. Fernandes, A., & Rodrigues, S. (2018). Turning Fruit Juice Into Probiotic Beverages. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 279–287). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802230-6.00015-1 Ferrario, M., Alzamora, S., & Guerrero, S. (2015). Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology, 46, 635–642. https://doi.org/10.1016/J.FM.2014.06.017 Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318 Flach, J., van der Waal, M., van den Nieuwboer, M., Claassen, E., & Larsen, O. (2017). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624 Flores, G., Ruiz del Castillo, M., Costabile, A., Klee, A., Bigetti Guergoletto, K., & Gibson, G. (2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. https://doi.org/10.1016/j.jff.2015.04.022 Fonteles, T., Costa, M., de Jesus, A., Fontes, C., Fernandes, F., & Rodrigues, S. (2013). Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice. Food and Bioprocess Technology, 6(10), 2860–2869. https://doi.org/10.1007/s11947-012-0962-y Fratianni, F., Cardinale, F., Russo, I., Iuliano, C., Tremonte, P., Coppola, R., & Nazzaro, F. (2014). Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, 31(3), 299–305. https://doi.org/10.3109/02652048.2013.871361 Freitas, H., dos Santos, A., Rodrigues, S., Abreu, V., Narain, N., Lemos, T., Gomes, W., & Pereira, A. (2021). Synbiotic açaí juice (Euterpe oleracea) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. Journal of Food Science, 86(3), 730–739. https://doi.org/10.1111/1750-3841.15617 Gabriel, A. (2014). Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice. Food Control, 46, 189–196. https://doi.org/10.1016/J.FOODCONT.2014.05.012 Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 7(164). https://doi.org/10.3390/foods7100164 Gancel, A., Feneuil, A., Acosta, O., Pérez, A., & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251. https://doi.org/10.1016/j.foodres.2010.06.013 Giampieri, F., Tulipani, S., Alvarez-Suarez, J., Quiles, J., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/J.NUT.2011.08.009 Gibson, G., Hutkins, R., Sanders, M., Prescott, S., Reimer, R., Salminen, S., Scott, K., Stanton, C., Swanson, K., Cani, P., Verbeke, K., & Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75 Gibson, G., & Wang, X. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied Bacteriology, 77(4), 412–420. https://doi.org/10.1111/J.1365-2672.1994.TB03443.X Gomes, W., Tiwari, B., Rodriguez, Ó., de Brito, E., Fernandes, F., & Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218, 261–268. https://doi.org/10.1016/J.FOODCHEM.2016.08.132 Guergoletto, K., Costabile, A., Flores, G., Garcia, S., & Gibson, G. (2016). In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota. Food Chemistry, 196, 251–258. https://doi.org/10.1016/j.foodchem.2015.09.048 Guimarães, J., Silva, E., Alvarenga, V., Costa, A., Cunha, R., Sant’Ana, A., Freitas, M., Meireles, M., & Cruz, A. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260. https://doi.org/10.1016/J.ULTSONCH.2018.02.012 Halkman, H., & Halkman, A. (2014). Indicator Organisms. In Encyclopedia of Food Microbiology (Second Edition, pp. 358–363). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00396-7 Han, D., Shi, R., Yan, Q., Shi, Y., Ma, J., & Jiang, Z. (2021). Global transcriptomic analysis of functional oligosaccharide metabolism in Pediococcus pentosaceus. Applied Microbiology and Biotechnology, 105(4), 1601–1614. https://doi.org/10.1007/S00253-021-11120-5 Harzallah, D., & Belhadj, H. (2013). Lactic Acid Bacteria as Probiotics: Characteristics, Selection Criteria and Role in Immunomodulation of Human GI Muccosal Barrier. In Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes. IntechOpen. https://doi.org/10.5772/50732 Herrera, M., Gao, J., Vasanthan, T., Temelli, F., & Henderson, K. (2016). β-Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science, 96(2), 183–196. https://doi.org/10.1139/CJPS-2014-0440/ASSET/IMAGES/CJPS-2014-0440TAB6.GIF Hesam, F., Tarzi, B., Honarvar, M., & Jahadi, M. (2020). Valorization of sugarcane bagasse to high value-added xylooligosaccharides and evaluation of their prebiotic function in a synbiotic pomegranate juice. Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-020-01095-0 Hidalgo, G., & Almajano, M. (2017). Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants, 6(1). https://doi.org/10.3390/antiox6010007 Hidalgo, M., Oruna-Concha, M., Kolida, S., Walton, G., Kallithraka, S., Spencer, J., Gibson, G., & de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153 Hill, C., Guarner, F., Reid, G., Gibson, G., Merenstein, D., Pot, B., Morelli, L., Canani, R., Flint, H., Salminen, S., Calder, P., & Sanders, M. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66 Hu, J., Zhang, L., Lin, W., Tang, W., Chan, F., & Ng, S. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science and Technology, 108, 187–196. https://doi.org/10.1016/j.tifs.2020.12.009 Huebner, J., Wehling, R., Parkhurst, A., & Hutkins, R. (2008). Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18(3), 287–293. https://doi.org/10.1016/J.IDAIRYJ.2007.08.013 Hurtado-Romero, A., del Toro-Barbosa, M., Garcia-Amezquita, L., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131. https://doi.org/10.1016/J.TIFS.2020.08.007 Igwe, E., Charlton, K., Probst, Y., Kent, K., & Netzel, M. (2019). A systematic literature review of the effect of anthocyanins on gut microbiota populations. Journal of Human Nutrition and Dietetics, 32(1), 53–62. https://doi.org/10.1111/jhn.12582 Jakobek, L., Šeruga, M., Novak, I., & Medvidovic̀-Kosanović, M. (2007). Flavonols, phenolic acids and antioxidant activity of some red fruits. Deutsche Lebensmittel-Rundschau, 103(8), 369–378. Jamar, G., Estadella, D., & Pisani, L. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors, 43(4), 507–516. https://doi.org/10.1002/biof.1365 Juraga, E., Šalamon, B., Herceg, Z., & Jambrak, A. (2011). Application of high intensity ultrasound treatment on Enterobacteriae count in milk. Mljekarstvo, 61((2)), 125–134. Kaplan, H., & Hutkins, R. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69(4), 2217–2222. https://doi.org/10.1128/AEM.69.4.2217-2222.2003/ASSET/B25AC0C1-7C3C-4E1E-A718-A9FC95662AFA/ASSETS/GRAPHIC/AM0431745003.JPEG Kaplan, H., & Hutkins, R. (2000). Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Applied and Environmental Microbiology, 66(6), 2682–2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000/ASSET/B7AD68D7-1E9E-4E90-839E-A7469249A238/ASSETS/GRAPHIC/AM0601981002.JPEG Kaume, L., Howard, L., & Devareddy, L. (2011). The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. https://doi.org/10.1021/JF203318P Konić-Ristić, A., Šavikin, K., Zdunić, G., Janković, T., Juranic, Z., Menković, N., & Stanković, I. (2011). Biological activity and chemical composition of different berry juices. Food Chemistry, 125(4), 1412–1417. https://doi.org/10.1016/j.foodchem.2010.10.018 Lacombe, A., & Wu, V. (2017). The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety, 1, 3–12. https://doi.org/10.1093/fqsafe/fyx001 Lacombe, A., Wu, V., White, J., Tadepalli, S., & Andre, E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiology, 30(1), 124–131. https://doi.org/10.1016/j.fm.2011.10.006 Lai, K., How, Y., & Pui, L. (2020). Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation, 44(12), e14965. https://doi.org/10.1111/jfpp.14965 Lavefve, L., Howard, L., & Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food and Function, 11(1), 45–65. https://doi.org/10.1039/c9fo01634a Lebaka, V., Wee, Y., Narala, V., & Joshi, V. (2018). Development of New Probiotic Foods-A Case Study on Probiotic Juices. In Therapeutic, Probiotic, and Unconventional Foods (pp. 55–78). Elsevier. https://doi.org/10.1016/B978-0-12-814625-5.00004-2 Leong, H., Show, P., Lim, M., Ooi, C., & Ling, T. (2018). Natural red pigments from plants and their health benefits: A review. Food Reviews International, 34(5), 463–482. https://doi.org/10.1080/87559129.2017.1326935 Li, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57(8), 1729–1741. https://doi.org/10.1080/10408398.2015.1030064 Liao, X., Li, J., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness, 7(1), 102–109. https://doi.org/10.1016/J.FSHW.2018.01.002 Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT, 151, 112106. https://doi.org/10.1016/J.LWT.2021.112106 Liu, K. (2014). Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. Journal of Cereal Science, 60(2), 317–322. https://doi.org/10.1016/J.JCS.2014.06.002 Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Corporación Universitaria Lasallista (Ed.), Desarrollo y Transversalidad serie Lasallista Investigación y Ciencia. http://repository.lasallista.edu.co/dspace/bitstream/10567/133/3/9.%20129-162.pdf Luckow, T., Sheehan, V., Fitzgerald, G., & Delahunty, C. (2006). Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite, 47(3), 315–323. https://doi.org/10.1016/j.appet.2006.04.006 Majid, I., Nayik, G., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1071022 Mantzourani, I., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2019). Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatalysis and Agricultural Biotechnology, 17, 347–351. https://doi.org/10.1016/j.bcab.2018.12.021 Mantzourani, I., Terpou, A., Bekatorou, A., Mallouchos, A., Alexopoulos, A., Kimbaris, A., Bezirtzoglou, E., Koutinas, A., & Plessas, S. (2020). Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chemistry, 308, 125658. https://doi.org/10.1016/j.foodchem.2019.125658 Mao, B., Li, D., Zhao, J., Liu, X., Gu, Z., Chen, Y., Zhang, H., & Chen, W. (2015). In vitro fermentation of fructooligosaccharides with human gut bacteria. Food & Function, 6(3), 947–954. https://doi.org/10.1039/C4FO01082E Marhuenda, J., Alemán, M., Gironés-Vilaplana, A., Pérez, A., Caravaca, G., Figueroa, F., Mulero, J., & Zafrilla, P. (2016). Phenolic Composition, Antioxidant Activity, and in Vitro Availability of Four Different Berries. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/5194901 Marín-Arango, Z., Cortes-Rodríguez, M., Montoya-Campuzano, O., & Arango-Tobón, J. (2019). Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA, 86(210), 179–186. https://doi.org/10.15446/dyna.v86n210.72929 Marinho, J., da Silva, M., Mazzocato, M., Tulini, F., & Favaro-Trindade, C. (2019). Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids. Probiotics and Antimicrobial Proteins, 11(1), 264–272. https://doi.org/10.1007/s12602-017-9346-y Markowiak, P., & Ślizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9, 1021. https://doi.org/10.3390/nu9091021 Mathias-Rettig, K., & Ah-Hen, K. (2014). El color en los alimentos un criterio de calidad medible. Agro Sur, 42(2), 57–66. https://doi.org/10.4206/AGROSUR.2014.V42N2-07 Mathur, R., & Barlow, G. (2015). Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 9(8), 1087–1099. https://doi.org/10.1586/17474124.2015.1051029 Mei, G., Carey, C., Tosh, S., & Kostrzynska, M. (2011). Utilization of different types of dietary fibres by potential probiotics. Canadian Journal of Microbiology, 57(10), 857–865. https://doi.org/10.1139/W11-077 Min, M., Bunt, C., Mason, S., & Hussain, M. (2019). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760 Molan, A., Liu, Z., & Kruger, M. (2010). The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World Journal of Microbiology and Biotechnology, 26(10), 1735–1743. https://doi.org/10.1007/s11274-010-0352-4 Molan, A., Liu, Z., & Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research, 28(3), 416–422. https://doi.org/10.1002/ptr.5009 Monteagudo-Mera, A., Rastall, R., Gibson, G., Charalampopoulos, D., &; Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7 Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2016). Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages, 2(2), 14. https://doi.org/10.3390/BEVERAGES2020014 Mousavi, Z., Mousavi, S., Razavi, S., Emam-Djomeh, Z., & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27, 123–128. https://doi.org/10.1007/s11274-010-0436-1 Mustafa, S., & Chua, L. (2020). Green technological fermentation for probioticated beverages for health enhancement. In Biotechnological Progress and Beverage Consumption (Vol. 19, pp. 407–434). Elsevier. https://doi.org/10.1016/B978-0-12-816678-9.00013-8 Mustafa, S., Chua, L., & El-Enshasy, H. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with lactobacillus casei. Molecules, 24(13), 2357. https://doi.org/10.3390/molecules24132357 Navas, M., Jiménez-Moreno, A., Bueno, J., Sáez-Plaza, P., & Asuero, A. (2012). Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part IV: Extraction of Anthocyanins. Critical Reviews in Analytical Chemistry, 42(4), 313–342. https://doi.org/10.1080/10408347.2012.680343 Nematollahi, A., Sohrabvandi, S., Mortazavian, A., & Jazaeri, S. (2016). Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic Journal of Biotechnology, 21, 49–53. https://doi.org/10.1016/J.EJBT.2016.03.001 Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498 Nualkaekul, S., Cook, M., Khutoryanskiy, V., & Charalampopoulos, D. (2013). Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 53(1), 304–311. https://doi.org/10.1016/j.foodres.2013.04.019 Nualkaekul, S., Salmeron, I., & Charalampopoulos, D. (2011). Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry, 129(3), 1037–1044. https://doi.org/10.1016/j.foodchem.2011.05.071 Oancea, S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants, 10(9), 1337. https://doi.org/10.3390/ANTIOX10091337 Ojha, K., Mason, T., O’Donnell, C., Kerry, J., & Tiwari, B. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/J.ULTSONCH.2016.06.001 Ospina-Corral, S., Cardona, C., & Orrego, C. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 339–373). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00011-2 Park, Y., Biswas, R., Phillips, R., & Chen, J. (2011). Antibacterial Activities of Blueberry and Muscadine Phenolic Extracts. Journal of Food Science, 76(2), M101–M105. https://doi.org/10.1111/j.1750-3841.2010.01974.x Pérez-Grijalva, B., Herrera-Sotero, M., Mora-Escobedo, R., Zebadúa-García, J., Silva-Hernández, E., Oliart-Ros, R., Pérez-Cruz, C., & Guzmán-Gerónimo, R. (2018). Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT - Food Science and Technology, 87, 47–53. https://doi.org/10.1016/j.lwt.2017.08.059 Perjéssy, J., Hegyi, F., Nagy-Gasztonyi, M., & Zalán, Z. (2022). Effect of the lactic acid fermentation by probiotic strains on the sour cherry juice and its bioactive compounds. Food Science and Technology International, 28(5), 408–420. https://doi.org/10.1177/10820132211018044 Perricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M., & Corbo, M. (2015). Challenges for the Production of Probiotic Fruit Juices. Beverages, 1(2), 95–103. https://doi.org/10.3390/beverages1020095 Perricone, M., Corbo, M., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020 Petersen, C., Wankhade, U., Bharat, D., Wong, K., Mueller, J., Chintapalli, S., Piccolo, B., Jalili, T., Jia, Z., Symons, J., Shankar, K., & Anandh Babu, P. (2019). Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 66, 63–69. https://doi.org/10.1016/j.jnutbio.2019.01.004 Pimentel, T., Klososki, S., Rosset, M., Barão, C., & Marcolino, V. (2019). Fruit juices as probiotic foods. In Sports and Energy Drinks (Vol. 10, pp. 483–513). Elsevier. https://doi.org/10.1016/B978-0-12-815851-7.00014-0 Pisoschi, A., & Negulescu, G. (2011). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 1(1). https://doi.org/10.4172/2161-1009.1000106 Puupponen-Pimiä, R., Nohynek, L., Meier, C., KaÈhkoÈnen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494–507. https://doi.org/10.1046/j.1365-2672.2001.01271.x Quigley, E. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028 Raccach, M. (2014). Pediococcus. In Encyclopedia of Food Microbiology: Second Edition (pp. 1–5). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00247-0 Ramírez‐Moreno, E., Zafra‐Rojas, Q., Arias‐Rico, J., Ariza‐Ortega, J., Alanís‐García, E., & Cruz‐Cansino, N. (2018). Effect of ultrasound on microbiological load and antioxidant properties of blackberry juice. Journal of Food Processing and Preservation, 42(2), e13489. https://doi.org/10.1111/jfpp.13489 Ramírez-Sucre, M., Gastélum-Martínez, E., Ayora-Talavera, T., Pacheco-López, N., Sánchez-Contreras, M., & Rodríguez-Buenfil, I. (2019). Process and Impact of the Addition of Biocompounds on the Development of Pasteurized Healthy Juices. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 273–307). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00009-4 Ranadheera, C., Vidanarachchi, J., Rocha, R., Cruz, A., & Ajlouni, S. (2017). Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation, 3(4), 67. https://doi.org/10.3390/fermentation3040067 Ranadheera, R., Baines, S., &; Adams, M. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1–7. https://doi.org/10.1016/j.foodres.2009.09.009 Reale, A., di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science and Technology, 60(2), 721–728. https://doi.org/10.1016/J.LWT.2014.10.022 Režek Jambrak, A., Šimunek, M., & Djekic, I. (2018). Total quality index of ultrasound-treated blueberry and cranberry juices and nectars. Food Science and Technology International, 24(5), 434–446. https://doi.org/10.1177/1082013218764962 Režek Jambrak, A., Šimunek, M., Evačić, S., Markov, K., Smoljanić, G., & Frece, J. (2018). Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics, 83, 3–17. https://doi.org/10.1016/J.ULTRAS.2017.02.011 Rodríguez-Daza, M., Pulido-Mateos, E., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., & Roy, D. (2021). Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Frontiers in Nutrition, 8, 347. https://doi.org/10.3389/FNUT.2021.689456/BIBTEX Ruiz, L., Zamora, V., Pescuma, M., van Nieuwenhove, C., Mozzi, F., & Sánchez, J. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/J.FOODRES.2020.109854 Sánchez León, D. (2012). Estudio del potencial antioxidante de la mora (Rubus glaucus benth) y sus cambios en función del proceso de maduración y bajo diferentes temperaturas de almacenamiento. Universidad Nacional de Colombia, Sede Bogotá. Santacruz, L., Carriazo, J., Almanza, O., & Osorio, C. (2012). Anthocyanin Composition of Wild Colombian Fruits and Antioxidant Capacity Measurement by Electron Paramagnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 60(6), 1397–1404. https://doi.org/10.1021/JF2042533 Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282. https://doi.org/10.1016/j.ultsonch.2013.02.005 Seyed Ahmadi, M., Alizadeh, A., & Soofi, M. (2020). Effect Of Ultrasound Treatment On The Viability Of Probiotics And Physicochemical Properties Of Synbiotic Carrot Juice. Iranian Journal Of Food Science And Technology, 16(96), 15–25. https://www.sid.ir/EN/JOURNAL/ViewPaper.aspx?ID=746576 Sheehan, V., Ross, P., & Fitzgerald, G. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies, 8(2), 279–284. https://doi.org/10.1016/j.ifset.2007.01.007 Shori, A. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/J.FBIO.2015.11.001 Silva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. https://doi.org/10.1016/J.ULTSONCH.2019.104942 Singh, B., Singh, J., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits – A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/J.FOODCHEM.2016.03.033 Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/J.ULTSONCH.2021.105506 Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673 Sonic & Materials. (n.d.). Probes for VC 505, VC 750, VCX 500 and VCX 750. Retrieved July 8, 2022, from https://www.spectratech.gr/Web/Sonics/pdf/VCX-505.pdf Speranza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: Strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 1–18. https://doi.org/10.3390/beverages6020020 Srisukchayakul, P., Charalampopoulos, D., & Karatzas, K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Research International, 111, 198–204. https://doi.org/10.1016/j.foodres.2018.05.018 Sun, X., Zhou, T., Wei, C., Lan, W., Zhao, Y., Pan, Y., & Wu, V. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012 Swanson, K., Gibson, G., Hutkins, R., Reimer, R., Reid, G., Verbeke, K., Scott, K., Holscher, H., Azad, M., Delzenne, N., & Sanders, M. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology 2020 17:11, 17(11), 687–701. https://doi.org/10.1038/s41575-020-0344-2 Tian, L., Tan, Y., Chen, G., Wang, G., Sun, J., Ou, S., Chen, W., & Bai, W. (2019). Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition, 59(6), 982–991. https://doi.org/10.1080/10408398.2018.1533517 Tiwari, B., Muthukumarappan, K., O’Donnell, C., & Cullen, P. (2010). Rheological Properties of Sonicated Guar, Xanthan and Pectin Dispersions. International Journal of Food Properties, 13(2), 223–233. https://doi.org/10.1080/10942910802317610 Tiwari, B., O’Donnell, C., Patras, A., Brunton, N., & Cullen, P. (2009). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 228(5), 717–724. https://doi.org/10.1007/s00217-008-0982-z Topolska, K., Florkiewicz, A., & Filipiak-Florkiewicz, A. (2021). Functional Food—Consumer Motivations and Expectations. International Journal of Environmental Research and Public Health, 18(10), 5327. https://doi.org/10.3390/IJERPH18105327 Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 5(2), 13. https://doi.org/10.3390/antiox5020013 Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80(2), 509–516. https://doi.org/10.1016/j.jfoodeng.2006.06.009 Valero-Cases, E., Cerdá-Bernad, D., Pastor, J., & Frutos, M. (2020). Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients, 12(6), 1666. https://doi.org/10.3390/NU12061666 Varo Santos, M. (2019). Compuestos bioactivos y actividad antioxidante de frutos rojos y bebidas elaboradas a partir de ellos. Universidad de Córdoba. https://helvia.uco.es/xmlui/handle/10396/17657 Verbeyst, L., Oey, I., van der Plancken, I., Hendrickx, M., & van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274. https://doi.org/10.1016/J.FOODCHEM.2010.04.027 Villamiel, M., García-Pérez, J., Montilla, A., & Benedito, J. (2017). Ultrasound in Food Processing (First edit). Wiley Blackwell. Vivek, K., Mishra, S., Pradhan, R., & Jayabalan, R. (2019). Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice. LWT, 108, 55–60. https://doi.org/10.1016/j.lwt.2019.03.046 Wang, J., Wang, J., Ye, J., Vanga, S., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007 Wang, W., & Xu, S. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271–275. https://doi.org/10.1016/J.JFOODENG.2007.01.018 Wanna, W., Surachat, K., Kaitimonchai, P., & Phongdara, A. (2021). Evaluation of probiotic characteristics and whole genome analysis of Pediococcus pentosaceus MR001 for use as probiotic bacteria in shrimp aquaculture. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-96780-z Watson, D., O’Connell Motherway, M., Schoterman, M., van Neerven, R., Nauta, A., & van Sinderen, D. (2013). Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology, 114(4), 1132–1146. https://doi.org/10.1111/JAM.12105 White, J., & Hekmat, S. (2018). Development of probiotic fruit juices using lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation, 4(2), 27. https://doi.org/10.3390/fermentation4020027 Wordon, B., Mortimer, B., & McMaster, L. (2012). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20kHz) and heat for the application of hurdle technology. Food Research International, 47(2), 134–139. https://doi.org/10.1016/j.foodres.2011.04.038 Wu, J., Gamage, T., Vilkhu, K., Simons, L., & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science & Emerging Technologies, 9(2), 186–195. https://doi.org/10.1016/J.IFSET.2007.07.007 Wu, V., Qiu, X., Bushway, A., & Harper, L. (2008). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT - Food Science and Technology, 41(10), 1834–1841. https://doi.org/10.1016/j.lwt.2008.01.001 Wu, Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P., Wen, G., & Zhou, J. (2021). Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry, 348, 129083. https://doi.org/10.1016/j.foodchem.2021.129083 Xavier-Santos, D., Bedani, R., Lima, E., &; Saad, S. (2020). Impact of probiotics and prebiotics targeting metabolic syndrome. Journal of Functional Foods, 64, 103666. https://doi.org/10.1016/j.jff.2019.103666 Yahia, E. (2017). Fruit and vegetable phytochemicals: Chemistry and human health: Second edition. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 1). Wiley Blackwell. https://doi.org/10.1002/9781119158042 Yan, Y., Zhang, F., Chai, Z., Liu, M., Battino, M., & Meng, X. (2019). Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food and Chemical Toxicology, 131, 110541. https://doi.org/10.1016/j.fct.2019.05.049 Yang, B., & Kortesniemi, M. (2015). Clinical evidence on potential health benefits of berries. Current Opinion in Food Science, 2, 36–42. https://doi.org/10.1016/j.cofs.2015.01.002 Yang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042 Yang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042 Zafra-Rojas, Q., Cruz-Cansino, N., Ramírez-Moreno, E., Delgado-Olivares, L., Villanueva-Sánchez, J., & Alanís-García, E. (2013). Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrasonics Sonochemistry, 20(5), 1283–1288. https://doi.org/10.1016/j.ultsonch.2013.01.021 Zendeboodi, F., Khorshidian, N., Mortazavian, A., & da Cruz, A. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103–123. https://doi.org/10.1016/j.cofs.2020.03.009 Zhang, L., Zhou, J., Liu, H., Khan, M., Huang, K., & Gu, Z. (2012). Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. European Food Research and Technology, 235(4), 637–645. https://doi.org/10.1007/s00217-012-1796-6 Zhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. https://doi.org/10.1016/j.lwt.2019.108621 Zhu, J., Wang, Y., Li, X., Li, B., Liu, S., Chang, N., Jie, D., Ning, C., Gao, H., & Meng, X. (2017). Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrasonics Sonochemistry, 37, 251–259. https://doi.org/10.1016/J.ULTSONCH.2017.01.017 Žuntar, I., Petric, Z., Kovacevíc, D., & Putnik, P. (2020). Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods, 9(7), 947. https://doi.org/10.3390/foods9070947 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
119 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83727/5/1032464975.2022.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/83727/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83727/4/1032464975.2022.pdf |
bitstream.checksum.fl_str_mv |
d5b35afa5235ff1fa037775fa821c402 eb34b1cf90b7e1103fc9dfd26be24b4a 7f1f0b366dd3b01de1853b977543cba0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089903577759744 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fuenmayor Bobadilla, Carlos Alberto7266e9bd646e9de27996f24d1fcca625Díaz Moreno, Amanda Consuelo3c57c41d8c04e27f27c677681040f60bPalencia Argel, Marcela Patricia95011e234acb089a5680f0f17eaa4897Caracterización y funcionalidad de alimentos / desarrollo de nuevos productos2023-04-18T16:29:10Z2023-04-18T16:29:10Z2022-01-28https://repositorio.unal.edu.co/handle/unal/83727Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a colorLas bebidas de frutas ricas en antocianinas han sido de especial interés como productos funcionales principalmente en razón de su actividad antioxidante. Este tipo de bebidas pueden convertirse en alimentos con potencial simbiótico a través de la adición de fibras prebióticas y de microorganismos probióticos, lo cual aumentaría sustancialmente sus propiedades funcionales. Sin embargo, la posibilidad de garantizar una adecuada viabilidad de los microorganismos probióticos, así como propiedades nutricionales, fisicoquímicas y sensoriales deseables al producto final, constituyen un reto tecnológico de gran envergadura. El objetivo del presente estudio fue determinar las condiciones para la obtención de una bebida con potencial simbiótico a partir de matrices vegetales fuente de antocianinas, seleccionando combinaciones adecuadas de microorganismos probióticos y fibras prebióticas y comparando la aptitud de pretratamientos térmicos y no térmicos (ultrasonido) como estrategia de estabilización de carga microbiana antes de la adición del probiótico. La adaptación del cultivo probiótico a través de la inducción de procesos fermentativos, la adición de prebióticos y el uso de frutas menos ácidas en la formulación, permitieron obtener una buena viabilidad del cultivo al final de 28 días de almacenamiento en refrigeración de la bebida, con un conteo superior a 10 log UFC/mL. El uso de un tratamiento de pasteurización a 85°C por 5 min, previo a la inoculación del cultivo probiótico, permitió obtener una bebida inocua conservando sus propiedades fisicoquímicas y el contenido de antocianinas, alcanzando los 4,4 mg C3G/100 g al final del periodo de almacenamiento. De manera importante, la inducción de la fermentación con el cultivo probiótico no afectó significativamente el contenido de compuestos fenólicos ni la actividad antioxidante de la bebida, la cual, además, tuvo una buena aceptabilidad en cuanto a su apariencia, olor, textura, sabor y gusto general. El producto resultante es una bebida que contiene antocianinas, es totalmente de origen vegetal y cuenta con posibles características simbióticas. (Texto tomado de la fuente)Anthocyanin-rich fruit beverages have been of special interest as functional products mainly because of their antioxidant activity. These types of beverages can become foods with synbiotic potential through the addition of prebiotic fibers and probiotic microorganisms, which substantially increase their functional properties. However, the possibility of guaranteeing an adequate viability of probiotic microorganisms, as well as desirable nutritional, physicochemical and sensory properties of the final product, is a major technological challenge. The objective of the present study was to determine the conditions for obtaining a beverage with synbiotic potential from an anthocyanin-rich vegetable matrix. This was done by selecting suitable combinations of probiotic microorganisms and prebiotic fibers and comparing the suitability of thermal and non-thermal pretreatments (ultrasound) as a microbial load stabilization strategy before the addition of the probiotic. The adaptation of the probiotic culture through the induction of fermentative processes, the addition of prebiotics and the use of less acidic fruits in the formulation, allowed for an adequate viability of the culture at the end of 28 days of refrigerated storage of the beverage, with a count greater than 10 log CFU/mL. The use of a pasteurization treatment at 85°C for 5 min, prior to the inoculation of the probiotic culture, yielded an innocuous beverage that preserved its physicochemical properties and anthocyanin content, reaching 4.4 mg C3G/100 g at the end of the storage period. Importantly, the induction of fermentation with the probiotic culture did not significantly affect the phenolic compounds content or the antioxidant activity of the beverage, which also had good acceptability in terms of appearance, smell, texture, flavor and general liking. The resulting product is a beverage that contains anthocyanins, is fully of vegetable origin and has possible synbiotic characteristics.MaestríaMagíster en Ciencia y Tecnología de AlimentosBioalimentos119 páginasapplication/pdfspaDesarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinasDevelopment of a natural beverage with synbiotic potential using anthocyanin-rich fruitsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de AlimentosFacultad de Ciencias AgrariasBogotá - ColombiaUniversidad Nacional de Colombia - Sede BogotáAadil, R., Zeng, X., Han, Z., & Sun, D. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206. https://doi.org/10.1016/j.foodchem.2013.06.008Ah-Hen, K., Mathias-Rettig, K., Gómez-Pérez, L., Riquelme-Asenjo, G., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2018). Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. Journal of Food Measurement and Characterization, 12(1), 602–615. https://doi.org/10.1007/s11694-017-9673-4Alqurashi, R., Alarifi, S., Walton, G., Costabile, A., Rowland, I., & Commane, D. (2017). In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chemistry, 234, 190–198. https://doi.org/10.1016/j.foodchem.2017.04.164Alves Filho, E., Cullen, P., Frias, J., Bourke, P., Tiwari, B., Brito, E., Rodrigues, S., & Fernandes, F. (2016). Evaluation of plasma, high-pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science & Technology, 51(9), 2034–2040. https://doi.org/10.1111/IJFS.13175Anjum, N., Maqsood, S., Masud, T., Ahmad, A., Sohail, A., & Momin, A. (2014). Lactobacillus acidophilus: Characterization of the Species and Application in Food Production. Critical Reviews in Food Science and Nutrition, 54(9), 1241–1251. https://doi.org/10.1080/10408398.2011.621169Ashaolu, T. (2020). Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomedicine & Pharmacotherapy, 130, 110625. https://doi.org/10.1016/J.BIOPHA.2020.110625Ávila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & Pascual-Teresa, S. (2009). Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453–1461. https://doi.org/10.1016/J.FOODRES.2009.07.026Axelsson, L. (2004). Lactic Acid Bacteria: Classification and Physiology. In S. Salminen & A. von Wright (Eds.), Lactic Acid Bacteria (3rd ed.). CRC Press. https://doi.org/10.1201/9780824752033/LACTIC-ACID-BACTERIA-SEPPO-SALMINEN-ATTE-VON-WRIGHTAxelsson, L., & Ahrné, S. (2000). Lactic Acid Bacteria. In F. G. Priest & M. Goodfellow (Eds.), Applied Microbial Systematics (pp. 367–388). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_13BCC Research. (2022, June). Global Functional Foods and Beverages Market Size Analysis Report. https://www.bccresearch.com/market-research/food-and-beverage/functional-food-market.htmlBernal Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2017). Probióticos y prebióticos en matrices de origen vegetal: Avances en el desarrollo de bebidas de frutas. Revista Chile Nutrucion, 44(4), 383–392. https://doi.org/10.4067/s0717-75182017000400383Bernal-Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2019). Inclusion of prebiotics on the viability of a commercial Lactobacillus casei subsp. rhamnosus culture in a tropical fruit beverage. Journal of Food Science and Technology, 56(2), 987–994. https://doi.org/10.1007/s13197-018-03565-wBhadekar, R., & Bhola, J. (2019). Nonconventional Preservation Techniques: Current Trends and Future Prospects. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 115–147). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00004-5Bhat, R., Kamaruddin, N., Min-Tze, L., & Karim, A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300. https://doi.org/10.1016/j.ultsonch.2011.04.002Biswas, D., Wideman, N., O’Bryan, C., Muthaiyan, A., Lingbeck, J., Crandall, P., & Ricke, S. (2012). Pasteurized blueberry (vaccinium corymbosum) juice inhibits growth of bacterial pathogens in milk but allows survival of probiotic bacteria. Journal of Food Safety, 32(2), 204–209. https://doi.org/10.1111/j.1745-4565.2012.00369.xBoto-Ordóñez, M., Urpi-Sarda, M., Queipo-Ortuño, M., Tulipani, S., Tinahones, F., & Andres-Lacueva, C. (2014). High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food and Function, 5(8), 1932–1938. https://doi.org/10.1039/c4fo00029cBurdulis, D., Sarkinas, A., Jasutiené, I., Stackevicené, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits - PubMed. Acta Poloniae Pharmaceutica ñ Drug Research, 66(4), 399–408. https://pubmed.ncbi.nlm.nih.gov/19702172/Canuto, G., Oliveira, D., da Conceição, L., Farah, J., & Tavares, M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. https://doi.org/10.1016/J.FOODCHEM.2015.06.095Cassani, L., Tomadoni, B., & del Rosario Moreira, M. (2020). Green ultrasound-assisted processing for extending the shelf-life of prebiotic-rich strawberry juices. Journal of the Science of Food and Agriculture, 100(15), 5518–5526. https://doi.org/10.1002/JSFA.10604Castillo-Escandón, V., Fernández-Michel, S., Cueto-Wong, M., & Ramos-Clamont, G. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada En Ciencias Químico-Biológicas, 22(0), 1–17. https://doi.org/10.22201/fesz.23958723e.2019.0.173Cervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C., Zafra-Rojas, Q., & Cruz-Cansino, N. (2017). Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371–379. https://doi.org/10.1016/J.ULTSONCH.2016.06.009Charoux, C., Inguglia, E., O’Donnell, C., & Tiwari, B. (2019). Ultrasonic Waves: Inactivation of Foodborne Microorganisms Using Power Ultrasound. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22930-2Chemat, F., Zill-E-Huma, & Khan, M. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023Chen, G., Li, C., & Chen, K. (2016). Fructooligosaccharides: A Review on Their Mechanisms of Action and Effects. In Studies in Natural Products Chemistry (Vol. 48, pp. 209–229). Elsevier. https://doi.org/10.1016/B978-0-444-63602-7.00006-0Cheng, L., Soh, C., Liew, S., & Teh, F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104(4), 1396–1401. https://doi.org/10.1016/j.foodchem.2007.02.001Chiang, S., & Pan, T. (2011). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93(3), 903–916. https://doi.org/10.1007/S00253-011-3753-XCisowska, A., Wojnicz, D., & Hendrich, A. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149–156. https://doi.org/10.1177/1934578x1100600136Coman, M., Oancea, A., Verdenelli, M., Cecchini, C., Bahrim, G., Orpianesi, C., Cresci, A., & Silvi, S. (2018). Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European Food Research and Technology, 244(4), 735–745. https://doi.org/10.1007/s00217-017-2997-9Costa, M., Fonteles, T., de Jesus, A., & Rodrigues, S. (2013). Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139(1–4), 261–266. https://doi.org/10.1016/j.foodchem.2013.01.059Cummings, J., Macfarlane, G., & Englyst, H. (2001). Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, 73(2), 415s–420s. https://doi.org/10.1093/AJCN/73.2.415SCunningham, M., Azcarate-Peril, M., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H., Hunter, K., Manurung, S., Obis, D., Petrova, M., Steinert, R., Swanson, K., van Sinderen, D., Vulevic, J., & Gibson, G. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/J.TIM.2021.01.003D’Amico, D., Silk, T., Wu, J., & Guo, M. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69(3), 556–563. https://doi.org/10.4315/0362-028X-69.3.556de Figueiredo, F., de Barros Ranke, F., & de Oliva-Neto, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT, 118, 108761. https://doi.org/10.1016/J.LWT.2019.108761de Oliveira, A., dos Santos, F., Olbrich, K., Martins, V., Castro, D., Pessanha, M., Conte, C., de Oliveira, S., de Oliveira, L., de Oliveira, R., & Miranda, E. (2020). Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT, 118, 108756. https://doi.org/10.1016/j.lwt.2019.108756de Souza, E., Rodrigues, T., dos Santos, A., Lacerda, N., & de Brito, J. (2018). Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A review. Critical Reviews in Food Science and Nutrition, 59(10), 1645–1659. https://doi.org/10.1080/10408398.2018.1425285de Souza, V., Pereira, P., da Silva, T., de Oliveira Lima, L., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368. https://doi.org/10.1016/j.foodchem.2014.01.125di Cagno, R., Minervini, G., Rizzello, C., de Angelis, M., & Gobbetti, M. (2011). Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 28(5), 1062–1071. https://doi.org/10.1016/j.fm.2011.02.011Durazzo, A., Lucarini, M., Novellino, E., Daliu, P., & Santini, A. (2019). Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytotherapy Research, 33(7), 1754–1769. https://doi.org/10.1002/ptr.6380Ercan, S., & Soysal, Ç. (2013). Use of ultrasound in food preservation. Natural Science, 5, 5–13. https://doi.org/10.4236/ns.2013.58A2002Ertan, K., Türkyılmaz, M., & Özkan, M. (2020). Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners. Food Chemistry, 310, 125856. https://doi.org/10.1016/J.FOODCHEM.2019.125856Faria, A., Fernandes, I., Norberto, S., Mateus, N., & Calhau, C. (2014). Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry, 62(29), 6898–6902. https://doi.org/10.1021/jf501808aFarias, D., Fernandes, F., Neri-Numa, I., & Pastore, G. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/J.TIFS.2019.09.004Feng, X., Zhou, Z., Wang, X., Bi, X., Ma, Y., & Xing, Y. (2020). Comparison of High Hydrostatic Pressure, Ultrasound, and Heat Treatments on the Quality of Strawberry–Apple–Lemon Juice Blend. Foods, 9(2), 218. https://doi.org/10.3390/FOODS9020218Fennema, O., Parkin, K., & Damodaran, S. (2008). Fennema´s Food Chemistry (4th ed.). CRC Press Taylor & Francis Group.Fernandes, A., & Rodrigues, S. (2018). Turning Fruit Juice Into Probiotic Beverages. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 279–287). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802230-6.00015-1Ferrario, M., Alzamora, S., & Guerrero, S. (2015). Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology, 46, 635–642. https://doi.org/10.1016/J.FM.2014.06.017Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318Flach, J., van der Waal, M., van den Nieuwboer, M., Claassen, E., & Larsen, O. (2017). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624Flores, G., Ruiz del Castillo, M., Costabile, A., Klee, A., Bigetti Guergoletto, K., & Gibson, G. (2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. https://doi.org/10.1016/j.jff.2015.04.022Fonteles, T., Costa, M., de Jesus, A., Fontes, C., Fernandes, F., & Rodrigues, S. (2013). Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice. Food and Bioprocess Technology, 6(10), 2860–2869. https://doi.org/10.1007/s11947-012-0962-yFratianni, F., Cardinale, F., Russo, I., Iuliano, C., Tremonte, P., Coppola, R., & Nazzaro, F. (2014). Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, 31(3), 299–305. https://doi.org/10.3109/02652048.2013.871361Freitas, H., dos Santos, A., Rodrigues, S., Abreu, V., Narain, N., Lemos, T., Gomes, W., & Pereira, A. (2021). Synbiotic açaí juice (Euterpe oleracea) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. Journal of Food Science, 86(3), 730–739. https://doi.org/10.1111/1750-3841.15617Gabriel, A. (2014). Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice. Food Control, 46, 189–196. https://doi.org/10.1016/J.FOODCONT.2014.05.012Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 7(164). https://doi.org/10.3390/foods7100164Gancel, A., Feneuil, A., Acosta, O., Pérez, A., & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251. https://doi.org/10.1016/j.foodres.2010.06.013Giampieri, F., Tulipani, S., Alvarez-Suarez, J., Quiles, J., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/J.NUT.2011.08.009Gibson, G., Hutkins, R., Sanders, M., Prescott, S., Reimer, R., Salminen, S., Scott, K., Stanton, C., Swanson, K., Cani, P., Verbeke, K., & Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75Gibson, G., & Wang, X. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied Bacteriology, 77(4), 412–420. https://doi.org/10.1111/J.1365-2672.1994.TB03443.XGomes, W., Tiwari, B., Rodriguez, Ó., de Brito, E., Fernandes, F., & Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218, 261–268. https://doi.org/10.1016/J.FOODCHEM.2016.08.132Guergoletto, K., Costabile, A., Flores, G., Garcia, S., & Gibson, G. (2016). In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota. Food Chemistry, 196, 251–258. https://doi.org/10.1016/j.foodchem.2015.09.048Guimarães, J., Silva, E., Alvarenga, V., Costa, A., Cunha, R., Sant’Ana, A., Freitas, M., Meireles, M., & Cruz, A. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260. https://doi.org/10.1016/J.ULTSONCH.2018.02.012Halkman, H., & Halkman, A. (2014). Indicator Organisms. In Encyclopedia of Food Microbiology (Second Edition, pp. 358–363). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00396-7Han, D., Shi, R., Yan, Q., Shi, Y., Ma, J., & Jiang, Z. (2021). Global transcriptomic analysis of functional oligosaccharide metabolism in Pediococcus pentosaceus. Applied Microbiology and Biotechnology, 105(4), 1601–1614. https://doi.org/10.1007/S00253-021-11120-5Harzallah, D., & Belhadj, H. (2013). Lactic Acid Bacteria as Probiotics: Characteristics, Selection Criteria and Role in Immunomodulation of Human GI Muccosal Barrier. In Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes. IntechOpen. https://doi.org/10.5772/50732Herrera, M., Gao, J., Vasanthan, T., Temelli, F., & Henderson, K. (2016). β-Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science, 96(2), 183–196. https://doi.org/10.1139/CJPS-2014-0440/ASSET/IMAGES/CJPS-2014-0440TAB6.GIFHesam, F., Tarzi, B., Honarvar, M., & Jahadi, M. (2020). Valorization of sugarcane bagasse to high value-added xylooligosaccharides and evaluation of their prebiotic function in a synbiotic pomegranate juice. Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-020-01095-0Hidalgo, G., & Almajano, M. (2017). Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants, 6(1). https://doi.org/10.3390/antiox6010007Hidalgo, M., Oruna-Concha, M., Kolida, S., Walton, G., Kallithraka, S., Spencer, J., Gibson, G., & de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153Hill, C., Guarner, F., Reid, G., Gibson, G., Merenstein, D., Pot, B., Morelli, L., Canani, R., Flint, H., Salminen, S., Calder, P., & Sanders, M. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66Hu, J., Zhang, L., Lin, W., Tang, W., Chan, F., & Ng, S. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science and Technology, 108, 187–196. https://doi.org/10.1016/j.tifs.2020.12.009Huebner, J., Wehling, R., Parkhurst, A., & Hutkins, R. (2008). Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18(3), 287–293. https://doi.org/10.1016/J.IDAIRYJ.2007.08.013Hurtado-Romero, A., del Toro-Barbosa, M., Garcia-Amezquita, L., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131. https://doi.org/10.1016/J.TIFS.2020.08.007Igwe, E., Charlton, K., Probst, Y., Kent, K., & Netzel, M. (2019). A systematic literature review of the effect of anthocyanins on gut microbiota populations. Journal of Human Nutrition and Dietetics, 32(1), 53–62. https://doi.org/10.1111/jhn.12582Jakobek, L., Šeruga, M., Novak, I., & Medvidovic̀-Kosanović, M. (2007). Flavonols, phenolic acids and antioxidant activity of some red fruits. Deutsche Lebensmittel-Rundschau, 103(8), 369–378.Jamar, G., Estadella, D., & Pisani, L. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors, 43(4), 507–516. https://doi.org/10.1002/biof.1365Juraga, E., Šalamon, B., Herceg, Z., & Jambrak, A. (2011). Application of high intensity ultrasound treatment on Enterobacteriae count in milk. Mljekarstvo, 61((2)), 125–134.Kaplan, H., & Hutkins, R. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69(4), 2217–2222. https://doi.org/10.1128/AEM.69.4.2217-2222.2003/ASSET/B25AC0C1-7C3C-4E1E-A718-A9FC95662AFA/ASSETS/GRAPHIC/AM0431745003.JPEGKaplan, H., & Hutkins, R. (2000). Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Applied and Environmental Microbiology, 66(6), 2682–2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000/ASSET/B7AD68D7-1E9E-4E90-839E-A7469249A238/ASSETS/GRAPHIC/AM0601981002.JPEGKaume, L., Howard, L., & Devareddy, L. (2011). The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. https://doi.org/10.1021/JF203318PKonić-Ristić, A., Šavikin, K., Zdunić, G., Janković, T., Juranic, Z., Menković, N., & Stanković, I. (2011). Biological activity and chemical composition of different berry juices. Food Chemistry, 125(4), 1412–1417. https://doi.org/10.1016/j.foodchem.2010.10.018Lacombe, A., & Wu, V. (2017). The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety, 1, 3–12. https://doi.org/10.1093/fqsafe/fyx001Lacombe, A., Wu, V., White, J., Tadepalli, S., & Andre, E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiology, 30(1), 124–131. https://doi.org/10.1016/j.fm.2011.10.006Lai, K., How, Y., & Pui, L. (2020). Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation, 44(12), e14965. https://doi.org/10.1111/jfpp.14965Lavefve, L., Howard, L., & Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food and Function, 11(1), 45–65. https://doi.org/10.1039/c9fo01634aLebaka, V., Wee, Y., Narala, V., & Joshi, V. (2018). Development of New Probiotic Foods-A Case Study on Probiotic Juices. In Therapeutic, Probiotic, and Unconventional Foods (pp. 55–78). Elsevier. https://doi.org/10.1016/B978-0-12-814625-5.00004-2Leong, H., Show, P., Lim, M., Ooi, C., & Ling, T. (2018). Natural red pigments from plants and their health benefits: A review. Food Reviews International, 34(5), 463–482. https://doi.org/10.1080/87559129.2017.1326935Li, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57(8), 1729–1741. https://doi.org/10.1080/10408398.2015.1030064Liao, X., Li, J., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness, 7(1), 102–109. https://doi.org/10.1016/J.FSHW.2018.01.002Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT, 151, 112106. https://doi.org/10.1016/J.LWT.2021.112106Liu, K. (2014). Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. Journal of Cereal Science, 60(2), 317–322. https://doi.org/10.1016/J.JCS.2014.06.002Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Corporación Universitaria Lasallista (Ed.), Desarrollo y Transversalidad serie Lasallista Investigación y Ciencia. http://repository.lasallista.edu.co/dspace/bitstream/10567/133/3/9.%20129-162.pdfLuckow, T., Sheehan, V., Fitzgerald, G., & Delahunty, C. (2006). Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite, 47(3), 315–323. https://doi.org/10.1016/j.appet.2006.04.006Majid, I., Nayik, G., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1071022Mantzourani, I., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2019). Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatalysis and Agricultural Biotechnology, 17, 347–351. https://doi.org/10.1016/j.bcab.2018.12.021Mantzourani, I., Terpou, A., Bekatorou, A., Mallouchos, A., Alexopoulos, A., Kimbaris, A., Bezirtzoglou, E., Koutinas, A., & Plessas, S. (2020). Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chemistry, 308, 125658. https://doi.org/10.1016/j.foodchem.2019.125658Mao, B., Li, D., Zhao, J., Liu, X., Gu, Z., Chen, Y., Zhang, H., & Chen, W. (2015). In vitro fermentation of fructooligosaccharides with human gut bacteria. Food & Function, 6(3), 947–954. https://doi.org/10.1039/C4FO01082EMarhuenda, J., Alemán, M., Gironés-Vilaplana, A., Pérez, A., Caravaca, G., Figueroa, F., Mulero, J., & Zafrilla, P. (2016). Phenolic Composition, Antioxidant Activity, and in Vitro Availability of Four Different Berries. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/5194901Marín-Arango, Z., Cortes-Rodríguez, M., Montoya-Campuzano, O., & Arango-Tobón, J. (2019). Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA, 86(210), 179–186. https://doi.org/10.15446/dyna.v86n210.72929Marinho, J., da Silva, M., Mazzocato, M., Tulini, F., & Favaro-Trindade, C. (2019). Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids. Probiotics and Antimicrobial Proteins, 11(1), 264–272. https://doi.org/10.1007/s12602-017-9346-yMarkowiak, P., & Ślizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9, 1021. https://doi.org/10.3390/nu9091021Mathias-Rettig, K., & Ah-Hen, K. (2014). El color en los alimentos un criterio de calidad medible. Agro Sur, 42(2), 57–66. https://doi.org/10.4206/AGROSUR.2014.V42N2-07Mathur, R., & Barlow, G. (2015). Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 9(8), 1087–1099. https://doi.org/10.1586/17474124.2015.1051029Mei, G., Carey, C., Tosh, S., & Kostrzynska, M. (2011). Utilization of different types of dietary fibres by potential probiotics. Canadian Journal of Microbiology, 57(10), 857–865. https://doi.org/10.1139/W11-077Min, M., Bunt, C., Mason, S., & Hussain, M. (2019). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760Molan, A., Liu, Z., & Kruger, M. (2010). The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World Journal of Microbiology and Biotechnology, 26(10), 1735–1743. https://doi.org/10.1007/s11274-010-0352-4Molan, A., Liu, Z., & Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research, 28(3), 416–422. https://doi.org/10.1002/ptr.5009Monteagudo-Mera, A., Rastall, R., Gibson, G., Charalampopoulos, D., &; Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2016). Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages, 2(2), 14. https://doi.org/10.3390/BEVERAGES2020014Mousavi, Z., Mousavi, S., Razavi, S., Emam-Djomeh, Z., & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27, 123–128. https://doi.org/10.1007/s11274-010-0436-1Mustafa, S., & Chua, L. (2020). Green technological fermentation for probioticated beverages for health enhancement. In Biotechnological Progress and Beverage Consumption (Vol. 19, pp. 407–434). Elsevier. https://doi.org/10.1016/B978-0-12-816678-9.00013-8Mustafa, S., Chua, L., & El-Enshasy, H. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with lactobacillus casei. Molecules, 24(13), 2357. https://doi.org/10.3390/molecules24132357Navas, M., Jiménez-Moreno, A., Bueno, J., Sáez-Plaza, P., & Asuero, A. (2012). Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part IV: Extraction of Anthocyanins. Critical Reviews in Analytical Chemistry, 42(4), 313–342. https://doi.org/10.1080/10408347.2012.680343Nematollahi, A., Sohrabvandi, S., Mortazavian, A., & Jazaeri, S. (2016). Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic Journal of Biotechnology, 21, 49–53. https://doi.org/10.1016/J.EJBT.2016.03.001Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498Nualkaekul, S., Cook, M., Khutoryanskiy, V., & Charalampopoulos, D. (2013). Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 53(1), 304–311. https://doi.org/10.1016/j.foodres.2013.04.019Nualkaekul, S., Salmeron, I., & Charalampopoulos, D. (2011). Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry, 129(3), 1037–1044. https://doi.org/10.1016/j.foodchem.2011.05.071Oancea, S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants, 10(9), 1337. https://doi.org/10.3390/ANTIOX10091337Ojha, K., Mason, T., O’Donnell, C., Kerry, J., & Tiwari, B. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/J.ULTSONCH.2016.06.001Ospina-Corral, S., Cardona, C., & Orrego, C. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 339–373). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00011-2Park, Y., Biswas, R., Phillips, R., & Chen, J. (2011). Antibacterial Activities of Blueberry and Muscadine Phenolic Extracts. Journal of Food Science, 76(2), M101–M105. https://doi.org/10.1111/j.1750-3841.2010.01974.xPérez-Grijalva, B., Herrera-Sotero, M., Mora-Escobedo, R., Zebadúa-García, J., Silva-Hernández, E., Oliart-Ros, R., Pérez-Cruz, C., & Guzmán-Gerónimo, R. (2018). Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT - Food Science and Technology, 87, 47–53. https://doi.org/10.1016/j.lwt.2017.08.059Perjéssy, J., Hegyi, F., Nagy-Gasztonyi, M., & Zalán, Z. (2022). Effect of the lactic acid fermentation by probiotic strains on the sour cherry juice and its bioactive compounds. Food Science and Technology International, 28(5), 408–420. https://doi.org/10.1177/10820132211018044Perricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M., & Corbo, M. (2015). Challenges for the Production of Probiotic Fruit Juices. Beverages, 1(2), 95–103. https://doi.org/10.3390/beverages1020095Perricone, M., Corbo, M., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020Petersen, C., Wankhade, U., Bharat, D., Wong, K., Mueller, J., Chintapalli, S., Piccolo, B., Jalili, T., Jia, Z., Symons, J., Shankar, K., & Anandh Babu, P. (2019). Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 66, 63–69. https://doi.org/10.1016/j.jnutbio.2019.01.004Pimentel, T., Klososki, S., Rosset, M., Barão, C., & Marcolino, V. (2019). Fruit juices as probiotic foods. In Sports and Energy Drinks (Vol. 10, pp. 483–513). Elsevier. https://doi.org/10.1016/B978-0-12-815851-7.00014-0Pisoschi, A., & Negulescu, G. (2011). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 1(1). https://doi.org/10.4172/2161-1009.1000106Puupponen-Pimiä, R., Nohynek, L., Meier, C., KaÈhkoÈnen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494–507. https://doi.org/10.1046/j.1365-2672.2001.01271.xQuigley, E. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028Raccach, M. (2014). Pediococcus. In Encyclopedia of Food Microbiology: Second Edition (pp. 1–5). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00247-0Ramírez‐Moreno, E., Zafra‐Rojas, Q., Arias‐Rico, J., Ariza‐Ortega, J., Alanís‐García, E., & Cruz‐Cansino, N. (2018). Effect of ultrasound on microbiological load and antioxidant properties of blackberry juice. Journal of Food Processing and Preservation, 42(2), e13489. https://doi.org/10.1111/jfpp.13489Ramírez-Sucre, M., Gastélum-Martínez, E., Ayora-Talavera, T., Pacheco-López, N., Sánchez-Contreras, M., & Rodríguez-Buenfil, I. (2019). Process and Impact of the Addition of Biocompounds on the Development of Pasteurized Healthy Juices. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 273–307). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00009-4Ranadheera, C., Vidanarachchi, J., Rocha, R., Cruz, A., & Ajlouni, S. (2017). Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation, 3(4), 67. https://doi.org/10.3390/fermentation3040067Ranadheera, R., Baines, S., &; Adams, M. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1–7. https://doi.org/10.1016/j.foodres.2009.09.009Reale, A., di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science and Technology, 60(2), 721–728. https://doi.org/10.1016/J.LWT.2014.10.022Režek Jambrak, A., Šimunek, M., & Djekic, I. (2018). Total quality index of ultrasound-treated blueberry and cranberry juices and nectars. Food Science and Technology International, 24(5), 434–446. https://doi.org/10.1177/1082013218764962Režek Jambrak, A., Šimunek, M., Evačić, S., Markov, K., Smoljanić, G., & Frece, J. (2018). Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics, 83, 3–17. https://doi.org/10.1016/J.ULTRAS.2017.02.011Rodríguez-Daza, M., Pulido-Mateos, E., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., & Roy, D. (2021). Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Frontiers in Nutrition, 8, 347. https://doi.org/10.3389/FNUT.2021.689456/BIBTEXRuiz, L., Zamora, V., Pescuma, M., van Nieuwenhove, C., Mozzi, F., & Sánchez, J. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/J.FOODRES.2020.109854Sánchez León, D. (2012). Estudio del potencial antioxidante de la mora (Rubus glaucus benth) y sus cambios en función del proceso de maduración y bajo diferentes temperaturas de almacenamiento. Universidad Nacional de Colombia, Sede Bogotá.Santacruz, L., Carriazo, J., Almanza, O., & Osorio, C. (2012). Anthocyanin Composition of Wild Colombian Fruits and Antioxidant Capacity Measurement by Electron Paramagnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 60(6), 1397–1404. https://doi.org/10.1021/JF2042533Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282. https://doi.org/10.1016/j.ultsonch.2013.02.005Seyed Ahmadi, M., Alizadeh, A., & Soofi, M. (2020). Effect Of Ultrasound Treatment On The Viability Of Probiotics And Physicochemical Properties Of Synbiotic Carrot Juice. Iranian Journal Of Food Science And Technology, 16(96), 15–25. https://www.sid.ir/EN/JOURNAL/ViewPaper.aspx?ID=746576Sheehan, V., Ross, P., & Fitzgerald, G. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies, 8(2), 279–284. https://doi.org/10.1016/j.ifset.2007.01.007Shori, A. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/J.FBIO.2015.11.001Silva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. https://doi.org/10.1016/J.ULTSONCH.2019.104942Singh, B., Singh, J., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits – A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/J.FOODCHEM.2016.03.033Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/J.ULTSONCH.2021.105506Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673Sonic & Materials. (n.d.). Probes for VC 505, VC 750, VCX 500 and VCX 750. Retrieved July 8, 2022, from https://www.spectratech.gr/Web/Sonics/pdf/VCX-505.pdfSperanza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: Strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 1–18. https://doi.org/10.3390/beverages6020020Srisukchayakul, P., Charalampopoulos, D., & Karatzas, K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Research International, 111, 198–204. https://doi.org/10.1016/j.foodres.2018.05.018Sun, X., Zhou, T., Wei, C., Lan, W., Zhao, Y., Pan, Y., & Wu, V. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012Swanson, K., Gibson, G., Hutkins, R., Reimer, R., Reid, G., Verbeke, K., Scott, K., Holscher, H., Azad, M., Delzenne, N., & Sanders, M. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology 2020 17:11, 17(11), 687–701. https://doi.org/10.1038/s41575-020-0344-2Tian, L., Tan, Y., Chen, G., Wang, G., Sun, J., Ou, S., Chen, W., & Bai, W. (2019). Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition, 59(6), 982–991. https://doi.org/10.1080/10408398.2018.1533517Tiwari, B., Muthukumarappan, K., O’Donnell, C., & Cullen, P. (2010). Rheological Properties of Sonicated Guar, Xanthan and Pectin Dispersions. International Journal of Food Properties, 13(2), 223–233. https://doi.org/10.1080/10942910802317610Tiwari, B., O’Donnell, C., Patras, A., Brunton, N., & Cullen, P. (2009). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 228(5), 717–724. https://doi.org/10.1007/s00217-008-0982-zTopolska, K., Florkiewicz, A., & Filipiak-Florkiewicz, A. (2021). Functional Food—Consumer Motivations and Expectations. International Journal of Environmental Research and Public Health, 18(10), 5327. https://doi.org/10.3390/IJERPH18105327Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 5(2), 13. https://doi.org/10.3390/antiox5020013Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80(2), 509–516. https://doi.org/10.1016/j.jfoodeng.2006.06.009Valero-Cases, E., Cerdá-Bernad, D., Pastor, J., & Frutos, M. (2020). Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients, 12(6), 1666. https://doi.org/10.3390/NU12061666Varo Santos, M. (2019). Compuestos bioactivos y actividad antioxidante de frutos rojos y bebidas elaboradas a partir de ellos. Universidad de Córdoba. https://helvia.uco.es/xmlui/handle/10396/17657Verbeyst, L., Oey, I., van der Plancken, I., Hendrickx, M., & van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274. https://doi.org/10.1016/J.FOODCHEM.2010.04.027Villamiel, M., García-Pérez, J., Montilla, A., & Benedito, J. (2017). Ultrasound in Food Processing (First edit). Wiley Blackwell.Vivek, K., Mishra, S., Pradhan, R., & Jayabalan, R. (2019). Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice. LWT, 108, 55–60. https://doi.org/10.1016/j.lwt.2019.03.046Wang, J., Wang, J., Ye, J., Vanga, S., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007Wang, W., & Xu, S. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271–275. https://doi.org/10.1016/J.JFOODENG.2007.01.018Wanna, W., Surachat, K., Kaitimonchai, P., & Phongdara, A. (2021). Evaluation of probiotic characteristics and whole genome analysis of Pediococcus pentosaceus MR001 for use as probiotic bacteria in shrimp aquaculture. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-96780-zWatson, D., O’Connell Motherway, M., Schoterman, M., van Neerven, R., Nauta, A., & van Sinderen, D. (2013). Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology, 114(4), 1132–1146. https://doi.org/10.1111/JAM.12105White, J., & Hekmat, S. (2018). Development of probiotic fruit juices using lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation, 4(2), 27. https://doi.org/10.3390/fermentation4020027Wordon, B., Mortimer, B., & McMaster, L. (2012). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20kHz) and heat for the application of hurdle technology. Food Research International, 47(2), 134–139. https://doi.org/10.1016/j.foodres.2011.04.038Wu, J., Gamage, T., Vilkhu, K., Simons, L., & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science & Emerging Technologies, 9(2), 186–195. https://doi.org/10.1016/J.IFSET.2007.07.007Wu, V., Qiu, X., Bushway, A., & Harper, L. (2008). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT - Food Science and Technology, 41(10), 1834–1841. https://doi.org/10.1016/j.lwt.2008.01.001Wu, Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P., Wen, G., & Zhou, J. (2021). Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry, 348, 129083. https://doi.org/10.1016/j.foodchem.2021.129083Xavier-Santos, D., Bedani, R., Lima, E., &; Saad, S. (2020). Impact of probiotics and prebiotics targeting metabolic syndrome. Journal of Functional Foods, 64, 103666. https://doi.org/10.1016/j.jff.2019.103666Yahia, E. (2017). Fruit and vegetable phytochemicals: Chemistry and human health: Second edition. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 1). Wiley Blackwell. https://doi.org/10.1002/9781119158042Yan, Y., Zhang, F., Chai, Z., Liu, M., Battino, M., & Meng, X. (2019). Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food and Chemical Toxicology, 131, 110541. https://doi.org/10.1016/j.fct.2019.05.049Yang, B., & Kortesniemi, M. (2015). Clinical evidence on potential health benefits of berries. Current Opinion in Food Science, 2, 36–42. https://doi.org/10.1016/j.cofs.2015.01.002Yang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042Yang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042Zafra-Rojas, Q., Cruz-Cansino, N., Ramírez-Moreno, E., Delgado-Olivares, L., Villanueva-Sánchez, J., & Alanís-García, E. (2013). Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrasonics Sonochemistry, 20(5), 1283–1288. https://doi.org/10.1016/j.ultsonch.2013.01.021Zendeboodi, F., Khorshidian, N., Mortazavian, A., & da Cruz, A. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103–123. https://doi.org/10.1016/j.cofs.2020.03.009Zhang, L., Zhou, J., Liu, H., Khan, M., Huang, K., & Gu, Z. (2012). Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. European Food Research and Technology, 235(4), 637–645. https://doi.org/10.1007/s00217-012-1796-6Zhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. https://doi.org/10.1016/j.lwt.2019.108621Zhu, J., Wang, Y., Li, X., Li, B., Liu, S., Chang, N., Jie, D., Ning, C., Gao, H., & Meng, X. (2017). Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrasonics Sonochemistry, 37, 251–259. https://doi.org/10.1016/J.ULTSONCH.2017.01.017Žuntar, I., Petric, Z., Kovacevíc, D., & Putnik, P. (2020). Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods, 9(7), 947. https://doi.org/10.3390/foods9070947BebidasTecnología de alimentosBeveragesFrutos rojosbacterias de ácido lácticobebida no lácteacompuestos bioactivosprebióticoprobióticoBerrieslactic acid bacterianon-dairy beveragebioactive compoundsprebioticprobioticEstudiantesInvestigadoresMaestrosPúblico generalTHUMBNAIL1032464975.2022.pdf.jpg1032464975.2022.pdf.jpgGenerated Thumbnailimage/jpeg4639https://repositorio.unal.edu.co/bitstream/unal/83727/5/1032464975.2022.pdf.jpgd5b35afa5235ff1fa037775fa821c402MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83727/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032464975.2022.pdf1032464975.2022.pdfTesis de Maestría en Ciencia y Tecnología de Alimentosapplication/pdf3223890https://repositorio.unal.edu.co/bitstream/unal/83727/4/1032464975.2022.pdf7f1f0b366dd3b01de1853b977543cba0MD54unal/83727oai:repositorio.unal.edu.co:unal/837272023-08-14 23:04:44.826Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |