Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis

A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKD...

Full description

Autores:
Aguilar-Vargas, Soraida
Castro-Souza, Reinaldo
Pessanha, José Francisco
Cyrino-Oliveira, Fernando Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60399
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60399
http://bdigital.unal.edu.co/58731/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Wind power generation
SSA
CKDE
time series
forecasting
Generación de energía eólica
SSA
estimación condicional de la densidad por kernel
series temporales
previsión
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_016c986a25a95e1534890209fb125690
oai_identifier_str oai:repositorio.unal.edu.co:unal/60399
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
title Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
spellingShingle Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
62 Ingeniería y operaciones afines / Engineering
Wind power generation
SSA
CKDE
time series
forecasting
Generación de energía eólica
SSA
estimación condicional de la densidad por kernel
series temporales
previsión
title_short Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
title_full Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
title_fullStr Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
title_full_unstemmed Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
title_sort Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
dc.creator.fl_str_mv Aguilar-Vargas, Soraida
Castro-Souza, Reinaldo
Pessanha, José Francisco
Cyrino-Oliveira, Fernando Luiz
dc.contributor.author.spa.fl_str_mv Aguilar-Vargas, Soraida
Castro-Souza, Reinaldo
Pessanha, José Francisco
Cyrino-Oliveira, Fernando Luiz
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Wind power generation
SSA
CKDE
time series
forecasting
Generación de energía eólica
SSA
estimación condicional de la densidad por kernel
series temporales
previsión
dc.subject.proposal.spa.fl_str_mv Wind power generation
SSA
CKDE
time series
forecasting
Generación de energía eólica
SSA
estimación condicional de la densidad por kernel
series temporales
previsión
description A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKDE) Conditional Kernel Density Estimation. SSA is employed to forecast wind speed and CKDE to obtain probabilistic forecasts of wind energy, based on the fact that wind power generation has a nonlinear relation with the wind speed and both are random variables distributed according to a joint density function. A Brazilian hourly wind dataset including wind speed and wind power is used to illustrate the approach. Once the wind speed forecasts are obtained the corresponding probabilistic forecast of the wind power generation is estimated for a lead time of 24 hours ahead. The results obtained are compared with other existing methodologies.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-04-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T18:13:43Z
dc.date.available.spa.fl_str_mv 2019-07-02T18:13:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60399
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/58731/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/60399
http://bdigital.unal.edu.co/58731/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/59541
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Aguilar-Vargas, Soraida and Castro-Souza, Reinaldo and Pessanha, José Francisco and Cyrino-Oliveira, Fernando Luiz (2017) Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis. DYNA, 84 (201). pp. 145-154. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas.
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60399/1/59541-331396-3-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/60399/2/59541-331396-3-PB.pdf.jpg
bitstream.checksum.fl_str_mv a2d22094061bf370b09d67bb66fe648f
0eb141d1f5d5914b96dc6ca03f47b4e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089815414538240
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aguilar-Vargas, Soraida3856db6f-f1b9-4a81-abc9-d7fba9e6afb7300Castro-Souza, Reinaldo3ee26e1c-4346-444e-9ea3-dc3ef31a4446300Pessanha, José Francisco595323aa-bfb3-4d1f-8fd0-26380f09ebe1300Cyrino-Oliveira, Fernando Luize5ef6f31-ea9c-4b3d-9dd4-6a712e2caa803002019-07-02T18:13:43Z2019-07-02T18:13:43Z2017-04-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60399http://bdigital.unal.edu.co/58731/A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKDE) Conditional Kernel Density Estimation. SSA is employed to forecast wind speed and CKDE to obtain probabilistic forecasts of wind energy, based on the fact that wind power generation has a nonlinear relation with the wind speed and both are random variables distributed according to a joint density function. A Brazilian hourly wind dataset including wind speed and wind power is used to illustrate the approach. Once the wind speed forecasts are obtained the corresponding probabilistic forecast of the wind power generation is estimated for a lead time of 24 hours ahead. The results obtained are compared with other existing methodologies.Una parte fundamental del proceso de previsión probabilística de energía eólica es tener en cuenta las previsiones de la velocidad del viento. Para obtener pronósticos probabilísticos precisos de la producción eólica ha sido desarrollada una metodología híbrida utilizando técnicas no paramétricas conocidas como SSA (Análisis Singular Espectral) y Estimación Condicional de la Densidad por Kernel (CKDE). SSA es empleada para predecir la velocidad del viento y CKDE para obtener previsiones probabilísticas de la energía eólica, dado que la generación de la energía eólica tiene una relación no lineal con la velocidad del viento y ambas son variables aleatorias distribuidas que siguen una función de densidad conjunta. Haciendo uso de una base de datos brasilera horaria que incluye la velocidad del viento y la energía eólica es ilustrada dicha metodología. Una vez que las previsiones de la velocidad del viento son obtenidas, los correspondientes pronósticos probabilísticos de la generación de energía eólica son estimados para un horizonte de 24 horas. Los resultados obtenidos son comparados con otras metodologías existentes.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/59541Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaAguilar-Vargas, Soraida and Castro-Souza, Reinaldo and Pessanha, José Francisco and Cyrino-Oliveira, Fernando Luiz (2017) Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis. DYNA, 84 (201). pp. 145-154. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringWind power generationSSACKDEtime seriesforecastingGeneración de energía eólicaSSAestimación condicional de la densidad por kernelseries temporalesprevisiónHybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysisArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL59541-331396-3-PB.pdfapplication/pdf1061388https://repositorio.unal.edu.co/bitstream/unal/60399/1/59541-331396-3-PB.pdfa2d22094061bf370b09d67bb66fe648fMD51THUMBNAIL59541-331396-3-PB.pdf.jpg59541-331396-3-PB.pdf.jpgGenerated Thumbnailimage/jpeg10019https://repositorio.unal.edu.co/bitstream/unal/60399/2/59541-331396-3-PB.pdf.jpg0eb141d1f5d5914b96dc6ca03f47b4e8MD52unal/60399oai:repositorio.unal.edu.co:unal/603992024-04-13 23:10:27.029Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co