Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas
graficas, tablas
- Autores:
-
Grisales Ramírez, Efraín
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84744
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Algoritmo de Dijsktra
Algoritmo de mapeo de celdas
Doble integrador
Modelo dinámico
Optimización combinatoria
Optimización continua
Optimización discreta
Robot móvil de guiado diferencial
Teoría de control óptimo
Dijsktra algorithm
Cell mapping algorithm
Discrete optimization
Double integrator
Dynamic model
Combinatorial optimization
Continuous optimization
Differential guided mobile robot
Optimal control theory
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_02be04347539101ef02f4abc5f40278b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84744 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
dc.title.translated.eng.fl_str_mv |
Optimal trajectory planning for mobile robots using cell mapping |
title |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
spellingShingle |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas 620 - Ingeniería y operaciones afines Algoritmo de Dijsktra Algoritmo de mapeo de celdas Doble integrador Modelo dinámico Optimización combinatoria Optimización continua Optimización discreta Robot móvil de guiado diferencial Teoría de control óptimo Dijsktra algorithm Cell mapping algorithm Discrete optimization Double integrator Dynamic model Combinatorial optimization Continuous optimization Differential guided mobile robot Optimal control theory |
title_short |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
title_full |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
title_fullStr |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
title_full_unstemmed |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
title_sort |
Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas |
dc.creator.fl_str_mv |
Grisales Ramírez, Efraín |
dc.contributor.advisor.none.fl_str_mv |
Osorio Londoño, Gustavo Adolfo |
dc.contributor.author.none.fl_str_mv |
Grisales Ramírez, Efraín |
dc.contributor.researchgroup.spa.fl_str_mv |
Percepción y Control Inteligente (Pci) |
dc.contributor.orcid.spa.fl_str_mv |
Grisales Ramírez, Efraín [0009000814296566] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Algoritmo de Dijsktra Algoritmo de mapeo de celdas Doble integrador Modelo dinámico Optimización combinatoria Optimización continua Optimización discreta Robot móvil de guiado diferencial Teoría de control óptimo Dijsktra algorithm Cell mapping algorithm Discrete optimization Double integrator Dynamic model Combinatorial optimization Continuous optimization Differential guided mobile robot Optimal control theory |
dc.subject.proposal.spa.fl_str_mv |
Algoritmo de Dijsktra Algoritmo de mapeo de celdas Doble integrador Modelo dinámico Optimización combinatoria Optimización continua Optimización discreta Robot móvil de guiado diferencial Teoría de control óptimo |
dc.subject.proposal.eng.fl_str_mv |
Dijsktra algorithm Cell mapping algorithm Discrete optimization Double integrator Dynamic model Combinatorial optimization Continuous optimization Differential guided mobile robot Optimal control theory |
description |
graficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-03T02:17:55Z |
dc.date.available.none.fl_str_mv |
2023-10-03T02:17:55Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.content.spa.fl_str_mv |
DataPaper Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84744 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84744 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
A. Ollero B. Libro: Robótica: Manipuladores y Robots Móviles. Marcombo, 2005. J. F. Camarena. Tesis de maestría: Análisis cinemático, dinámico y control en tiempo real de un vehículo guiado automáticamente, 2009. Y. Goto and A. Stentz. Mobile robot navigation: The CMU system. IEEE Intelligent Systems, 2(4), 1987. S. M. Lavalle. Motion planning part 1: The essentials. IEEE Robotics & Automation Society Magazine, 18:79–89, 2011. R. A. Jarvis. Collision-free trajectory planning using the distance transforms. Mechanical Engineering Transactions, 1985. S. M. LaValle. Motion planning part 2:Wild frontiers. IEEE Robotics & Automation Society Magazine, 18:108–118, 2011. A. Srivastava, D. Kartikey, U. Srivastava, V. Srivastava, and S. Rajesh. Non holonomic shortest robot path planning in a dynamic environment using polygonal obstacles. pages 553–558. Proceedings of the IEEE International Conference on Industrial Technology, 2010. G. Arechavaleta. Optimización de trayectorias para sistemas sujetos a restricciones no holónomas. Computación y Sistemas, 14:365–382, 2011. G. D. S. Lee, K. S. Lee, H. G. Park, and M. H. Lee. Optimal path planning with holonomic mobile robot using localization vision sensors. pages 1883–1886. Proceedings of the Control Automation and Systems (ICCAS), 2010. N. Ganganath, C. Cheng, and C. K. Tse. An aco-based off-line path planner for nonholonomic mobile robots. pages 1038–1041. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2014. S. Gay, S. Dégallier, U. Pattacini, A. Ijspeert, and J. S. Victor. Integration of vision and central pattern generator based locomotion for path planning of a non-holonomic crawling humanoid robot. pages 183–189. Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS), 2010. A. Masoud. Kinodynamic motion planning. IEEE Robotics and Automation Magazine, 17:1048–1066, 2010. R. V. Cowlagi and P. Tsiotras. Kinematic feasibility guarantees in geometric path planning using history-based transition costs over cell decompositions. pages 5388–5393. Proceedings of the American Control Conference (ACC), 2010. O. Castillo, L. Trujillo, and P. Melin. Multiple objective genetic algorithms for pathplanning optimization in autonomous mobile robots. Soft Computing, 11:269–279, 2007. J. K. Goyal and K. S. Nagla. A new approach of path planning for mobile robots. pages 863–867. International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2014. J. Guo, L. Liu, Q. Liu, and Y. Qu. An improvement of d* algorithm for mobile robot path planning in partial unknown environment. volume 3, pages 10–13. Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation, 2009. A. Elshamli, H. A. Abdullah, and S. Areibi. Genetic algorithm for dynamic path planning. volume 2, pages 677–680. Proceedings of the Canadian Conference on Electrical and Computer Engineering, 2004. C. E. Thomaz and M. Vellasco. Mobile robot path planning using genetic. World Wide Web Internet And Web Information Systems. J. Lu and D. Yang. Path planning based on double-layer genetic algorithm. Proceedings of the 3rd International Conference on Natural Computation (ICNC), 2007. F. Lingelbach. Path planning using probabilistic cell decomposition. page 467–472 Vol.1. IEEE International Conference on Robotics and Automation (ICRA), 2004. M. Piaggio and R. Zaccaria. Using roadmaps to classify regions of space for autonomous robot navigation. Robotics and Autonomous Systems, 25:209–217, 1998. S. X. Yang and C. Luo. A neural network approach to complete coverage path planning. IEEE Transactions on Systems, 34:718–725, 2004. B. Shi, P. Cheng, and N. Cheng. 3d flight path planning based on rrts for rnp requirements. pages 51–56. Proceedings of the IEEE International Conference on Information and Automation, 2012. G. F. Luger. Libro: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley, 2005. S. M. LaValle. Libro: Planning algorithms. Cambridge University Press, 2006. G. I. R. K. Galgamuwa, L. K. G. Liyanage, M. P. B. Ekanayake, and B. G. L. T. Samaranayake. Simplified controller for three wheeled omni directional mobile robot. pages 314–319. Proceedings of the IEEE 10th International Conference on Industrial and Information Systems (ICIIS), 2016. P. F. Islas García. Tesis de pregrado: Sistema de control para el desplazamiento omnidireccional de un robot móvil, 2012. D. Cong, C. Liang, Q. Gong, X. Yang, and J. Liu. Path planning and following of omnidirectional mobile robot based on b-spline. pages 4931–4936. Proceedings of the Chinese Control And Decision Conference (CCDC), 2018. J. Wang, S. A. Chepinskiy, A. J. Krasnov, B. Zhang, H. Liu, Y. Chen, and D. A. Khvostov. Geometric path following control for an omnidirectional mobile robot. pages 1063–1068. Proceedings of the 21st International Conference on Methods & Models in Automation & Robotics (MMAR), 2016. H. Kim and B. K. Kim. Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots. IEEE Transactions on Industrial Electronics, 61:4771–4779, 9 2014. N. M. Abdul Ghani, D. Ju, H. Z. Othman, and M. A. Ahmad. Two wheels mobile robot using optimal regulator control. pages 1066–1070. Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA), 2010. Y. Liu, J. J. Zhu, R. L.Williams, and J.Wu. Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56:461–479, 5 2008. M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel. Fuzzy logic controllers design for omnidirectional mobile robot navigation. Applied Soft Computing, 49:901–919, 12 2016. J. Åkesson, A. Blomdell, and R. Braun. Design and control of yaip - an inverted pendulum on two wheels robot. pages 2178–2183. Proceedings of the IEEE International Conference on Control Applications, 2006. J. Li, X. Gao, Q. Huang, and O. Matsumoto. Controller design of a two-wheeled inverted pendulum mobile robot. pages 7–12. Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), 2008. Y. Kim, S. H. Kim, and Y. K. Kwak. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 44:25–46, 9 2005. Y. Kim, S. H. Lee, and D. H. Kim. Dynamic equations of a wheeled inverted pendulum with changing its center of gravity. pages 853–854. Proceedings of the International Conference on Control, Automation and Systems, 2011. Y. Watanabe, T. Kanada, and G. Chen. Robust h2 control for two-wheeled inverted pendulum using lego mindstorms. Proceedings of the Australian Control Conference, 2011. C. H. Chiu and Y. F. Peng. Design and implement of the self-dynamic controller for twowheel transporter. pages 480–483. Proceedings of the IEEE International Conference on Fuzzy Systems, 2006. P. K.W. Abeygunawardhana and M. Toshiyuki. Stability improvement of two wheel mobile manipulator by real time gain control technique. pages 79–84. Proceedings of the 2nd International Conference on Industrial and Information Systems (ICIIS), 2007. C. Acar and T. Murakami. Underactuated two-wheeled mobile manipulator control using nonlinear backstepping method. pages 1680–1685. Proceedings of the Industrial Electronics Conference, 2008. P. K.W. Abeygunawardhana, M. Defoort, and T. Murakami. Self-sustaining control of twowheel mobile manipulator using sliding mode control. pages 792–797. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010. C. Acar and T. Murakami. Motion control of dynamically balanced two-wheeled mobile manipulator through cog manipulation. pages 715–720. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010. S. Ahmad, N. H. Siddique, and M. O. Tokhi. A modular fuzzy control approach for twowheeled wheelchair. Intelligent and Robotic Systems: Theory and Applications, 64:401– 426, 12 2011. C. Acar and T. Murakami. Multi-task control for dynamically balanced two-wheeled mobile manipulator through task-priority. pages 2195–2200. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), 2011. S. Ahmad, M. Aminnuddin, and M. A. Sadiq M. Shukor. Modular hybrid control for doublelink two-wheeled mobile robot. pages 807–813. Proceedings of the International Conference on Computer and Communication Engineering (ICCCE), 2012. R. P. M. Chan, K. A. Stol, and C. R. Halkyard. Review of modelling and control of twowheeled robots. Annual Reviews in Control, 37:89–103, 4 2013. C. Li, F. Li, S. Wang, F. Dai, Y. Bai, X. Gao, and L. Kejie. Dynamic adaptive equilibrium control for a self-stabilizing robot. pages 609–614. Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010. S. Lee and S. Jung. Novel design and control of a home service mobile robot for korean floor-living life style: Koboker. pages 863–867. Proceedings of the 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011. S. Kim and S. J. Kwon. Sdre based nonlinear optimal control of a two-wheeled balancing robot. Journal of Institute of Control, Robotics and Systems, 17:1037–1043, 10 2011. Z. Kausar, K. Stol, and N. Patel. Performance enhancement of a statically unstable two wheeled mobile robot traversing on an uneven surface. pages 156–162. Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2010. Z. Kausar, K. Stol, and N. Patel. Stability region estimation of statically unstable two wheeled mobile robots. pages 1379–1384. 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2011. Z. Kausar, K. Stol, and N. Patel. Nonlinear control design using lyapunov function for twowheeled mobile robots. pages 123–128. Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2012. C. S. Hsu. Libro: Cell-to-Cell mapping: A method of global analysis for nonlinear systems. Springer, 1987. J. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods. Springer Singapore, 2019. C. Hernández, Y. Naranjani, Y. Sardahi, W. Liang, O. Schütze, and J. Q. Sun. Simple cell mapping method for multi-objective optimal feedback control design. International Journal of Dynamics and Control, 1:231–238, 9 2013. F. Y. Wang and P. J. A. Lever. A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems, 12:15–27, 3 1994. C. S. Hsu. A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 46:547–569, 1985. A. Locatelli. Libro: Optimal control of a double integrator. Springer Cham, 2017. F. Gordillo-Álvarez. Contribuciones al problema del control óptimo, 1994. S. S. Rao. Libro: Engineering optimization: Theory and practice. JohnWiley & Sons, 2019. D. E. Kirk. Libro: Optimal Control Theory: An Introduction. 2004. R. Szabolcsi. Robust lqg controller design for the small unmanned aerial vehicle. Review of the Air Force Academy, pages 31–38, 2018. A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38:3–20, 1 2002. L. C. Evans. Libro: An introduction to mathematical optimal control theory version 0.2. 1983. R. Loxton, Q. Lin, and K. L. Teo. Minimizing control variation in nonlinear optimal control. Automatica, 49:2652–2664, 2013. C. Yalc¸ın-Kaya. Optimal control of the double integrator with minimum total variation. Optimization Theory and Applications, pages 966–981, 2020. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, K. N. Trirogoff, and L. W. Neustadt. Libro: L.S. Pontryagin selected works: The mathematical theory of optimal processes. Routledge, 2000. A. T. Fuller. Relay control systems optimized for various performance criteria. IFAC Proceedings Volumes, 1:520–529, 1960. D. Liberzon. Libro: Calculus of variations and optimal control theory. Princeton University Press, 2011. Y. N. Kiselev, M. V. Orlov, and S. M. Orlov. A solution to fuller’s problem using constructions of pontryagin’s maximum principle. Moscow University Computational Mathematics and Cybernetics, 42:152–162, 2018. M. Caponigro, R. Ghezzi, B. Piccoli, and E. Tr´elat. Regularization of chattering phenomena via bounded variation controls. IEEE Transactions on Automatic Control, 63:2046–2060, 2018. A. T. Fuller. Minimization of various performance indices for a system with bounded control. International Journal of Control, 41:1–37, 1985. M. Dellnitz, S. Ober-Blöbaum, M. Post, O. Schütze, and B. Thiere. A multi-objective approach to the design of low thrust space trajectories using optimal control. Celestial Mechanics and Dynamical Astronomy, 105:33–59, 9 2009. J. Lagunas-Jiménez, J. R. Lagunas-Jiménez, V. M. Moo-Yam, and B. Ortíz-Moctezuma. Two-degrees-of-freedom robust pid controllers tuning via a multiobjective genetic algorithm. Computación y Sistemas, 18:259–273, 6 2014. O. Schutze, M. Vasile, O. Junge, M. Dellnitz, and D. Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 41:155–181, 2 2009. S. Koziel and A. Bekasiewicz. Multi-objective optimization of expensive electromagnetic simulation models. Applied Soft Computing, 47:332–342, 2016. L. Jourdan, O. Schütze, T. Legrand, E. G. Talbi, and J. L. Wojkiewicz. An analysis of the effect of multiple layers in the multi-objective design of conducting polymer composites. Materials and Manufacturing Processes, 24:350–357, 3 2009. D. Temple and M. Colette. A goal-programming enhanced collaborative optimization approach to reducing lifecyle costs for naval vessels. Structural and Multidisciplinary Optimization, 53:1261–1275, 2016 Y. Chen and B. Peng. Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework. Applied Soft Computing, 43:357–371, 2016. Acceptance from webpage. S. Panda. Multi-objective pid controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-ii. International Journal of Electrical Power and Energy Systems, 33:1296–1308, 9 2011. I. Chiha, N. Liouane, and P. Borne. Tuning pid controller using multiobjective ant colony optimization. Applied Computational Intelligence and Soft Computing, 2012:1–7, 2012. M. Khoie, K. Salahshoor, E. Nouri, and A. K. Sedigh. Pid controller tuning using multiobjective optimization based on fused genetic-immune algorithm and immune feedback mechanism. volume 6839 LNAI, pages 267–276. Proceedings of the IEEE International Conference on Mechatronics and Automation, 2011. Kai Zhang, Minshi Chen, Xin Xu, and Gary G. Yen. Multi-objective evolution strategy for multimodal multi-objective optimization. Applied Soft Computing, 101:107004, 2021. L. F. T. M. I. Solihin and M. L. Kean. Tuning of pid controller using particle swarm optimization (pso). Proceedings of the International Conference on Advanced Science, Engineering and Information Technology, 2011. J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research, 51:479–494, 2000. P. A. N. Bosman. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16:51–69, 2 2012. X. Zhong, W. Fan, J. Lin, and Z. Zhao. A novel multi-objective compass search. volume 1, pages 24–29, 2010. V. Pareto. Libro: Manual of political economy. A. M. Kelley, 1971. C. Hernández O. Schütze and J. Q. Sun. Capítulo: Global multi-objective optimization by means of cell mapping techniques, 2017. J. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods: Algorithmic approaches and applications. Springer Singapore, 6 2018. P. J. Zufiria and R. S. Guttalu. The adjoining cell mapping and its recursive unraveling, part i: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 4:207–226, 6 1993. C. S. Hsu. A probabilistic theory of nonlinear dynamical systems based on the ceil state space concept. Journal of Applied Mechanics, Transactions ASME, 49:895–902, 12 1982. C. S. Hsu. Global analysis of dynamical systems using posets and digraphs. International Journal of Bifurcation and Chaos, 05:1085–1118, 8 1995. J. Petersen. Die theorie der regul¨aren graphs. Acta Mathematica, 15:193–220, 12 1891. W. Li, L. Xia, and Y. Huang. An adaptive ant colony optimization in knowledge graphs. pages 26–32. Proceedings of the 11th IEEE International Conference on Knowledge Graph (ICKG), 2020. A. Agrawal, B. Dixit, V. U. Karve, and B. R. Chandavarkar. Optimizing set of paths connecting multiple source-sink pairs. pages 833–838. Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT, 2017. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 12 1959. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968. C. Zhong, S. Liu, B. Zhang, Q. Lu, J. Wang, Q. Wu, and F. Gao. A fast on-line global path planning algorithm based on regionalized roadmap for robot navigation. IFACPapersOnLine, 50:319–324, 2017. J. M. Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing, 14:799–817, 1985. H. Y. Zhang, W. M. Lin, and A. X. Chen. Path planning for the mobile robot: A review. Symmetry, 10, 2018. J. R. Sánchez-Ibáñez, C. J. Pérez del Pulgar, and A. García-Cerezo. Path planning for autonomous mobile robots: A review. Sensors, 21, 2021. T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser. Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016. S. Mirjalili and J. S. Dong. Introduction to nature-inspired algorithms. In Nature-Inspired Optimizers, pages 1–5. Springer, 2020. D. Tonon, M. Soledad-Aronna, and D. Kalise. Libro: Optimal control: Novel directions and applications, volume 1. Springer, 2017. D. Filliat and J. A. Meyer. Map-based navigation in mobile robots: I. a review of localisation strategies. Journal of Cognitive Systems Research, 4:243–282, 2003. T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility-polygon search and euclidean shortest paths. pages 155–164. Proceedings of the Annual Symposium on Foundations of Computer Science, 1985. K. Su, T. Phan, C. Yang, and W. Wang. Image-based smooth path planning for wheeled robot. pages 203–207. Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA), 2014. O. Takahashi and R. J. Schilling. Motion planning in a plane using generalized voronoi diagrams. IEEE Transactions on Robotics and Automation, 5:143–150, 1989. J. Tsitsiklis. Efficient algorothms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40:1528–1538, 1995. Z. Dong, Z. Chen, R. Zhou, and R. Zhang. A hybrid approach of virtual force and a* search algorithm for uav path re-planning. pages 1140–1145. Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2011. A. Stentz. Optimal and efficient path planning for partially-known environments. pages 3310–3317. Proceedings of the IEEE International Conference on Robotics and Automation, 1994. Y. Toda and N. Kubota. Path planning using multi-resolution map for a mobile robot. pages 1276–1281. Proceedings of the SICE Annual Conference, 2011. O. Khatib. Capítulo: Real-time obstacle avoidance for manipulators and mobile robots, 1986 S. S. Ge and Y. J. Cui. Dynamic motion planning for mobile robots using potential field method. Autonomous robots, 13:207–222, 2002. P. Vadakkepat, K. C. Tan, and W. Ming-Liang. Evolutionary artificial potential fields and their application in real time robot path planning. volume 1, pages 256–263. Proceedings of the Congress on evolutionary computation, 2000. R. Raja, A. Dutta, and K. S. Venkatesh. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Robotics and Autonomous Systems, 72:295–306, 2015. Z. Zhou, J. Wang, Z. Zhu, D. Yang, and J. Wu. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik, 158:639–651, 2018. H. H. Triharminto, O. Wahyunggoro, T. Adji, A. I. Cahyadi, and I. Ardiyanto. A novel of repulsive function on artificial potential field for robot path planning. International Journal of Electrical and Computer Engineering (IJECE), 6:3262–3275, 10 2016. D. Kim. Escaping route method for a trap situation in local path planning. International Journal of Control Automation and Systems, 7:495–500, 5 2009. F. Bayat, S. Najafinia, and M. Aliyari. Mobile robots path planning: Electrostatic potential field approach. Expert Systems with Applications, 100:68–78, 6 2018. G. Bermudez, L. A. Rojas Castellar, H. Montiel, and M. Ceballos. Aplicación del método de campos de potencial artificial para un robot móvil autónomo. Tecnura, 7:86–96, 10 2004. N. Buniyamin andW.W. Ngah. A simple local path planning algorithm for autonomous mobile robots. International Journal of Systems Application Engineering and Developement, 5:151–159, 2011. V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 11 1987. I. Kamon, E. Rivlin, and E. Rimon. New range-sensor based globally convergent navigation algorithm for mobile robots. volume 1, pages 429–435. Proceedings of the IEEE International Conference on Robotics and Automation, 1996. I. Al-Taharwa, A. Sheta, and M. Al-Weshah. A mobile robot path planning using genetic algorithm in static environment. Journal of Computer Science, 4:341–344, 2008. S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. The annual research report, 1998. X. Yun and Y. Yamamoto. Internal dynamics of a wheeled mobile robot. pages 1288–1294. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1993. Y. Yamamoto and X. Yun. Coordinating locomotion and manipulation of a mobile manipulator recommended citation, 1992. Y. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. Energy-efficient motion planning for mobile robots. volume 2004, pages 4344–4349. Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Y. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. A case study of mobile robot’s energy consumption and conservation techniques. volume 2005, pages 492–497. Proceedings of the International Conference on Advanced Robotics (ICAR), 2005. C. H. Kim. Phd thesis: Minimum-energy trajectory planning for differential-driven wheeled mobile robot, 2007. O. Chuy, E. G. Collins, W. Yu, and C. Ordonez. Power modeling of a skid steered wheeled robotic ground vehicle. pages 4118–4123. Proceedings of the IEEE International Conference on Robotics and Automation, 2009. J. Morales, J. L. Martinez, A. Mandow, A. J. Garcia-Cerezo, and S. Pedraza. Power consumption modeling of skid-steer tracked mobile robots on rigid terrain. IEEE Transactions on Robotics, 25:1098–1108, 10 2009. R. Parasuraman, K. Kershaw, P. Pagala, and M. Ferre. Model based on-line energy prediction system for semi-autonomous mobile robots. volume 2015-September, pages 411–416. Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 2015. S. Dogru and L. Marques. A physics-based power model for skid-steered wheeled mobile robots. IEEE Transactions on Robotics, 34:421–433, 4 2018. L. Nicholls and Y. Strengers. Robotic vacuum cleaners save energy? raising cleanliness conventions and energy demand in australian households with smart home technologies. Energy Research and Social Science, 50:73–81, 4 2019. Y. Mei, Y. H. Lu, C. S. G. Lee, and Y. C. Hu. Energy-efficient mobile robot exploration. volume 2006, pages 505–511. Proceedings of the IEEE International Conference on Robotics and Automation, 2006. A. Barili, M. Ceresa, and C. Parisi. Energy-saving motion control for an autonomous mobile robot. volume 2, pages 674–676. Proceedings of the IEEE International Symposium on Industrial Electronics, 1995. H. Kim and B. K. Kim. Minimum-energy translational trajectory planning for batterypowered three-wheeled omni-directional mobile robots. pages 1730–1735. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2008. H. Kim and B. K. Kim. Minimum-energy trajectory planning and control on a straight line with rotation for three-wheeled omni-directional mobile robots. pages 3119–3124. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. S. Liu and D. Sun. Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Transactions on Mechatronics, 19:401–411, 4 2014. A. Stefek, T. van Pham, V. Krivanek, and K. L. Pham. Energy comparison of controllers used for a differential drive wheeled mobile robot. IEEE Access, 8:170915–170927, 6 2020. M. Wahab, F. Rios-Gutierrez, and A. El-Shahat. Energy modeling of differential drive robots. pages 1–6. Proceedings of the IEEE Southeastcon, 2015. M. F. Jaramillo-Morales and J. B. Gomez-Mendoza. Mixed energy model for a differential guide mobile robot. pages 114–119. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 2018. M. F. Jaramillo-Morales, S. Dogru, L. Marques, and J. B. Gomez-Mendoza. Predictive power estimation for a differential drive mobile robot based on motor and robot dynamic models. pages 301–307. Proceedings of the 3rd IEEE International Conference on Robotic Computing (IRC), 2019. M. F. Jaramillo-Morales, S. Dogru, J. B. Gomez-Mendoza, and L. Marques. Energy estimation for differential drive mobile robots on straight and rotational trajectories. International Journal of Advanced Robotic Systems, 17, 2020. E. Grisales-Ramirez, M. F. Jaramillo-Morales, G. Osorio, and J. B. Gomez-Mendoza. Multiobjective optimal path planning for mobile robots using state space cell mapping. Proceedings of the 4th IEEE Colombian Conference on Automatic Control (CCAC), 2019. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxiv, 136 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84744/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84744/2/1053781686.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84744/3/1053781686.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f31ff8a0b92c5164dde39c0f94f15786 63a4be8ddb9acf2ec5b9dd3e576ff867 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089735131365376 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Londoño, Gustavo Adolfoa8459e28e318014da878eb8be713aa83Grisales Ramírez, Efraínfbff2fe91554511b10ac9af3d55ea7a6Percepción y Control Inteligente (Pci)Grisales Ramírez, Efraín [0009000814296566]2023-10-03T02:17:55Z2023-10-03T02:17:55Z2023https://repositorio.unal.edu.co/handle/unal/84744Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasEl problema de planificación de trayectorias es de importancia dentro de la robótica móvil, puesto que es indispensable generar caminos de referencia que eviten obstáculos y de fácil seguimiento por los sistemas autónomos. La solución dada por los algoritmos de planificación puede ser de diferente naturaleza, aumentando o disminuyendo la complejidad computacional. En este documento se propone un método para la planificación de trayectorias de robots móviles empleando el algoritmo de mapeo de celdas (AMC), el cual contiene las restricciones cinemáticas y dinámicas del robot, así como las del entorno, permitiendo generar trayectos de fácil seguimiento por el sistema. También contiene la información necesaria con el fin de dar solución al problema de optimización multiobjetivo. El algoritmo consiste en dividir el espacio de estados en celdas y luego simular la evolución del sistema dinámico del móvil para cada condición inicial; con esto se generan grafos que contienen la información de las conexiones entre celdas en términos de distancia, tiempo, esfuerzo de control y energía. Con esta información se solucionan los problemas de optimización simple o multiobjetivo, según sea la función de costo empleada para encontrar el camino más corto entre dos puntos con el algoritmo de Dijkstra. Además, en este documento se introducen algunos conceptos de control óptimo que serán empleados en la planificación de trayectorias de robots móviles. Estos conceptos se aplican inicialmente al doble integrador (DI) en tiempo continuo, debido a que éste emula el comportamiento de un robot sin masa. Posteriormente se implementa el AMC para solucionar los mismos problemas de optimización en forma discreta para el movimiento en 1 y 2 dimensiones, y se extiende el concepto a la aplicación en robots móviles de guiado diferencial, así como para el Robotino de FESTO. (Texto tomado de la fuente)The trajectory planning problem is of importance in mobile robotics since it is essential to generate reference paths that avoid obstacles and are easy to follow for autonomous systems. The solutions provided by planning algorithms can vary in nature, either increasing or decreasing computational complexity. This paper presents a method for planning mobile robot trajectories using the Cell Mapping Algorithm (CMA), which incorporates the kinematic and dynamic constraints of the robot as well as those of the environment. This approach enables the generation of trajectories that are easy for the system to follow and includes the necessary information to address multi-objective optimization problems. The algorithm involves dividing the state space into cells and then simulating the evolution of the mobile robot's dynamic system for each initial condition. This process generates graphs that contain information about the connections between cells in terms of distance, time, control effort, and energy. With this information, simple or multi-objective optimization problems can be solved, depending on the cost function used to find the shortest path between two points, typically implemented with Dijkstra's algorithm. Also, this thesis introduces some optimal control concepts that will be used in path planning of mobile robots. These concepts are initially applied to continuous-time double integrator (DI), because it emulates behavior of a massless robot. Subsequently, the AMC is implemented to solve same optimization problems in discrete form for motion in 1 and 2 dimensions, and concept is extended to the application in differential guided mobile robots, as well as for FESTO Robotino.DoctoradoDoctor en IngenieríaSistemas de Control y RobóticaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesxxiv, 136 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesAlgoritmo de DijsktraAlgoritmo de mapeo de celdasDoble integradorModelo dinámicoOptimización combinatoriaOptimización continuaOptimización discretaRobot móvil de guiado diferencialTeoría de control óptimoDijsktra algorithmCell mapping algorithmDiscrete optimizationDouble integratorDynamic modelCombinatorial optimizationContinuous optimizationDifferential guided mobile robotOptimal control theoryPlanificación de trayectorias óptimas de robots móviles empleando el mapeo de celdasOptimal trajectory planning for mobile robots using cell mappingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_71e4c1898caa6e32DataPaperImageTextA. Ollero B. Libro: Robótica: Manipuladores y Robots Móviles. Marcombo, 2005.J. F. Camarena. Tesis de maestría: Análisis cinemático, dinámico y control en tiempo real de un vehículo guiado automáticamente, 2009.Y. Goto and A. Stentz. Mobile robot navigation: The CMU system. IEEE Intelligent Systems, 2(4), 1987.S. M. Lavalle. Motion planning part 1: The essentials. IEEE Robotics & Automation Society Magazine, 18:79–89, 2011.R. A. Jarvis. Collision-free trajectory planning using the distance transforms. Mechanical Engineering Transactions, 1985.S. M. LaValle. Motion planning part 2:Wild frontiers. IEEE Robotics & Automation Society Magazine, 18:108–118, 2011.A. Srivastava, D. Kartikey, U. Srivastava, V. Srivastava, and S. Rajesh. Non holonomic shortest robot path planning in a dynamic environment using polygonal obstacles. pages 553–558. Proceedings of the IEEE International Conference on Industrial Technology, 2010.G. Arechavaleta. Optimización de trayectorias para sistemas sujetos a restricciones no holónomas. Computación y Sistemas, 14:365–382, 2011.G. D. S. Lee, K. S. Lee, H. G. Park, and M. H. Lee. Optimal path planning with holonomic mobile robot using localization vision sensors. pages 1883–1886. Proceedings of the Control Automation and Systems (ICCAS), 2010.N. Ganganath, C. Cheng, and C. K. Tse. An aco-based off-line path planner for nonholonomic mobile robots. pages 1038–1041. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2014.S. Gay, S. Dégallier, U. Pattacini, A. Ijspeert, and J. S. Victor. Integration of vision and central pattern generator based locomotion for path planning of a non-holonomic crawling humanoid robot. pages 183–189. Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS), 2010.A. Masoud. Kinodynamic motion planning. IEEE Robotics and Automation Magazine, 17:1048–1066, 2010.R. V. Cowlagi and P. Tsiotras. Kinematic feasibility guarantees in geometric path planning using history-based transition costs over cell decompositions. pages 5388–5393. Proceedings of the American Control Conference (ACC), 2010.O. Castillo, L. Trujillo, and P. Melin. Multiple objective genetic algorithms for pathplanning optimization in autonomous mobile robots. Soft Computing, 11:269–279, 2007.J. K. Goyal and K. S. Nagla. A new approach of path planning for mobile robots. pages 863–867. International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2014.J. Guo, L. Liu, Q. Liu, and Y. Qu. An improvement of d* algorithm for mobile robot path planning in partial unknown environment. volume 3, pages 10–13. Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation, 2009.A. Elshamli, H. A. Abdullah, and S. Areibi. Genetic algorithm for dynamic path planning. volume 2, pages 677–680. Proceedings of the Canadian Conference on Electrical and Computer Engineering, 2004.C. E. Thomaz and M. Vellasco. Mobile robot path planning using genetic. World Wide Web Internet And Web Information Systems.J. Lu and D. Yang. Path planning based on double-layer genetic algorithm. Proceedings of the 3rd International Conference on Natural Computation (ICNC), 2007.F. Lingelbach. Path planning using probabilistic cell decomposition. page 467–472 Vol.1. IEEE International Conference on Robotics and Automation (ICRA), 2004.M. Piaggio and R. Zaccaria. Using roadmaps to classify regions of space for autonomous robot navigation. Robotics and Autonomous Systems, 25:209–217, 1998.S. X. Yang and C. Luo. A neural network approach to complete coverage path planning. IEEE Transactions on Systems, 34:718–725, 2004.B. Shi, P. Cheng, and N. Cheng. 3d flight path planning based on rrts for rnp requirements. pages 51–56. Proceedings of the IEEE International Conference on Information and Automation, 2012.G. F. Luger. Libro: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley, 2005.S. M. LaValle. Libro: Planning algorithms. Cambridge University Press, 2006.G. I. R. K. Galgamuwa, L. K. G. Liyanage, M. P. B. Ekanayake, and B. G. L. T. Samaranayake. Simplified controller for three wheeled omni directional mobile robot. pages 314–319. Proceedings of the IEEE 10th International Conference on Industrial and Information Systems (ICIIS), 2016.P. F. Islas García. Tesis de pregrado: Sistema de control para el desplazamiento omnidireccional de un robot móvil, 2012.D. Cong, C. Liang, Q. Gong, X. Yang, and J. Liu. Path planning and following of omnidirectional mobile robot based on b-spline. pages 4931–4936. Proceedings of the Chinese Control And Decision Conference (CCDC), 2018.J. Wang, S. A. Chepinskiy, A. J. Krasnov, B. Zhang, H. Liu, Y. Chen, and D. A. Khvostov. Geometric path following control for an omnidirectional mobile robot. pages 1063–1068. Proceedings of the 21st International Conference on Methods & Models in Automation & Robotics (MMAR), 2016.H. Kim and B. K. Kim. Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots. IEEE Transactions on Industrial Electronics, 61:4771–4779, 9 2014.N. M. Abdul Ghani, D. Ju, H. Z. Othman, and M. A. Ahmad. Two wheels mobile robot using optimal regulator control. pages 1066–1070. Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA), 2010.Y. Liu, J. J. Zhu, R. L.Williams, and J.Wu. Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56:461–479, 5 2008.M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel. Fuzzy logic controllers design for omnidirectional mobile robot navigation. Applied Soft Computing, 49:901–919, 12 2016.J. Åkesson, A. Blomdell, and R. Braun. Design and control of yaip - an inverted pendulum on two wheels robot. pages 2178–2183. Proceedings of the IEEE International Conference on Control Applications, 2006.J. Li, X. Gao, Q. Huang, and O. Matsumoto. Controller design of a two-wheeled inverted pendulum mobile robot. pages 7–12. Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), 2008.Y. Kim, S. H. Kim, and Y. K. Kwak. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 44:25–46, 9 2005.Y. Kim, S. H. Lee, and D. H. Kim. Dynamic equations of a wheeled inverted pendulum with changing its center of gravity. pages 853–854. Proceedings of the International Conference on Control, Automation and Systems, 2011.Y. Watanabe, T. Kanada, and G. Chen. Robust h2 control for two-wheeled inverted pendulum using lego mindstorms. Proceedings of the Australian Control Conference, 2011.C. H. Chiu and Y. F. Peng. Design and implement of the self-dynamic controller for twowheel transporter. pages 480–483. Proceedings of the IEEE International Conference on Fuzzy Systems, 2006.P. K.W. Abeygunawardhana and M. Toshiyuki. Stability improvement of two wheel mobile manipulator by real time gain control technique. pages 79–84. Proceedings of the 2nd International Conference on Industrial and Information Systems (ICIIS), 2007.C. Acar and T. Murakami. Underactuated two-wheeled mobile manipulator control using nonlinear backstepping method. pages 1680–1685. Proceedings of the Industrial Electronics Conference, 2008.P. K.W. Abeygunawardhana, M. Defoort, and T. Murakami. Self-sustaining control of twowheel mobile manipulator using sliding mode control. pages 792–797. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010.C. Acar and T. Murakami. Motion control of dynamically balanced two-wheeled mobile manipulator through cog manipulation. pages 715–720. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010.S. Ahmad, N. H. Siddique, and M. O. Tokhi. A modular fuzzy control approach for twowheeled wheelchair. Intelligent and Robotic Systems: Theory and Applications, 64:401– 426, 12 2011.C. Acar and T. Murakami. Multi-task control for dynamically balanced two-wheeled mobile manipulator through task-priority. pages 2195–2200. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), 2011.S. Ahmad, M. Aminnuddin, and M. A. Sadiq M. Shukor. Modular hybrid control for doublelink two-wheeled mobile robot. pages 807–813. Proceedings of the International Conference on Computer and Communication Engineering (ICCCE), 2012.R. P. M. Chan, K. A. Stol, and C. R. Halkyard. Review of modelling and control of twowheeled robots. Annual Reviews in Control, 37:89–103, 4 2013.C. Li, F. Li, S. Wang, F. Dai, Y. Bai, X. Gao, and L. Kejie. Dynamic adaptive equilibrium control for a self-stabilizing robot. pages 609–614. Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010.S. Lee and S. Jung. Novel design and control of a home service mobile robot for korean floor-living life style: Koboker. pages 863–867. Proceedings of the 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011.S. Kim and S. J. Kwon. Sdre based nonlinear optimal control of a two-wheeled balancing robot. Journal of Institute of Control, Robotics and Systems, 17:1037–1043, 10 2011.Z. Kausar, K. Stol, and N. Patel. Performance enhancement of a statically unstable two wheeled mobile robot traversing on an uneven surface. pages 156–162. Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2010.Z. Kausar, K. Stol, and N. Patel. Stability region estimation of statically unstable two wheeled mobile robots. pages 1379–1384. 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2011.Z. Kausar, K. Stol, and N. Patel. Nonlinear control design using lyapunov function for twowheeled mobile robots. pages 123–128. Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2012.C. S. Hsu. Libro: Cell-to-Cell mapping: A method of global analysis for nonlinear systems. Springer, 1987.J. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods. Springer Singapore, 2019.C. Hernández, Y. Naranjani, Y. Sardahi, W. Liang, O. Schütze, and J. Q. Sun. Simple cell mapping method for multi-objective optimal feedback control design. International Journal of Dynamics and Control, 1:231–238, 9 2013.F. Y. Wang and P. J. A. Lever. A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems, 12:15–27, 3 1994.C. S. Hsu. A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 46:547–569, 1985.A. Locatelli. Libro: Optimal control of a double integrator. Springer Cham, 2017.F. Gordillo-Álvarez. Contribuciones al problema del control óptimo, 1994.S. S. Rao. Libro: Engineering optimization: Theory and practice. JohnWiley & Sons, 2019.D. E. Kirk. Libro: Optimal Control Theory: An Introduction. 2004.R. Szabolcsi. Robust lqg controller design for the small unmanned aerial vehicle. Review of the Air Force Academy, pages 31–38, 2018.A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38:3–20, 1 2002.L. C. Evans. Libro: An introduction to mathematical optimal control theory version 0.2. 1983.R. Loxton, Q. Lin, and K. L. Teo. Minimizing control variation in nonlinear optimal control. Automatica, 49:2652–2664, 2013.C. Yalc¸ın-Kaya. Optimal control of the double integrator with minimum total variation. Optimization Theory and Applications, pages 966–981, 2020.L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, K. N. Trirogoff, and L. W. Neustadt. Libro: L.S. Pontryagin selected works: The mathematical theory of optimal processes. Routledge, 2000.A. T. Fuller. Relay control systems optimized for various performance criteria. IFAC Proceedings Volumes, 1:520–529, 1960.D. Liberzon. Libro: Calculus of variations and optimal control theory. Princeton University Press, 2011.Y. N. Kiselev, M. V. Orlov, and S. M. Orlov. A solution to fuller’s problem using constructions of pontryagin’s maximum principle. Moscow University Computational Mathematics and Cybernetics, 42:152–162, 2018.M. Caponigro, R. Ghezzi, B. Piccoli, and E. Tr´elat. Regularization of chattering phenomena via bounded variation controls. IEEE Transactions on Automatic Control, 63:2046–2060, 2018.A. T. Fuller. Minimization of various performance indices for a system with bounded control. International Journal of Control, 41:1–37, 1985.M. Dellnitz, S. Ober-Blöbaum, M. Post, O. Schütze, and B. Thiere. A multi-objective approach to the design of low thrust space trajectories using optimal control. Celestial Mechanics and Dynamical Astronomy, 105:33–59, 9 2009.J. Lagunas-Jiménez, J. R. Lagunas-Jiménez, V. M. Moo-Yam, and B. Ortíz-Moctezuma. Two-degrees-of-freedom robust pid controllers tuning via a multiobjective genetic algorithm. Computación y Sistemas, 18:259–273, 6 2014.O. Schutze, M. Vasile, O. Junge, M. Dellnitz, and D. Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 41:155–181, 2 2009.S. Koziel and A. Bekasiewicz. Multi-objective optimization of expensive electromagnetic simulation models. Applied Soft Computing, 47:332–342, 2016.L. Jourdan, O. Schütze, T. Legrand, E. G. Talbi, and J. L. Wojkiewicz. An analysis of the effect of multiple layers in the multi-objective design of conducting polymer composites. Materials and Manufacturing Processes, 24:350–357, 3 2009.D. Temple and M. Colette. A goal-programming enhanced collaborative optimization approach to reducing lifecyle costs for naval vessels. Structural and Multidisciplinary Optimization, 53:1261–1275, 2016Y. Chen and B. Peng. Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework. Applied Soft Computing, 43:357–371, 2016. Acceptance from webpage.S. Panda. Multi-objective pid controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-ii. International Journal of Electrical Power and Energy Systems, 33:1296–1308, 9 2011.I. Chiha, N. Liouane, and P. Borne. Tuning pid controller using multiobjective ant colony optimization. Applied Computational Intelligence and Soft Computing, 2012:1–7, 2012.M. Khoie, K. Salahshoor, E. Nouri, and A. K. Sedigh. Pid controller tuning using multiobjective optimization based on fused genetic-immune algorithm and immune feedback mechanism. volume 6839 LNAI, pages 267–276. Proceedings of the IEEE International Conference on Mechatronics and Automation, 2011.Kai Zhang, Minshi Chen, Xin Xu, and Gary G. Yen. Multi-objective evolution strategy for multimodal multi-objective optimization. Applied Soft Computing, 101:107004, 2021.L. F. T. M. I. Solihin and M. L. Kean. Tuning of pid controller using particle swarm optimization (pso). Proceedings of the International Conference on Advanced Science, Engineering and Information Technology, 2011.J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research, 51:479–494, 2000.P. A. N. Bosman. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16:51–69, 2 2012.X. Zhong, W. Fan, J. Lin, and Z. Zhao. A novel multi-objective compass search. volume 1, pages 24–29, 2010.V. Pareto. Libro: Manual of political economy. A. M. Kelley, 1971.C. Hernández O. Schütze and J. Q. Sun. Capítulo: Global multi-objective optimization by means of cell mapping techniques, 2017.J. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods: Algorithmic approaches and applications. Springer Singapore, 6 2018.P. J. Zufiria and R. S. Guttalu. The adjoining cell mapping and its recursive unraveling, part i: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 4:207–226, 6 1993.C. S. Hsu. A probabilistic theory of nonlinear dynamical systems based on the ceil state space concept. Journal of Applied Mechanics, Transactions ASME, 49:895–902, 12 1982.C. S. Hsu. Global analysis of dynamical systems using posets and digraphs. International Journal of Bifurcation and Chaos, 05:1085–1118, 8 1995.J. Petersen. Die theorie der regul¨aren graphs. Acta Mathematica, 15:193–220, 12 1891.W. Li, L. Xia, and Y. Huang. An adaptive ant colony optimization in knowledge graphs. pages 26–32. Proceedings of the 11th IEEE International Conference on Knowledge Graph (ICKG), 2020.A. Agrawal, B. Dixit, V. U. Karve, and B. R. Chandavarkar. Optimizing set of paths connecting multiple source-sink pairs. pages 833–838. Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT, 2017.E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 12 1959.P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.C. Zhong, S. Liu, B. Zhang, Q. Lu, J. Wang, Q. Wu, and F. Gao. A fast on-line global path planning algorithm based on regionalized roadmap for robot navigation. IFACPapersOnLine, 50:319–324, 2017.J. M. Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing, 14:799–817, 1985.H. Y. Zhang, W. M. Lin, and A. X. Chen. Path planning for the mobile robot: A review. Symmetry, 10, 2018.J. R. Sánchez-Ibáñez, C. J. Pérez del Pulgar, and A. García-Cerezo. Path planning for autonomous mobile robots: A review. Sensors, 21, 2021.T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser. Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016.S. Mirjalili and J. S. Dong. Introduction to nature-inspired algorithms. In Nature-Inspired Optimizers, pages 1–5. Springer, 2020.D. Tonon, M. Soledad-Aronna, and D. Kalise. Libro: Optimal control: Novel directions and applications, volume 1. Springer, 2017.D. Filliat and J. A. Meyer. Map-based navigation in mobile robots: I. a review of localisation strategies. Journal of Cognitive Systems Research, 4:243–282, 2003.T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility-polygon search and euclidean shortest paths. pages 155–164. Proceedings of the Annual Symposium on Foundations of Computer Science, 1985.K. Su, T. Phan, C. Yang, and W. Wang. Image-based smooth path planning for wheeled robot. pages 203–207. Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA), 2014.O. Takahashi and R. J. Schilling. Motion planning in a plane using generalized voronoi diagrams. IEEE Transactions on Robotics and Automation, 5:143–150, 1989.J. Tsitsiklis. Efficient algorothms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40:1528–1538, 1995.Z. Dong, Z. Chen, R. Zhou, and R. Zhang. A hybrid approach of virtual force and a* search algorithm for uav path re-planning. pages 1140–1145. Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2011.A. Stentz. Optimal and efficient path planning for partially-known environments. pages 3310–3317. Proceedings of the IEEE International Conference on Robotics and Automation, 1994.Y. Toda and N. Kubota. Path planning using multi-resolution map for a mobile robot. pages 1276–1281. Proceedings of the SICE Annual Conference, 2011.O. Khatib. Capítulo: Real-time obstacle avoidance for manipulators and mobile robots, 1986S. S. Ge and Y. J. Cui. Dynamic motion planning for mobile robots using potential field method. Autonomous robots, 13:207–222, 2002.P. Vadakkepat, K. C. Tan, and W. Ming-Liang. Evolutionary artificial potential fields and their application in real time robot path planning. volume 1, pages 256–263. Proceedings of the Congress on evolutionary computation, 2000.R. Raja, A. Dutta, and K. S. Venkatesh. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Robotics and Autonomous Systems, 72:295–306, 2015.Z. Zhou, J. Wang, Z. Zhu, D. Yang, and J. Wu. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik, 158:639–651, 2018.H. H. Triharminto, O. Wahyunggoro, T. Adji, A. I. Cahyadi, and I. Ardiyanto. A novel of repulsive function on artificial potential field for robot path planning. International Journal of Electrical and Computer Engineering (IJECE), 6:3262–3275, 10 2016.D. Kim. Escaping route method for a trap situation in local path planning. International Journal of Control Automation and Systems, 7:495–500, 5 2009.F. Bayat, S. Najafinia, and M. Aliyari. Mobile robots path planning: Electrostatic potential field approach. Expert Systems with Applications, 100:68–78, 6 2018.G. Bermudez, L. A. Rojas Castellar, H. Montiel, and M. Ceballos. Aplicación del método de campos de potencial artificial para un robot móvil autónomo. Tecnura, 7:86–96, 10 2004.N. Buniyamin andW.W. Ngah. A simple local path planning algorithm for autonomous mobile robots. International Journal of Systems Application Engineering and Developement, 5:151–159, 2011.V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 11 1987.I. Kamon, E. Rivlin, and E. Rimon. New range-sensor based globally convergent navigation algorithm for mobile robots. volume 1, pages 429–435. Proceedings of the IEEE International Conference on Robotics and Automation, 1996.I. Al-Taharwa, A. Sheta, and M. Al-Weshah. A mobile robot path planning using genetic algorithm in static environment. Journal of Computer Science, 4:341–344, 2008.S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. The annual research report, 1998.X. Yun and Y. Yamamoto. Internal dynamics of a wheeled mobile robot. pages 1288–1294. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1993.Y. Yamamoto and X. Yun. Coordinating locomotion and manipulation of a mobile manipulator recommended citation, 1992.Y. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. Energy-efficient motion planning for mobile robots. volume 2004, pages 4344–4349. Proceedings of the IEEE International Conference on Robotics and Automation, 2004.Y. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. A case study of mobile robot’s energy consumption and conservation techniques. volume 2005, pages 492–497. Proceedings of the International Conference on Advanced Robotics (ICAR), 2005.C. H. Kim. Phd thesis: Minimum-energy trajectory planning for differential-driven wheeled mobile robot, 2007.O. Chuy, E. G. Collins, W. Yu, and C. Ordonez. Power modeling of a skid steered wheeled robotic ground vehicle. pages 4118–4123. Proceedings of the IEEE International Conference on Robotics and Automation, 2009.J. Morales, J. L. Martinez, A. Mandow, A. J. Garcia-Cerezo, and S. Pedraza. Power consumption modeling of skid-steer tracked mobile robots on rigid terrain. IEEE Transactions on Robotics, 25:1098–1108, 10 2009.R. Parasuraman, K. Kershaw, P. Pagala, and M. Ferre. Model based on-line energy prediction system for semi-autonomous mobile robots. volume 2015-September, pages 411–416. Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 2015.S. Dogru and L. Marques. A physics-based power model for skid-steered wheeled mobile robots. IEEE Transactions on Robotics, 34:421–433, 4 2018.L. Nicholls and Y. Strengers. Robotic vacuum cleaners save energy? raising cleanliness conventions and energy demand in australian households with smart home technologies. Energy Research and Social Science, 50:73–81, 4 2019.Y. Mei, Y. H. Lu, C. S. G. Lee, and Y. C. Hu. Energy-efficient mobile robot exploration. volume 2006, pages 505–511. Proceedings of the IEEE International Conference on Robotics and Automation, 2006.A. Barili, M. Ceresa, and C. Parisi. Energy-saving motion control for an autonomous mobile robot. volume 2, pages 674–676. Proceedings of the IEEE International Symposium on Industrial Electronics, 1995.H. Kim and B. K. Kim. Minimum-energy translational trajectory planning for batterypowered three-wheeled omni-directional mobile robots. pages 1730–1735. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2008.H. Kim and B. K. Kim. Minimum-energy trajectory planning and control on a straight line with rotation for three-wheeled omni-directional mobile robots. pages 3119–3124. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.S. Liu and D. Sun. Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Transactions on Mechatronics, 19:401–411, 4 2014.A. Stefek, T. van Pham, V. Krivanek, and K. L. Pham. Energy comparison of controllers used for a differential drive wheeled mobile robot. IEEE Access, 8:170915–170927, 6 2020.M. Wahab, F. Rios-Gutierrez, and A. El-Shahat. Energy modeling of differential drive robots. pages 1–6. Proceedings of the IEEE Southeastcon, 2015.M. F. Jaramillo-Morales and J. B. Gomez-Mendoza. Mixed energy model for a differential guide mobile robot. pages 114–119. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 2018.M. F. Jaramillo-Morales, S. Dogru, L. Marques, and J. B. Gomez-Mendoza. Predictive power estimation for a differential drive mobile robot based on motor and robot dynamic models. pages 301–307. Proceedings of the 3rd IEEE International Conference on Robotic Computing (IRC), 2019.M. F. Jaramillo-Morales, S. Dogru, J. B. Gomez-Mendoza, and L. Marques. Energy estimation for differential drive mobile robots on straight and rotational trajectories. International Journal of Advanced Robotic Systems, 17, 2020.E. Grisales-Ramirez, M. F. Jaramillo-Morales, G. Osorio, and J. B. Gomez-Mendoza. Multiobjective optimal path planning for mobile robots using state space cell mapping. Proceedings of the 4th IEEE Colombian Conference on Automatic Control (CCAC), 2019.BibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84744/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053781686.2023.pdf1053781686.2023.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf3689705https://repositorio.unal.edu.co/bitstream/unal/84744/2/1053781686.2023.pdff31ff8a0b92c5164dde39c0f94f15786MD52THUMBNAIL1053781686.2023.pdf.jpg1053781686.2023.pdf.jpgGenerated Thumbnailimage/jpeg4388https://repositorio.unal.edu.co/bitstream/unal/84744/3/1053781686.2023.pdf.jpg63a4be8ddb9acf2ec5b9dd3e576ff867MD53unal/84744oai:repositorio.unal.edu.co:unal/847442023-10-02 23:03:42.776Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |