Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis
A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKD...
- Autores:
-
Aguilar-Vargas, Soraida
Castro-Souza, Reinaldo
Pessanha, José Francisco
Cyrino-Oliveira, Fernando Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60399
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60399
http://bdigital.unal.edu.co/58731/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Wind power generation
SSA
CKDE
time series
forecasting
Generación de energía eólica
SSA
estimación condicional de la densidad por kernel
series temporales
previsión
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_016c986a25a95e1534890209fb125690 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60399 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
title |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
spellingShingle |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis 62 Ingeniería y operaciones afines / Engineering Wind power generation SSA CKDE time series forecasting Generación de energía eólica SSA estimación condicional de la densidad por kernel series temporales previsión |
title_short |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
title_full |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
title_fullStr |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
title_full_unstemmed |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
title_sort |
Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis |
dc.creator.fl_str_mv |
Aguilar-Vargas, Soraida Castro-Souza, Reinaldo Pessanha, José Francisco Cyrino-Oliveira, Fernando Luiz |
dc.contributor.author.spa.fl_str_mv |
Aguilar-Vargas, Soraida Castro-Souza, Reinaldo Pessanha, José Francisco Cyrino-Oliveira, Fernando Luiz |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Wind power generation SSA CKDE time series forecasting Generación de energía eólica SSA estimación condicional de la densidad por kernel series temporales previsión |
dc.subject.proposal.spa.fl_str_mv |
Wind power generation SSA CKDE time series forecasting Generación de energía eólica SSA estimación condicional de la densidad por kernel series temporales previsión |
description |
A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKDE) Conditional Kernel Density Estimation. SSA is employed to forecast wind speed and CKDE to obtain probabilistic forecasts of wind energy, based on the fact that wind power generation has a nonlinear relation with the wind speed and both are random variables distributed according to a joint density function. A Brazilian hourly wind dataset including wind speed and wind power is used to illustrate the approach. Once the wind speed forecasts are obtained the corresponding probabilistic forecast of the wind power generation is estimated for a lead time of 24 hours ahead. The results obtained are compared with other existing methodologies. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-04-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:13:43Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:13:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60399 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58731/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60399 http://bdigital.unal.edu.co/58731/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/59541 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Aguilar-Vargas, Soraida and Castro-Souza, Reinaldo and Pessanha, José Francisco and Cyrino-Oliveira, Fernando Luiz (2017) Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis. DYNA, 84 (201). pp. 145-154. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60399/1/59541-331396-3-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60399/2/59541-331396-3-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
a2d22094061bf370b09d67bb66fe648f 0eb141d1f5d5914b96dc6ca03f47b4e8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089815414538240 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aguilar-Vargas, Soraida3856db6f-f1b9-4a81-abc9-d7fba9e6afb7300Castro-Souza, Reinaldo3ee26e1c-4346-444e-9ea3-dc3ef31a4446300Pessanha, José Francisco595323aa-bfb3-4d1f-8fd0-26380f09ebe1300Cyrino-Oliveira, Fernando Luize5ef6f31-ea9c-4b3d-9dd4-6a712e2caa803002019-07-02T18:13:43Z2019-07-02T18:13:43Z2017-04-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60399http://bdigital.unal.edu.co/58731/A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular Spectrum Analysis) and (CKDE) Conditional Kernel Density Estimation. SSA is employed to forecast wind speed and CKDE to obtain probabilistic forecasts of wind energy, based on the fact that wind power generation has a nonlinear relation with the wind speed and both are random variables distributed according to a joint density function. A Brazilian hourly wind dataset including wind speed and wind power is used to illustrate the approach. Once the wind speed forecasts are obtained the corresponding probabilistic forecast of the wind power generation is estimated for a lead time of 24 hours ahead. The results obtained are compared with other existing methodologies.Una parte fundamental del proceso de previsión probabilística de energía eólica es tener en cuenta las previsiones de la velocidad del viento. Para obtener pronósticos probabilísticos precisos de la producción eólica ha sido desarrollada una metodología híbrida utilizando técnicas no paramétricas conocidas como SSA (Análisis Singular Espectral) y Estimación Condicional de la Densidad por Kernel (CKDE). SSA es empleada para predecir la velocidad del viento y CKDE para obtener previsiones probabilísticas de la energía eólica, dado que la generación de la energía eólica tiene una relación no lineal con la velocidad del viento y ambas son variables aleatorias distribuidas que siguen una función de densidad conjunta. Haciendo uso de una base de datos brasilera horaria que incluye la velocidad del viento y la energía eólica es ilustrada dicha metodología. Una vez que las previsiones de la velocidad del viento son obtenidas, los correspondientes pronósticos probabilísticos de la generación de energía eólica son estimados para un horizonte de 24 horas. Los resultados obtenidos son comparados con otras metodologías existentes.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/59541Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaAguilar-Vargas, Soraida and Castro-Souza, Reinaldo and Pessanha, José Francisco and Cyrino-Oliveira, Fernando Luiz (2017) Hybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysis. DYNA, 84 (201). pp. 145-154. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringWind power generationSSACKDEtime seriesforecastingGeneración de energía eólicaSSAestimación condicional de la densidad por kernelseries temporalesprevisiónHybrid methodology for modeling short-term wind power generation using conditional Kernel density estimation and singular spectrum analysisArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL59541-331396-3-PB.pdfapplication/pdf1061388https://repositorio.unal.edu.co/bitstream/unal/60399/1/59541-331396-3-PB.pdfa2d22094061bf370b09d67bb66fe648fMD51THUMBNAIL59541-331396-3-PB.pdf.jpg59541-331396-3-PB.pdf.jpgGenerated Thumbnailimage/jpeg10019https://repositorio.unal.edu.co/bitstream/unal/60399/2/59541-331396-3-PB.pdf.jpg0eb141d1f5d5914b96dc6ca03f47b4e8MD52unal/60399oai:repositorio.unal.edu.co:unal/603992024-04-13 23:10:27.029Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |