Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE
Debido a que el tráfico de datos está creciendo a un ritmo rápido gracias a los avances en el Internet de las Cosas, el modelado preciso y la anticipación exacta del Long-Term Evolution (LTE) es fundamental para una variedad de aplicaciones como el streaming de vídeo, el consumo efectivo de ancho de...
- Autores:
-
Pathan, Siraj
Kumar Singh, Sanjay
Pathak, Sunil
Tamboli, Mujib
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/26593
- Palabra clave:
- Algoritmo Genético
Inteligencia de Enjambre de Partículas
Canal de Evolución a Largo Plazo
Error Cuadrático Medio Mínimo
Mínimos Cuadrados
Genetic Algorithm
Particle swarm intelligence
Long Term Evolution
Minimum Mean Square Error
Least Square
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_c1b5868b4d18b92e28e48431602ad0c4 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/26593 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
dc.title.translated.eng.fl_str_mv |
Research on Computational Intelligence Algorithm in LTE Channel Estimation |
title |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
spellingShingle |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE Algoritmo Genético Inteligencia de Enjambre de Partículas Canal de Evolución a Largo Plazo Error Cuadrático Medio Mínimo Mínimos Cuadrados Genetic Algorithm Particle swarm intelligence Long Term Evolution Minimum Mean Square Error Least Square |
title_short |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
title_full |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
title_fullStr |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
title_full_unstemmed |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
title_sort |
Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE |
dc.creator.fl_str_mv |
Pathan, Siraj Kumar Singh, Sanjay Pathak, Sunil Tamboli, Mujib |
dc.contributor.author.none.fl_str_mv |
Pathan, Siraj Kumar Singh, Sanjay Pathak, Sunil Tamboli, Mujib |
dc.contributor.orcid.spa.fl_str_mv |
Pathan, Siraj [0000-0002-1728-3030] Kumar Singh, Sanjay [0000-0002-4426-3895] Pathak, Sunil [0000-0001-7409-9814] Tamboli, Mujib [0000-0002-5891-3713] |
dc.subject.spa.fl_str_mv |
Algoritmo Genético Inteligencia de Enjambre de Partículas Canal de Evolución a Largo Plazo Error Cuadrático Medio Mínimo Mínimos Cuadrados |
topic |
Algoritmo Genético Inteligencia de Enjambre de Partículas Canal de Evolución a Largo Plazo Error Cuadrático Medio Mínimo Mínimos Cuadrados Genetic Algorithm Particle swarm intelligence Long Term Evolution Minimum Mean Square Error Least Square |
dc.subject.keywords.eng.fl_str_mv |
Genetic Algorithm Particle swarm intelligence Long Term Evolution Minimum Mean Square Error Least Square |
description |
Debido a que el tráfico de datos está creciendo a un ritmo rápido gracias a los avances en el Internet de las Cosas, el modelado preciso y la anticipación exacta del Long-Term Evolution (LTE) es fundamental para una variedad de aplicaciones como el streaming de vídeo, el consumo efectivo de ancho de banda, y la gestión de la energía. En esta investigación, proponemos un modelo basado en un Algoritmo de Inteligencia Computacional (IC) que puede mejorar la Estimación del Canal basado en la señal recibida. Se consideran dos algoritmos. A diferencia de los trabajos anteriores que se centraban únicamente en el diseño de modelos para estimar el canal utilizando los algoritmos tradicionales de Error Cuadrático Medio (MMSE) y de Mínimos Cuadrados (LS), nosotros utilizamos 1) GA (Algoritmo Genético) y 2) PSO (Algoritmo de Optimización de Enjambre de Partículas) para trabajar con datos de prueba de conducción discreta y continua de Long-Term Evolution (LTE). Nos fijamos en LTE en la banda de 5,8 GHz en particular. Al reducir el error cuadrático medio de LS y la complejidad de MMSE, el modelo de diseño intenta mejorar la estimación del canal. Los pilotos se colocan al azar y se envían con los datos para recopilar información sobre el canal, lo que ayuda al receptor a descodificar y estimar el canal mediante LS, MMSE, Taguchi GA y PSO. Se ha estimado la tasa de error de bits (BER), la relación señal/ruido y el error cuadrático medio de un modelo basado en IC. En comparación con los algoritmos MMSE y LS, el modelo BER propuesto alcanza la ganancia objetivo de 2,4 dB y 5,4 dB. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-17 |
dc.date.accessioned.none.fl_str_mv |
2024-09-17T15:59:15Z |
dc.date.available.none.fl_str_mv |
2024-09-17T15:59:15Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/26593 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.4308 |
identifier_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/26593 https://doi.org/10.29375/25392115.4308 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/4308/3690 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/285 |
dc.relation.references.none.fl_str_mv |
3GPP. (2008, November). LTE. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. TS 36.211. Retrieved from https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.03.00_60/ts_136211v080300p.pdf Dongming, W., Bing, H., Junhui, Z., Xiqi, G., & Xiaohu, Y. (2003, September). Channel estimation algorithms for broadband MIMO-OFDM sparse channel. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. (pp. 1929-1933). Beijing: IEEE. doi:10.1109/PIMRC.2003.1260454 Edfors, O., Sandell, M., van de Beek, J. J., Wilson, S. K., & Ola Borjesson, P. (1996, April 28). OFDM channel estimation by singular value decomposition. Proceedings of Vehicular Technology Conference - VTC (pp. 923-927). Atlanta, GA, USA: IEEE. doi:10.1109/VETEC.1996.501446 Khlifi, A., & Bouallegue, R. (2011, October). Performance Analysis of LS and LMMSE channel estimation techniques for LTE Downlink Systems. International Journal of Wireless & Mobile Networks (IJWMN), 3(5), 141-149. doi:10.5121/ijwmn.2011.3511 Li, Y., Seshadri, N., & Ariyavisitakul, S. (1999, March). Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications, 17(3), 461-471. doi:10.1109/49.753731 Masud Rana. (2010, December). Channel estimation techniques and LTE terminal implementation challenges. 2010 13th International Conference on Computer and Information Technology (ICCIT) (pp. 545-549). Dhaka: IEEE. doi:10.1109/ICCITECHN.2010.5723916 Muquet, B., Wang, Z., Giannakis, G. B., de Courville, M., & Duhamel, P. (2002). Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications, 50(12), 2136-2148. doi:10.1109/TCOMM.2002.806518 Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004, Feb.). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218. doi:10.1109/JPROC.2003.821915 Rana, M. (2010, December). Channel estimation techniques and LTE terminal implementation challenges. 2010 13th International Conference on Computer and Information Technology (ICCIT), (pp. 545-549). Dhaka. doi:10.1109/ICCITECHN.2010.5723916 Shaodan, M., & Tung-Sang, N. (2006, December). Semi-Blind Time Domain Equalization for MIMO-OFDM Systems. 2006 IEEE Asia Pacific Conference on Circuits and Systems, (pp. 2219-2227). Singapore. doi:10.1109/APCCAS.2006.342329 Shaodan, M., & Tung-Sang, N. (2007, February 2007). Time domain signal detection based on second-order statistics for MIMO-OFDM Systems. IEEE Transactions on Signal Processing, 55(3), 1150-1158. doi:10.1109/TSP.2006.888063 Simko, M., Wu, D., Mehlfuerer, C., Eilert, J., & Liu, D. (2011, April). Implementation Aspects of Channel Estimation for 3GPP LTE Terminals. 17th European Wireless 2011 - Sustainable Wireless Technologies (pp. 17th European Wireless 2011 - Sustainable Wireless Technologies). Vienna: VDE. Retrieved from https://ieeexplore.ieee.org/document/5897996/ van de Beek, J. J., Edfors, O., Sandell, M., Wilson, S. K., & Borjesson, P. O. (1995, July). On channel estimation in OFDM systems. 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century (pp. 815-819). Chicago, IL, USA: IEEE. doi:10.1109/VETEC.1995.504981 Wang, D., Han, B., Zhao, J., Gao, X., & You, X. (2003, September). Channel estimation algorithms for broadband MIMO-OFDM sparse channel. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 2, pp. 1929-1933. Beijing, China: IEEE. doi:10.1109/PIMRC.2003.1260454 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 23 Núm. 2 (2022): Revista Colombiana de Computación (Julio-Diciembre); 17-28 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/26593/1/Art%c3%adculo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/26593/3/Art%c3%adculo.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/26593/2/license.txt |
bitstream.checksum.fl_str_mv |
4d3dc2528c5cd4212cc7906fd0788666 cdda4e2fe62d9b8b20dc852590cd8a4a 855f7d18ea80f5df821f7004dff2f316 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277318214942720 |
spelling |
Pathan, Siraj470d43e3-0d80-4a16-8af0-657ec09345b2Kumar Singh, Sanjay66f0486c-bc5f-4058-9db0-d5dc0d12372ePathak, Sunil13a99c67-310d-42f2-9fda-7866e50a2157Tamboli, Mujib8cef0698-1f7d-4f46-9841-c508f4f8575fPathan, Siraj [0000-0002-1728-3030]Kumar Singh, Sanjay [0000-0002-4426-3895]Pathak, Sunil [0000-0001-7409-9814]Tamboli, Mujib [0000-0002-5891-3713]2024-09-17T15:59:15Z2024-09-17T15:59:15Z2022-11-17ISSN: 1657-2831e-ISSN: 2539-2115http://hdl.handle.net/20.500.12749/26593instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.4308Debido a que el tráfico de datos está creciendo a un ritmo rápido gracias a los avances en el Internet de las Cosas, el modelado preciso y la anticipación exacta del Long-Term Evolution (LTE) es fundamental para una variedad de aplicaciones como el streaming de vídeo, el consumo efectivo de ancho de banda, y la gestión de la energía. En esta investigación, proponemos un modelo basado en un Algoritmo de Inteligencia Computacional (IC) que puede mejorar la Estimación del Canal basado en la señal recibida. Se consideran dos algoritmos. A diferencia de los trabajos anteriores que se centraban únicamente en el diseño de modelos para estimar el canal utilizando los algoritmos tradicionales de Error Cuadrático Medio (MMSE) y de Mínimos Cuadrados (LS), nosotros utilizamos 1) GA (Algoritmo Genético) y 2) PSO (Algoritmo de Optimización de Enjambre de Partículas) para trabajar con datos de prueba de conducción discreta y continua de Long-Term Evolution (LTE). Nos fijamos en LTE en la banda de 5,8 GHz en particular. Al reducir el error cuadrático medio de LS y la complejidad de MMSE, el modelo de diseño intenta mejorar la estimación del canal. Los pilotos se colocan al azar y se envían con los datos para recopilar información sobre el canal, lo que ayuda al receptor a descodificar y estimar el canal mediante LS, MMSE, Taguchi GA y PSO. Se ha estimado la tasa de error de bits (BER), la relación señal/ruido y el error cuadrático medio de un modelo basado en IC. En comparación con los algoritmos MMSE y LS, el modelo BER propuesto alcanza la ganancia objetivo de 2,4 dB y 5,4 dB.Because data traffic is growing at a rapid pace thanks to advancements in the Internet of Things, precise modelling and precisely anticipating Long-Term Evolution (LTE) Channel is critical for a variety of applications like as video streaming, effective bandwidth consumption, and power management. In this research, we propose a model based on a Computational Intelligence (CI) Algorithm that may enhance Channel Estimation based on received signal. Two Algorithms are considered. In contrast to previous work that focused solely on designing models to estimate channel using traditional Minimum Mean Square Error (MMSE) and Least Square (LS) algorithms, we used 1) GA (Genetic Algorithm) and 2) PSO (Particle Swarm Optimization Algorithm) to work on Discrete and Continuous Long-Term Evolution (LTE) drive test data. We're looking at LTE in the 5.8 GHz band in particular. By lowering the mean square error of LS and the complexity of MMSE, the design model attempts to improve channel estimation. Pilots are put at random and sent with data to gather channel information, which aids the receiver in decoding and estimating the channel using LS, MMSE, Taguchi GA, and PSO. The Bit Error Rate (BER), Signal to Noise Ratio, and Mean Square Error of a CI-based model have all been estimated. In comparison to the MMSE and LS algorithms, the proposed model BER achieves the target gain of 2.4 dB and 5.4 dB.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/4308/3690https://revistas.unab.edu.co/index.php/rcc/issue/view/2853GPP. (2008, November). LTE. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. TS 36.211. Retrieved from https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.03.00_60/ts_136211v080300p.pdfDongming, W., Bing, H., Junhui, Z., Xiqi, G., & Xiaohu, Y. (2003, September). Channel estimation algorithms for broadband MIMO-OFDM sparse channel. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. (pp. 1929-1933). Beijing: IEEE. doi:10.1109/PIMRC.2003.1260454Edfors, O., Sandell, M., van de Beek, J. J., Wilson, S. K., & Ola Borjesson, P. (1996, April 28). OFDM channel estimation by singular value decomposition. Proceedings of Vehicular Technology Conference - VTC (pp. 923-927). Atlanta, GA, USA: IEEE. doi:10.1109/VETEC.1996.501446Khlifi, A., & Bouallegue, R. (2011, October). Performance Analysis of LS and LMMSE channel estimation techniques for LTE Downlink Systems. International Journal of Wireless & Mobile Networks (IJWMN), 3(5), 141-149. doi:10.5121/ijwmn.2011.3511Li, Y., Seshadri, N., & Ariyavisitakul, S. (1999, March). Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications, 17(3), 461-471. doi:10.1109/49.753731Masud Rana. (2010, December). Channel estimation techniques and LTE terminal implementation challenges. 2010 13th International Conference on Computer and Information Technology (ICCIT) (pp. 545-549). Dhaka: IEEE. doi:10.1109/ICCITECHN.2010.5723916Muquet, B., Wang, Z., Giannakis, G. B., de Courville, M., & Duhamel, P. (2002). Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications, 50(12), 2136-2148. doi:10.1109/TCOMM.2002.806518Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004, Feb.). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218. doi:10.1109/JPROC.2003.821915Rana, M. (2010, December). Channel estimation techniques and LTE terminal implementation challenges. 2010 13th International Conference on Computer and Information Technology (ICCIT), (pp. 545-549). Dhaka. doi:10.1109/ICCITECHN.2010.5723916Shaodan, M., & Tung-Sang, N. (2006, December). Semi-Blind Time Domain Equalization for MIMO-OFDM Systems. 2006 IEEE Asia Pacific Conference on Circuits and Systems, (pp. 2219-2227). Singapore. doi:10.1109/APCCAS.2006.342329Shaodan, M., & Tung-Sang, N. (2007, February 2007). Time domain signal detection based on second-order statistics for MIMO-OFDM Systems. IEEE Transactions on Signal Processing, 55(3), 1150-1158. doi:10.1109/TSP.2006.888063Simko, M., Wu, D., Mehlfuerer, C., Eilert, J., & Liu, D. (2011, April). Implementation Aspects of Channel Estimation for 3GPP LTE Terminals. 17th European Wireless 2011 - Sustainable Wireless Technologies (pp. 17th European Wireless 2011 - Sustainable Wireless Technologies). Vienna: VDE. Retrieved from https://ieeexplore.ieee.org/document/5897996/van de Beek, J. J., Edfors, O., Sandell, M., Wilson, S. K., & Borjesson, P. O. (1995, July). On channel estimation in OFDM systems. 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century (pp. 815-819). Chicago, IL, USA: IEEE. doi:10.1109/VETEC.1995.504981Wang, D., Han, B., Zhao, J., Gao, X., & You, X. (2003, September). Channel estimation algorithms for broadband MIMO-OFDM sparse channel. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 2, pp. 1929-1933. Beijing, China: IEEE. doi:10.1109/PIMRC.2003.1260454Vol. 23 Núm. 2 (2022): Revista Colombiana de Computación (Julio-Diciembre); 17-28Algoritmo GenéticoInteligencia de Enjambre de PartículasCanal de Evolución a Largo PlazoError Cuadrático Medio MínimoMínimos CuadradosGenetic AlgorithmParticle swarm intelligenceLong Term EvolutionMinimum Mean Square ErrorLeast SquareInvestigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTEResearch on Computational Intelligence Algorithm in LTE Channel Estimationinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArtículo.pdfArtículo.pdfArtículoapplication/pdf815784https://repository.unab.edu.co/bitstream/20.500.12749/26593/1/Art%c3%adculo.pdf4d3dc2528c5cd4212cc7906fd0788666MD51open accessTHUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg9353https://repository.unab.edu.co/bitstream/20.500.12749/26593/3/Art%c3%adculo.pdf.jpgcdda4e2fe62d9b8b20dc852590cd8a4aMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/26593/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open access20.500.12749/26593oai:repository.unab.edu.co:20.500.12749/265932024-09-17 22:00:52.086open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |