Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación
En este artículo de revisión se explora una posible contribución de las investigaciones sobre razonamiento analógico al problema de la transferencia en programación -en la transición entre el aprendizaje de conceptos en la escuela media y su aplicación en la universidad. La facilidad con que los alu...
- Autores:
-
D’Angelo, Verónica
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/26437
- Palabra clave:
- Programación de ordenadores
Razonamiento analógico
Abstracción
Transferencia
Computer programming
Analogical reasoning
Abstraction
Transfer
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_80ae563464133e02fe9df9d1e0a3f976 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/26437 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
dc.title.translated.eng.fl_str_mv |
Possible contributions of analogical reasoning to the problem of abstraction and transfer in programming teaching |
title |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
spellingShingle |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación Programación de ordenadores Razonamiento analógico Abstracción Transferencia Computer programming Analogical reasoning Abstraction Transfer |
title_short |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
title_full |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
title_fullStr |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
title_full_unstemmed |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
title_sort |
Posibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programación |
dc.creator.fl_str_mv |
D’Angelo, Verónica |
dc.contributor.author.none.fl_str_mv |
D’Angelo, Verónica |
dc.subject.spa.fl_str_mv |
Programación de ordenadores Razonamiento analógico Abstracción Transferencia |
topic |
Programación de ordenadores Razonamiento analógico Abstracción Transferencia Computer programming Analogical reasoning Abstraction Transfer |
dc.subject.keywords.eng.fl_str_mv |
Computer programming Analogical reasoning Abstraction Transfer |
description |
En este artículo de revisión se explora una posible contribución de las investigaciones sobre razonamiento analógico al problema de la transferencia en programación -en la transición entre el aprendizaje de conceptos en la escuela media y su aplicación en la universidad. La facilidad con que los alumnos construyen programas en entornos multimedia conlleva la desventaja de una dificultad para trasladar esos conceptos a los lenguajes “reales” basados en texto, probablemente porque no se ha trabajado suficiente en promover abstracciones en el nivel del problema. Según investigaciones en enseñanza de la programación, los alumnos suelen tener mayor dificultad en los niveles de abstracción superior (la comprensión del problema) que en los niveles inferiores (como la codificación). La comparación de problemas mediante razonamiento analógico es una estrategia proveniente de la psicología cognitiva extendida a diversas disciplinas. Sugerimos que su aplicación en el campo de la enseñanza de la programación podría contribuir a solucionar el problema de la dificultad de abstracción en el nivel del problema, y facilitar la transferencia. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-10-20 |
dc.date.accessioned.none.fl_str_mv |
2024-09-09T21:14:39Z |
dc.date.available.none.fl_str_mv |
2024-09-09T21:14:39Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/26437 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.4035 |
identifier_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/26437 https://doi.org/10.29375/25392115.4035 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/4035/3344 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/267 |
dc.relation.references.none.fl_str_mv |
Armoni, M. (2013). On Teaching Abstraction in CS to Novices. Journal of Computers in Mathematics and Science Teaching, 32(3), 265–284. https://www.learntechlib.org/p/41271 Armoni, M., & Ben-Ari, M. (2013). Computer Science Concepts in Scratch. Department of Science Teaching , Weizmann Institute of Science. https://stwww1.weizmann.ac.il/scratch/scratch_en/ Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real” Programming. ACM Transactions on Computing Education, 14(4), 1–15. https://doi.org/10.1145/2677087 Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. https://doi.org/10.1037/0033-2909.128.4.612 Bell, T., Rosamond, F., & Casey, N. (2012). Computer Science Unplugged and Related Projects in Math and Computer Science Popularization. En H. L. Bodlaender, R. Downey, F. V. Fomin, & D. Marx (Eds.), The Multivariate Algorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370 (pp. 398–456). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30891-8_18 Burgoon, E. M., Henderson, M. D., & Markman, A. B. (2013). There Are Many Ways to See the Forest for the Trees: A Tour Guide for Abstraction. Perspectives on Psychological Science, 8(5), 501–520. https://doi.org/10.1177/1745691613497964 Çakiroğlu, Ü., Sude, S., B., K., Sari, A., Yildiz, S., & Öztürk, M. (2018). Exploring perceived cognitive load in learning programming via Scratch. Research in Learning Technology, 26. https://doi.org/10.25304/rlt.v26.1888 Catrambone, R., & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1147–1156. https://doi.org/10.1037/0278-7393.15.6.1147 Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. http://www.sciencedirect.com/science/article/pii/S0364021381800298 Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structured programming. Academic Press Ltd. Denning, P.J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R. (1989). Computing as a discipline. Computer, 22(2), 63–70. https://doi.org/10.1109/2.19833 Denning, Peter J. (1985). The Science of Computing: What is computer science? American Scientist, 73(1), 16–19. http://www.jstor.org/stable/27853057 Denning, Peter J. (2003). Great Principles of Computing. Communications of the ACM, 46(11), 15–20. https://doi.org/10.1145/948383.948400 Denning, Peter J. (2017). Computational thinking in science. Factorovich, P., & O’Connor, F. S. (2016). Cuaderno para el docente. Actividades para aprender a programar. Fundación Sadosky. http://programar.gob.ar/descargas/manual-docente-descarga-web.pdf Faries, J. M., & Reiser, B. J. (1988). Access and Use of Previous Solutions in a Problem Solving Situation. https://apps.dtic.mil/dtic/tr/fulltext/u2/a224717.pdf Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A., & Harlow, D. B. (2016). Initialization in Scratch. Proceedings of the 47th ACM Technical Symposium on Computing Science Education - SIGCSE ’16, 217–222. https://doi.org/10.1145/2839509.2844569 Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. https://doi.org/https://doi.org/10.1016/S0364-0213(83)80009-3 Gentner, D. (1989). The mechanisms of analogical transfer. En S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 199–242). Cambridge University Press. Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95(2), 393–408. https://doi.org/10.1037/0022-0663.95.2.393 Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56. https://doi.org/10.1037/0003-066X.52.1.45 Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The Roles of Similarity in Transfer: Separating Retrievability From Inferential Soundness. Cognitive Psychology, 25(4), 524–575. https://doi.org/10.1006/cogp.1993 Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306–355. https://doi.org/10.1016/0010-0285(80)90013-4 Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1–38. https://doi.org/10.1016/0010-0285(83)90002-6 Goldstone, R. L., & Son, J. Y. (2005). The Transfer of Scientific Principles Using Concrete and Idealized Simulations. Journal of the Learning Sciences, 14(1), 69–110. https://doi.org/10.1207/s15327809jls1401_4 Harel, I., & Papert, S. (1991). Constructionism. Ablex Publishing. Hazzan, O. (1999). Reducing Abstraction Level When Learning Abstract Algebra Concepts. Educational Studies in Mathematics, 40(1), 71–90. https://doi.org/10.1023/A:1003780613628 Hazzan, O. (2003). How Students Attempt to Reduce Abstraction in the Learning of Mathematics and in the Learning of Computer Science. Computer Science Education, 13(2), 95–122. https://doi.org/10.1076/csed.13.2.95.14202 Hazzan, O. (2008). Reflections on teaching abstraction and other soft ideas. ACM SIGCSE Bulletin, 40(2), 40–43. https://doi.org/10.1145/1383602.1383631 Hazzan, O., & Kramer, J. (2007). Abstraction in Computer Science & Software Engineering: A Pedagogical Perspective. Frontier Journal, 4(1), 6–14. Hazzan, O., & Kramer, J. (2016). Assessing abstraction skills. Communications of the ACM, 59(12), 43–45. https://doi.org/10.1145/2926712 Hoc, J., Green, T., Samurçay, R., & Gilmore, D. (1990). Part 1: Theoretical and Methodological Issues. En J. M. Hoc (Ed.), Psychology of Programming. London: Academic. Holyoak, K. J., & Thagard, P. (1989). Analogical Mapping by Constraint Satisfaction. Cognitive Science, 13(3), 295–355. https://doi.org/10.1207/s15516709cog1303_1 Kafai, Y., & Resnick, M. (1996). Constructionism in Practice: Designing, Thinking, and Learning in a Digital World (Y. Kafai & M. Resnick (eds.)). Routledge. Kurtz, K. J., & Loewenstein, J. (2007). Converging on a new role for analogy in problem solving and retrieval: when two problems are better than one. Memory & Cognition, 35(2), 334–341. https://doi.org/10.3758/BF03193454 Malan, D., & Leitner, H. (2007). Scratch for Budding Computer Scientists. SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science Education, 39. https://doi.org/10.1145/1227310.1227388 Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by Choice: Urban Youth Learning Programming with Scratch. Proceedings of the 39th SIGCSE technical symposium on Computer science education - SIGCSE ’08, 367–371. https://doi.org/10.1145/1352135.1352260 Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in scratch. Proceedings of the 16th annual joint conference on Innovation and technology in computer science education - ITiCSE ’11, 168–172. https://doi.org/10.1145/1999747.1999796 Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2013). Learning computer science concepts with Scratch. Computer Science Education, 23(3). https://doi.org/10.1080/08993408.2013.832022 Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2010). Learning computer science concepts with Scratch. Proceedings of the Sixth international workshop on Computing education research - ICER ’10, 69–76. https://doi.org/10.1145/1839594.1839607 Minervino, R. A., Olguín, V., & Trench, M. (2017). Promoting interdomain analogical transfer: When creating a problem helps to solve a problem. Memory & Cognition, 45(2), 221–232. https://doi.org/10.3758/s13421-016-0655-2 Nassi, I., & Shneiderman, B. (1973). Flowchart techniques for structured programming. ACM SIGPLAN Notices, 8(8), 12–26. https://doi.org/10.1145/953349.953350 Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books. Papert, S., & Harel, I. (1991). Situating Constructionism. En I. Harel & S. Papert (Eds.), Constructionism (p. 518). Ablex Publishing Corporation. Perkins, D. N., & Salomon, G. (1988). Teaching for Transfer. Educational Leadership, 46(1), 22–32. https://eric.ed.gov/?id=EJ376242 Perrenet, J. C. (2010). Levels of thinking in computer science: Development in bachelor students’ conceptualization of algorithm. Education and Information Technologies, 15(2), 87–107. https://doi.org/10.1007/s10639-009-9098-8 Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’ understanding of the concept of algorithm. Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education - ITiCSE ’05, 64–68. https://doi.org/10.1145/1067445.1067467 Perrenet, J., & Kaasenbrood, E. (2006). Levels of abstraction in students’ understanding of the concept of algorithm. ACM SIGCSE Bulletin, 38(3), 270–274. https://doi.org/10.1145/1140123.1140196 Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779 Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., & Eisenberg, M. (2005). Design Principles for Tools to Support Creative Thinking. Report of Workshop on Creativity Support Tools, 20, 25–36. Seehorn, D. (2011). K-12 Estándares para las Ciencias de la Computación. En Asociación de Maestros de Ciencias de la Computación (CSTA). Shneiderman, B., Mayer, R., McKay, D., & Heller, P. (1977). Experimental investigations of the utility of detailed flowcharts in programming. Communications of the ACM, 20(6), 373–381. https://doi.org/10.1145/359605.359610 Statter, D., & Armoni, M. (2016). Teaching Abstract Thinking in Introduction to Computer Science for 7th Graders. Proceedings of the 11th Workshop in Primary and Secondary Computing Education on ZZZ - WiPSCE ’16, 80–83. https://doi.org/10.1145/2978249.2978261 Trench, M., & Minervino, R. A. (2017). Cracking the Problem of Inert Knowledge. Psychology of Learning and Motivation, 66, 1–41. https://doi.org/10.1016/bs.plm.2016.11.001 Turkle, S., & Papert, S. (1990). Epistemological Pluralism: Styles and Voices within the Computer Culture. Signs: Journal of Women in Culture and Society, 16(1), 128–157. https://doi.org/10.1086/494648 Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215 Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118 Wirth, N. (1976). Algorithms and Data Structures. Pearson Education. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 21 Núm. 2 (2020): Revista Colombiana de Computación (Julio-Diciembre); 71-82 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/26437/1/Art%c3%adculo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/26437/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/26437/3/Art%c3%adculo.pdf.jpg |
bitstream.checksum.fl_str_mv |
2eee5b068394f579a5096162b6478f91 855f7d18ea80f5df821f7004dff2f316 88323eb32fbd888896dbdc4189af2c55 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277366866771968 |
spelling |
D’Angelo, Verónica48f53a2f-734c-4f16-9be6-ac3abf9ad44c2024-09-09T21:14:39Z2024-09-09T21:14:39Z2020-10-20ISSN: 1657-2831e-ISSN: 2539-2115http://hdl.handle.net/20.500.12749/26437instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.4035En este artículo de revisión se explora una posible contribución de las investigaciones sobre razonamiento analógico al problema de la transferencia en programación -en la transición entre el aprendizaje de conceptos en la escuela media y su aplicación en la universidad. La facilidad con que los alumnos construyen programas en entornos multimedia conlleva la desventaja de una dificultad para trasladar esos conceptos a los lenguajes “reales” basados en texto, probablemente porque no se ha trabajado suficiente en promover abstracciones en el nivel del problema. Según investigaciones en enseñanza de la programación, los alumnos suelen tener mayor dificultad en los niveles de abstracción superior (la comprensión del problema) que en los niveles inferiores (como la codificación). La comparación de problemas mediante razonamiento analógico es una estrategia proveniente de la psicología cognitiva extendida a diversas disciplinas. Sugerimos que su aplicación en el campo de la enseñanza de la programación podría contribuir a solucionar el problema de la dificultad de abstracción en el nivel del problema, y facilitar la transferencia.This review article explores a possible contribution of research on analogical reasoning to the problem of transfer in programming -in the transition between the learning of concepts in middle school and their application at university. The ease with which students construct programs in multimedia environments carries the disadvantage of translating these concepts into “real” text-based languages, probably because not enough work has been done on the problem level. According to research in teaching programming, students tend to have greater difficulty at higher levels of abstraction (understanding the problem) than at lower levels (such as coding). Comparing problems through analogical reasoning is a strategy from cognitive psychology extended to various disciplines. We suggest that its application in programming teaching could contribute to solving the problem of the difficulty of abstraction at the problem level and facilitate the transfer.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/4035/3344https://revistas.unab.edu.co/index.php/rcc/issue/view/267Armoni, M. (2013). On Teaching Abstraction in CS to Novices. Journal of Computers in Mathematics and Science Teaching, 32(3), 265–284. https://www.learntechlib.org/p/41271Armoni, M., & Ben-Ari, M. (2013). Computer Science Concepts in Scratch. Department of Science Teaching , Weizmann Institute of Science. https://stwww1.weizmann.ac.il/scratch/scratch_en/Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real” Programming. ACM Transactions on Computing Education, 14(4), 1–15. https://doi.org/10.1145/2677087Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. https://doi.org/10.1037/0033-2909.128.4.612Bell, T., Rosamond, F., & Casey, N. (2012). Computer Science Unplugged and Related Projects in Math and Computer Science Popularization. En H. L. Bodlaender, R. Downey, F. V. Fomin, & D. Marx (Eds.), The MultivariateAlgorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370 (pp. 398–456). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30891-8_18Burgoon, E. M., Henderson, M. D., & Markman, A. B. (2013). There Are Many Ways to See the Forest for the Trees: A Tour Guide for Abstraction. Perspectives on Psychological Science, 8(5), 501–520. https://doi.org/10.1177/1745691613497964Çakiroğlu, Ü., Sude, S., B., K., Sari, A., Yildiz, S., & Öztürk, M. (2018). Exploring perceived cognitive load in learning programming via Scratch. Research in Learning Technology, 26. https://doi.org/10.25304/rlt.v26.1888Catrambone, R., & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1147–1156. https://doi.org/10.1037/0278-7393.15.6.1147Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. http://www.sciencedirect.com/science/article/pii/S0364021381800298Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structured programming. Academic Press Ltd.Denning, P.J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R. (1989). Computing as a discipline. Computer, 22(2), 63–70. https://doi.org/10.1109/2.19833Denning, Peter J. (1985). The Science of Computing: What is computer science? American Scientist, 73(1), 16–19. http://www.jstor.org/stable/27853057Denning, Peter J. (2003). Great Principles of Computing. Communications of the ACM, 46(11), 15–20. https://doi.org/10.1145/948383.948400Denning, Peter J. (2017). Computational thinking in science.Factorovich, P., & O’Connor, F. S. (2016). Cuaderno para el docente. Actividades para aprender a programar. Fundación Sadosky. http://programar.gob.ar/descargas/manual-docente-descarga-web.pdfFaries, J. M., & Reiser, B. J. (1988). Access and Use of Previous Solutions in a Problem Solving Situation. https://apps.dtic.mil/dtic/tr/fulltext/u2/a224717.pdfFranklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A., & Harlow, D. B. (2016). Initialization in Scratch. Proceedings of the 47th ACM Technical Symposium on Computing Science Education - SIGCSE ’16, 217–222. https://doi.org/10.1145/2839509.2844569Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. https://doi.org/https://doi.org/10.1016/S0364-0213(83)80009-3Gentner, D. (1989). The mechanisms of analogical transfer. En S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 199–242). Cambridge University Press.Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95(2), 393–408. https://doi.org/10.1037/0022-0663.95.2.393Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56. https://doi.org/10.1037/0003-066X.52.1.45Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The Roles of Similarity in Transfer: Separating Retrievability From Inferential Soundness. Cognitive Psychology, 25(4), 524–575. https://doi.org/10.1006/cogp.1993Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306–355. https://doi.org/10.1016/0010-0285(80)90013-4Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1–38. https://doi.org/10.1016/0010-0285(83)90002-6Goldstone, R. L., & Son, J. Y. (2005). The Transfer of Scientific Principles Using Concrete and Idealized Simulations. Journal of the Learning Sciences, 14(1), 69–110. https://doi.org/10.1207/s15327809jls1401_4Harel, I., & Papert, S. (1991). Constructionism. Ablex Publishing.Hazzan, O. (1999). Reducing Abstraction Level When Learning Abstract Algebra Concepts. Educational Studies in Mathematics, 40(1), 71–90. https://doi.org/10.1023/A:1003780613628Hazzan, O. (2003). How Students Attempt to Reduce Abstraction in the Learning of Mathematics and in the Learning of Computer Science. Computer Science Education, 13(2), 95–122. https://doi.org/10.1076/csed.13.2.95.14202Hazzan, O. (2008). Reflections on teaching abstraction and other soft ideas. ACM SIGCSE Bulletin, 40(2), 40–43. https://doi.org/10.1145/1383602.1383631Hazzan, O., & Kramer, J. (2007). Abstraction in Computer Science & Software Engineering: A Pedagogical Perspective. Frontier Journal, 4(1), 6–14.Hazzan, O., & Kramer, J. (2016). Assessing abstraction skills. Communications of the ACM, 59(12), 43–45. https://doi.org/10.1145/2926712Hoc, J., Green, T., Samurçay, R., & Gilmore, D. (1990). Part 1: Theoretical and Methodological Issues. En J. M. Hoc (Ed.), Psychology of Programming. London: Academic.Holyoak, K. J., & Thagard, P. (1989). Analogical Mapping by Constraint Satisfaction. Cognitive Science, 13(3), 295–355. https://doi.org/10.1207/s15516709cog1303_1Kafai, Y., & Resnick, M. (1996). Constructionism in Practice: Designing, Thinking, and Learning in a Digital World (Y. Kafai & M. Resnick (eds.)). Routledge.Kurtz, K. J., & Loewenstein, J. (2007). Converging on a new role for analogy in problem solving and retrieval: when two problems are better than one. Memory & Cognition, 35(2), 334–341. https://doi.org/10.3758/BF03193454Malan, D., & Leitner, H. (2007). Scratch for Budding Computer Scientists. SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science Education, 39. https://doi.org/10.1145/1227310.1227388Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by Choice: Urban Youth Learning Programming with Scratch. Proceedings of the 39th SIGCSE technical symposium on Computer science education - SIGCSE ’08, 367–371. https://doi.org/10.1145/1352135.1352260Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in scratch. Proceedings of the 16th annual joint conference on Innovation and technology in computer science education - ITiCSE ’11, 168–172. https://doi.org/10.1145/1999747.1999796Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2013). Learning computer science concepts with Scratch. Computer Science Education, 23(3). https://doi.org/10.1080/08993408.2013.832022Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2010). Learning computer science concepts with Scratch. Proceedings of the Sixth international workshop on Computing education research - ICER ’10, 69–76. https://doi.org/10.1145/1839594.1839607Minervino, R. A., Olguín, V., & Trench, M. (2017). Promoting interdomain analogical transfer: When creating a problem helps to solve a problem. Memory & Cognition, 45(2), 221–232. https://doi.org/10.3758/s13421-016-0655-2Nassi, I., & Shneiderman, B. (1973). Flowchart techniques for structured programming. ACM SIGPLAN Notices, 8(8), 12–26. https://doi.org/10.1145/953349.953350Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.Papert, S., & Harel, I. (1991). Situating Constructionism. En I. Harel & S. Papert (Eds.), Constructionism (p. 518). Ablex Publishing Corporation.Perkins, D. N., & Salomon, G. (1988). Teaching for Transfer. Educational Leadership, 46(1), 22–32. https://eric.ed.gov/?id=EJ376242Perrenet, J. C. (2010). Levels of thinking in computer science: Development in bachelor students’ conceptualization of algorithm. Education and Information Technologies, 15(2), 87–107. https://doi.org/10.1007/s10639-009-9098-8Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’ understanding of the concept of algorithm. Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education - ITiCSE ’05, 64–68. https://doi.org/10.1145/1067445.1067467Perrenet, J., & Kaasenbrood, E. (2006). Levels of abstraction in students’ understanding of the concept of algorithm. ACM SIGCSE Bulletin, 38(3), 270–274. https://doi.org/10.1145/1140123.1140196Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., & Eisenberg, M. (2005). Design Principles for Tools to Support Creative Thinking. Report of Workshop on Creativity Support Tools, 20, 25–36.Seehorn, D. (2011). K-12 Estándares para las Ciencias de la Computación. En Asociación de Maestros de Ciencias de la Computación (CSTA).Shneiderman, B., Mayer, R., McKay, D., & Heller, P. (1977). Experimental investigations of the utility of detailed flowcharts in programming. Communications of the ACM, 20(6), 373–381. https://doi.org/10.1145/359605.359610Statter, D., & Armoni, M. (2016). Teaching Abstract Thinking in Introduction to Computer Science for 7th Graders. Proceedings of the 11th Workshop in Primary and Secondary Computing Education on ZZZ - WiPSCE ’16, 80–83. https://doi.org/10.1145/2978249.2978261Trench, M., & Minervino, R. A. (2017). Cracking the Problem of Inert Knowledge. Psychology of Learning and Motivation, 66, 1–41. https://doi.org/10.1016/bs.plm.2016.11.001Turkle, S., & Papert, S. (1990). Epistemological Pluralism: Styles and Voices within the Computer Culture. Signs: Journal of Women in Culture and Society, 16(1), 128–157. https://doi.org/10.1086/494648Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118Wirth, N. (1976). Algorithms and Data Structures. Pearson Education.Vol. 21 Núm. 2 (2020): Revista Colombiana de Computación (Julio-Diciembre); 71-82Programación de ordenadoresRazonamiento analógicoAbstracciónTransferenciaComputer programmingAnalogical reasoningAbstractionTransferPosibles aportes del razonamiento analógico al problema de la abstracción y transferencia en la enseñanza de programaciónPossible contributions of analogical reasoning to the problem of abstraction and transfer in programming teachinginfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArtículo.pdfArtículo.pdfArtículoapplication/pdf455914https://repository.unab.edu.co/bitstream/20.500.12749/26437/1/Art%c3%adculo.pdf2eee5b068394f579a5096162b6478f91MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/26437/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg10000https://repository.unab.edu.co/bitstream/20.500.12749/26437/3/Art%c3%adculo.pdf.jpg88323eb32fbd888896dbdc4189af2c55MD53open access20.500.12749/26437oai:repository.unab.edu.co:20.500.12749/264372024-09-09 22:01:15.282open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |