Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre
El Aprendizaje Profundo (AP) ha hecho avanzar la visión por ordenador, ofreciendo un rendimiento impresionante en tareas visuales complejas. Sin embargo, persiste la necesidad de estimaciones precisas de la incertidumbre, en particular para las entradas fuera de distribución (OOD, en su acrónimo en...
- Autores:
-
Pautsch, Erik
Li, John
Rizzi, Silvio
Thiruvathukal, George K.
Pantoja, Maria
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/28291
- Palabra clave:
- Incertidumbre
Aprendizaje Profundo
Aprendizaje por conjuntos
Aprendizaje evidencial
Inteligencia Artificial
Uncertainty
Deep Learning
Ensembles
Evidential Learning
Artificial intelligence
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_8775fb2041a557d7350e74ac9b736b4c |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/28291 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
dc.title.translated.eng.fl_str_mv |
Evaluation of Novel AI Architectures for Uncertainty Estimation |
title |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
spellingShingle |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre Incertidumbre Aprendizaje Profundo Aprendizaje por conjuntos Aprendizaje evidencial Inteligencia Artificial Uncertainty Deep Learning Ensembles Evidential Learning Artificial intelligence |
title_short |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
title_full |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
title_fullStr |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
title_full_unstemmed |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
title_sort |
Evaluación de nuevas arquitecturas de IA para la estimación de la incertidumbre |
dc.creator.fl_str_mv |
Pautsch, Erik Li, John Rizzi, Silvio Thiruvathukal, George K. Pantoja, Maria |
dc.contributor.author.none.fl_str_mv |
Pautsch, Erik Li, John Rizzi, Silvio Thiruvathukal, George K. Pantoja, Maria |
dc.contributor.orcid.spa.fl_str_mv |
Pautsch, Erik [0000-0003-0028-5598] Li, John [0000-0002-3730-3713] Rizzi, Silvio [0000-0002-3804-2471] Thiruvathukal, George K. [0000-0002-0452-5571] Pantoja, Maria [0000-0002-1942-9769] |
dc.subject.spa.fl_str_mv |
Incertidumbre Aprendizaje Profundo Aprendizaje por conjuntos Aprendizaje evidencial Inteligencia Artificial |
topic |
Incertidumbre Aprendizaje Profundo Aprendizaje por conjuntos Aprendizaje evidencial Inteligencia Artificial Uncertainty Deep Learning Ensembles Evidential Learning Artificial intelligence |
dc.subject.keywords.eng.fl_str_mv |
Uncertainty Deep Learning Ensembles Evidential Learning Artificial intelligence |
description |
El Aprendizaje Profundo (AP) ha hecho avanzar la visión por ordenador, ofreciendo un rendimiento impresionante en tareas visuales complejas. Sin embargo, persiste la necesidad de estimaciones precisas de la incertidumbre, en particular para las entradas fuera de distribución (OOD, en su acrónimo en inglés). Nuestra investigación evalúa la incertidumbre en Redes Neuronales Convolucionales (CNN, en inglés) y transformadores de visión (ViT, en inglés) utilizando los conjuntos de datos MNIST e ImageNet-1K. Utilizando plataformas de Alto Rendimiento (HPC, en inglés), incluidos el superordenador tradicional Polaris y aceleradores de IA como Cerebras CS-2 y SambaNova DataScale, evaluamos los méritos computacionales y los cuellos de botella de cada plataforma. En este artículo se describen las consideraciones clave para utilizar la HPC en la estimación de la incertidumbre en el AP, y se ofrecen ideas que guían la integración de algoritmos y hardware para aplicaciones de AP robustas, especialmente en visión por ordenador. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-06-18 |
dc.date.accessioned.none.fl_str_mv |
2025-02-13T21:03:20Z |
dc.date.available.none.fl_str_mv |
2025-02-13T21:03:20Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
1657-2831 |
dc.identifier.issn.none.fl_str_mv |
2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/28291 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.5274 |
identifier_str_mv |
1657-2831 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/28291 https://doi.org/10.29375/25392115.5274 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/5274/4084 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/303 |
dc.relation.references.none.fl_str_mv |
Amini, A., Schwarting, W., & Rus, D. (2020, December 6). Deep evidential regression. In H. Larochelle, M. Ranzato, R. T. Hadsell, M. F. Balcan, & H. Lin (Eds.), NIPS'20: 34th International Conference on Neural Information Processing Systems, Vancouver BC, Canada, December 6-12, (pp. 14927-14937, Article 1251). Red Hook, NY, USA: Curran Associates Inc. doi:10.5555/3495724.3496975 ANL. (2021, August 26). Polaris. (Argonne National Laboratory) Retrieved July 2023, from ANL website: https://www.alcf.anl.gov/polaris Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller, U. (2017, April 25). Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv:1704.07911v1 [cs.CV], 1-8. doi:10.48550/arXiv.1704.07911 Cordonnier, J.-B., Loukas, A., & Jaggi, M. (2020). On the relationship between selfattention and convolutional layers. Eighth International Conference on Learning Representations - ICLR 2020, April 26-30. Addis Ababa. Retrieved from https://infoscience.epfl.ch/entities/publication/48815b9c-e947-4c4d-84fa-7ebf1f6df4dd/conferencedetails Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Li, F.-F. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 20-25 June (pp. 248-255). Miami, FL, USA: IEEE. doi:10.1109/CVPR.2009.5206848 Emani, M., Vishwanath, V., Adams, C., Papka, M. E., Stevens, R., Florescu, L., . . . Sujeeth, A. (2021, March 26). Accelerating scientific applications with sambanova reconfigurable dataflow architecture. Computing in Science & Engineering, 23(2), 114–119. doi:10.1109/MCSE.2021.3057203 Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In M. F. Balcan, & K. Q. Weinberger (Ed.), Proceedings of The 33rd International Conference on Machine Learning. 48, pp. 1050-1059. New York, New York, USA (20–22 Jun 2016): PMLR. Retrieved from https://proceedings.mlr.press/v48/gal16.html Geifman, Y., & El-Yaniv, R. (2017, December 4). Selective classification for deep neural networks. In U. von Luxburg, I. M. Guyon, S. Bengio, H. M. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, December 4 - 9, 2017 (pp. 4885-4894). Red Hook, NY, USA: Curran Associates Inc. doi:10.5555/3295222.3295241 Guo, C., Pleiss, G., Sun, Y., & Weinber, K. Q. (2017). On calibration of modern neural networks. In D. Precup, & Y. W. Teh (Ed.), Proceedings of the 34th International Conference on Machine Learning. 70, pp. 1321-1330. PMLR. Retrieved from https://proceedings.mlr.press/v70/guo17a.html Hendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan, R., & Song, D. (2020, July). Pretrained transformers improve out-of-distribution robustness. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 2744–2751). Online: Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.244 Lecun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., . . . Vapnik, V. (1995). Learning algorithms for classification: A comparison on handwritten digit recognition. In J. H. Oh, C. Kwon, & S. Cho (Eds.), Learning algorithms for classification: A comparison on handwritten digit recognition (pp. 261-276). World Scientific. Retrieved from https://nyuscholars.nyu.edu/en/publications/learning-algorithms-for-classification-a-comparison-on-handwritte Lie, S. (2022). Cerebras architecture deep dive: First look inside the hw/sw co-design for deep learning. In 2022 IEEE Hot Chips 34 Symposium (HCS), 21-23 August (pp. 1–34). Cupertino, CA, USA: IEEE. doi:10.1109/HCS55958.2022.9895479 Liu, Y., & Guo, H. (2020, July 13). Peer loss functions: Learning from noisy labels without knowing noise rates. In H. C. Daumé, & A. Singh (Eds.), ICML'20: International Conference on Machine LearningJuly 13 - 18 (Vols. 119, Article 578, pp. 6226–6236). JMLR.org. MacDonald, S., Foley, H., Yap, M., Johnston, R. L., Steven, K., Koufariotis, L. T., . . . Trzaskowski, M. (2023, May 6). Generalising uncertainty improves accuracy and safety of deep learning analytics applied to oncology. Scientific Reports, 13, 7395. doi:10.1038/s41598-023-31126-5 Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., . . . Snoek, J. (2019). Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 32). Red Hook, NY, USA: Curran Associates Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdf Ren, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N., . . . Majumdar, A. (2023, September 4). Robots that ask for help: Uncertainty alignment for large language model planners. arXiv:2307.01928v2 [cs.RO], 1-24. doi:10.48550/arXiv.2307.01928 Tamkin, A., Nguyen, D., Deshpande, S., Mu, J., & Goodman, N. (2022). Active learning helps pretrained models learn the intended task. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 28140-28153). Curran Associates Inc. Retrieved from |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 23-34 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/28291/1/Articulo%203.pdf https://repository.unab.edu.co/bitstream/20.500.12749/28291/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/28291/3/Articulo%203.pdf.jpg |
bitstream.checksum.fl_str_mv |
86b1d5522ee54dfad88f95b5b59c00e4 855f7d18ea80f5df821f7004dff2f316 df662dfdac7e7c6cbe88b00c912b0a58 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219839932530688 |
spelling |
Pautsch, Erik38e93bf6-4dbf-4f44-bf55-c20f77b23f8aLi, John54577f32-2bb5-40b8-aaeb-b585b4baa63dRizzi, Silvio1bc59e75-7454-4a7f-b8dc-75280a9b15eaThiruvathukal, George K.ff13bf4f-6254-4721-bc05-b7b64c58047cPantoja, Maria63f196a7-6201-4e3f-8bc9-71f7205541bfPautsch, Erik [0000-0003-0028-5598]Li, John [0000-0002-3730-3713]Rizzi, Silvio [0000-0002-3804-2471]Thiruvathukal, George K. [0000-0002-0452-5571]Pantoja, Maria [0000-0002-1942-9769]2025-02-13T21:03:20Z2025-02-13T21:03:20Z2024-06-181657-28312539-2115http://hdl.handle.net/20.500.12749/28291instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.5274El Aprendizaje Profundo (AP) ha hecho avanzar la visión por ordenador, ofreciendo un rendimiento impresionante en tareas visuales complejas. Sin embargo, persiste la necesidad de estimaciones precisas de la incertidumbre, en particular para las entradas fuera de distribución (OOD, en su acrónimo en inglés). Nuestra investigación evalúa la incertidumbre en Redes Neuronales Convolucionales (CNN, en inglés) y transformadores de visión (ViT, en inglés) utilizando los conjuntos de datos MNIST e ImageNet-1K. Utilizando plataformas de Alto Rendimiento (HPC, en inglés), incluidos el superordenador tradicional Polaris y aceleradores de IA como Cerebras CS-2 y SambaNova DataScale, evaluamos los méritos computacionales y los cuellos de botella de cada plataforma. En este artículo se describen las consideraciones clave para utilizar la HPC en la estimación de la incertidumbre en el AP, y se ofrecen ideas que guían la integración de algoritmos y hardware para aplicaciones de AP robustas, especialmente en visión por ordenador.Deep Learning (DL) has advanced computer vision, delivering impressive performance on intricate visual tasks. Yet, the need for accurate uncertainty estimations, particularly for out-of-distribution (OOD) inputs, persists. Our research evaluates uncertainty in Convolutional Neural Networks (CNN) and Vision Transformers (ViT) using the MNIST and ImageNet-1K datasets. Using High-Performance (HPC) platforms, including the traditional Polaris supercomputer and AI accelerators like Cerebras CS-2 and SambaNova DataScale, we assessed the computational merits and bottlenecks of each platform. This paper delineates key considerations for using HPC in uncertainty estimations in DL, offering insights that guide the integration of algorithms and hardware for robust DL applications, especially in computer vision.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/5274/4084https://revistas.unab.edu.co/index.php/rcc/issue/view/303Amini, A., Schwarting, W., & Rus, D. (2020, December 6). Deep evidential regression. In H. Larochelle, M. Ranzato, R. T. Hadsell, M. F. Balcan, & H. Lin (Eds.), NIPS'20: 34th International Conference on Neural Information Processing Systems, Vancouver BC, Canada, December 6-12, (pp. 14927-14937, Article 1251). Red Hook, NY, USA: Curran Associates Inc. doi:10.5555/3495724.3496975ANL. (2021, August 26). Polaris. (Argonne National Laboratory) Retrieved July 2023, from ANL website: https://www.alcf.anl.gov/polarisBojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller, U. (2017, April 25). Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv:1704.07911v1 [cs.CV], 1-8. doi:10.48550/arXiv.1704.07911Cordonnier, J.-B., Loukas, A., & Jaggi, M. (2020). On the relationship between selfattention and convolutional layers. Eighth International Conference on Learning Representations - ICLR 2020, April 26-30. Addis Ababa. Retrieved from https://infoscience.epfl.ch/entities/publication/48815b9c-e947-4c4d-84fa-7ebf1f6df4dd/conferencedetailsDeng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Li, F.-F. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 20-25 June (pp. 248-255). Miami, FL, USA: IEEE. doi:10.1109/CVPR.2009.5206848Emani, M., Vishwanath, V., Adams, C., Papka, M. E., Stevens, R., Florescu, L., . . . Sujeeth, A. (2021, March 26). Accelerating scientific applications with sambanova reconfigurable dataflow architecture. Computing in Science & Engineering, 23(2), 114–119. doi:10.1109/MCSE.2021.3057203Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In M. F. Balcan, & K. Q. Weinberger (Ed.), Proceedings of The 33rd International Conference on Machine Learning. 48, pp. 1050-1059. New York, New York, USA (20–22 Jun 2016): PMLR. Retrieved from https://proceedings.mlr.press/v48/gal16.htmlGeifman, Y., & El-Yaniv, R. (2017, December 4). Selective classification for deep neural networks. In U. von Luxburg, I. M. Guyon, S. Bengio, H. M. Wallach, & R. Fergus (Eds.), NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, December 4 - 9, 2017 (pp. 4885-4894). Red Hook, NY, USA: Curran Associates Inc. doi:10.5555/3295222.3295241Guo, C., Pleiss, G., Sun, Y., & Weinber, K. Q. (2017). On calibration of modern neural networks. In D. Precup, & Y. W. Teh (Ed.), Proceedings of the 34th International Conference on Machine Learning. 70, pp. 1321-1330. PMLR. Retrieved from https://proceedings.mlr.press/v70/guo17a.htmlHendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan, R., & Song, D. (2020, July). Pretrained transformers improve out-of-distribution robustness. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 2744–2751). Online: Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.244Lecun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., . . . Vapnik, V. (1995). Learning algorithms for classification: A comparison on handwritten digit recognition. In J. H. Oh, C. Kwon, & S. Cho (Eds.), Learning algorithms for classification: A comparison on handwritten digit recognition (pp. 261-276). World Scientific. Retrieved from https://nyuscholars.nyu.edu/en/publications/learning-algorithms-for-classification-a-comparison-on-handwritteLie, S. (2022). Cerebras architecture deep dive: First look inside the hw/sw co-design for deep learning. In 2022 IEEE Hot Chips 34 Symposium (HCS), 21-23 August (pp. 1–34). Cupertino, CA, USA: IEEE. doi:10.1109/HCS55958.2022.9895479Liu, Y., & Guo, H. (2020, July 13). Peer loss functions: Learning from noisy labels without knowing noise rates. In H. C. Daumé, & A. Singh (Eds.), ICML'20: International Conference on Machine LearningJuly 13 - 18 (Vols. 119, Article 578, pp. 6226–6236). JMLR.org.MacDonald, S., Foley, H., Yap, M., Johnston, R. L., Steven, K., Koufariotis, L. T., . . . Trzaskowski, M. (2023, May 6). Generalising uncertainty improves accuracy and safety of deep learning analytics applied to oncology. Scientific Reports, 13, 7395. doi:10.1038/s41598-023-31126-5Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., . . . Snoek, J. (2019). Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 32). Red Hook, NY, USA: Curran Associates Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/8558cb408c1d76621371888657d2eb1d-Paper.pdfRen, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N., . . . Majumdar, A. (2023, September 4). Robots that ask for help: Uncertainty alignment for large language model planners. arXiv:2307.01928v2 [cs.RO], 1-24. doi:10.48550/arXiv.2307.01928Tamkin, A., Nguyen, D., Deshpande, S., Mu, J., & Goodman, N. (2022). Active learning helps pretrained models learn the intended task. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 28140-28153). Curran Associates Inc. Retrieved fromVol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 23-34IncertidumbreAprendizaje ProfundoAprendizaje por conjuntosAprendizaje evidencialInteligencia ArtificialUncertaintyDeep LearningEnsemblesEvidential LearningArtificial intelligenceEvaluación de nuevas arquitecturas de IA para la estimación de la incertidumbreEvaluation of Novel AI Architectures for Uncertainty Estimationinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArticulo 3.pdfArticulo 3.pdfArtículoapplication/pdf818443https://repository.unab.edu.co/bitstream/20.500.12749/28291/1/Articulo%203.pdf86b1d5522ee54dfad88f95b5b59c00e4MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/28291/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArticulo 3.pdf.jpgArticulo 3.pdf.jpgIM Thumbnailimage/jpeg9803https://repository.unab.edu.co/bitstream/20.500.12749/28291/3/Articulo%203.pdf.jpgdf662dfdac7e7c6cbe88b00c912b0a58MD53open access20.500.12749/28291oai:repository.unab.edu.co:20.500.12749/282912025-02-13 22:00:54.541open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |