Aproximando a los sistemas recomendadores desde los algoritmos genéticos

El presente trabajo abarca un enfoque alternativo, desde los algoritmos evolutivos, a la manera tradicional en que se abordan los sistemas recomendadores (SR de aquí en adelante). Se examinan las posibilidades de los algoritmos genéticos para brindar características adaptativas a estos sistemas. Nue...

Full description

Autores:
Vélez Langs, Oswaldo
Santos, Carlos
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2006
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/9004
Acceso en línea:
http://hdl.handle.net/20.500.12749/9004
Palabra clave:
Ciencia de los computadores
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y las comunicaciones
TIC´s
Technological innovations
Computer science
Technology development
Systems engineering
Investigations
Information and communication technologies
ICT's
Collaborative information filtering
Machine learning
Evolutionary algorithms
Adaptive user interfaces
Innovaciones tecnológicas
Desarrollo de tecnología
Filtrado colaborativo de la Información
Aprendizaje automático
Algoritmos evolutivos
Interfaces de usuario adaptivas
Rights
License
Derechos de autor 2006 Revista Colombiana de Computación
id UNAB2_728ab370a933f7394040bfab8ebfff73
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/9004
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.none.fl_str_mv Aproximando a los sistemas recomendadores desde los algoritmos genéticos
dc.title.translated.eng.fl_str_mv Approaching recommender systems from genetic algorithms
title Aproximando a los sistemas recomendadores desde los algoritmos genéticos
spellingShingle Aproximando a los sistemas recomendadores desde los algoritmos genéticos
Ciencia de los computadores
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y las comunicaciones
TIC´s
Technological innovations
Computer science
Technology development
Systems engineering
Investigations
Information and communication technologies
ICT's
Collaborative information filtering
Machine learning
Evolutionary algorithms
Adaptive user interfaces
Innovaciones tecnológicas
Desarrollo de tecnología
Filtrado colaborativo de la Información
Aprendizaje automático
Algoritmos evolutivos
Interfaces de usuario adaptivas
title_short Aproximando a los sistemas recomendadores desde los algoritmos genéticos
title_full Aproximando a los sistemas recomendadores desde los algoritmos genéticos
title_fullStr Aproximando a los sistemas recomendadores desde los algoritmos genéticos
title_full_unstemmed Aproximando a los sistemas recomendadores desde los algoritmos genéticos
title_sort Aproximando a los sistemas recomendadores desde los algoritmos genéticos
dc.creator.fl_str_mv Vélez Langs, Oswaldo
Santos, Carlos
dc.contributor.author.spa.fl_str_mv Vélez Langs, Oswaldo
Santos, Carlos
dc.contributor.cvlac.none.fl_str_mv Vélez Langs, Oswaldo [0000282073]
dc.subject.none.fl_str_mv Ciencia de los computadores
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y las comunicaciones
TIC´s
topic Ciencia de los computadores
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y las comunicaciones
TIC´s
Technological innovations
Computer science
Technology development
Systems engineering
Investigations
Information and communication technologies
ICT's
Collaborative information filtering
Machine learning
Evolutionary algorithms
Adaptive user interfaces
Innovaciones tecnológicas
Desarrollo de tecnología
Filtrado colaborativo de la Información
Aprendizaje automático
Algoritmos evolutivos
Interfaces de usuario adaptivas
dc.subject.keywords.eng.fl_str_mv Technological innovations
Computer science
Technology development
Systems engineering
Investigations
Information and communication technologies
ICT's
dc.subject.keywords.none.fl_str_mv Collaborative information filtering
Machine learning
Evolutionary algorithms
Adaptive user interfaces
dc.subject.lemb.none.fl_str_mv Innovaciones tecnológicas
Desarrollo de tecnología
dc.subject.proposal.none.fl_str_mv Filtrado colaborativo de la Información
Aprendizaje automático
Algoritmos evolutivos
Interfaces de usuario adaptivas
description El presente trabajo abarca un enfoque alternativo, desde los algoritmos evolutivos, a la manera tradicional en que se abordan los sistemas recomendadores (SR de aquí en adelante). Se examinan las posibilidades de los algoritmos genéticos para brindar características adaptativas a estos sistemas. Nuestro objetivo, además de proporcionar una panorámica informativa general sobre las posibilidades y potencialidades de los SR, es proveer mecanismos para que los SR sean capaces de aprender características personales desde los usuarios, con miras a mejorar la efectividad a la hora de encontrar recomendaciones y sugerencias apropiadas para un individuo en particular.
publishDate 2006
dc.date.issued.none.fl_str_mv 2006-12-01
dc.date.accessioned.none.fl_str_mv 2020-10-27T00:21:02Z
dc.date.available.none.fl_str_mv 2020-10-27T00:21:02Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/CJournalArticle
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.issn.none.fl_str_mv 2539-2115
1657-2831
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/9004
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga UNAB
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.unab.edu.co
identifier_str_mv 2539-2115
1657-2831
instname:Universidad Autónoma de Bucaramanga UNAB
repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/9004
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/1047/1020
dc.relation.uri.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/1047
dc.relation.uri.spa.fl_str_mv http://hdl.handle.net/20.500.12749/20387
dc.relation.references.none.fl_str_mv Aggarwal, Ch. C., Wolf, J. L., Wu, K-L., and Yu, P. S. Horting hatches an egg: A new graph-theoretic approach to collaborative fi ltering. In Knowledge Discovery and Data Mining, 1999. pp. 201-212
Belew, R. K. Adaptive information retrieval. In Proceedings of the Twelfth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, , June 1989, Cambridge, MA,. pp 11-20
Breese, J.S., Heckerman, D. and Kadie, C. Empirical analysis of predictive algorithms for collaborative fi ltering. In Proceedings of the 14th Conference on Uncertainty in Artifi cial Intelligence 1998. pp. 43-52
Christakou, C., Stafylopatis, A. A hybrid movie recommender system based on neural networks. In Proceedings 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA ‘05., Sept. 2005, pp 500 – 505
Cleverdon, C., Mills, J., Keen, M. Factors Determining the Performance of Indexing Systems , Vol. 2--Test Results. ASLIB Cranfi eld Res. Proj., Cranfi eld, Bedford, England, 1966.
Geyer-Schulz, A., Hahsler, M., Jahn, M. myVU: A Next Generation Recommender System Based on Observed Consumer Behavior and Interactive Evolutionary Algorithms. In: W. Gaul, O. Opitz, M. Schader (Eds.): Data Analysis – Scientifi c Modeling and Practical Applications, Studies in Classifi cation, Data Analysis, and Knowledge Organization, Vol. 18, 2000. Springer, Heidelberg, 447-457
Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., Kadie, C. Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization. Journal of Machine Learn-ing Research. 1:49-75, 2000
Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J.. An Algorithmic Framework for Per-forming Collaborative Filtering. In SIGIR ’99: proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 230-237, 1999.
Kwok, K. L A neural network for probablistic information retrieval. In Proceedings of the Twelfth Annual nternational ACM/SIGIR Conference on Research and Development in Informa-tion Retrieval, , June 1989, Cambridge, MA,. pp 21-30
Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A. and Cohen, M.D. Intelligent information sharing systems, -Communications of the ACM, 30(5) 1987, 390-402.
Min Tjoa, A., Höfferer, M., Ehrentraut, G., Untersmayr, P. Applying Evolutionary Algorithms to the Problem of Information Filtering. DEXA Workshop 1997: 450-458
Moukas, A., Maes., P. Amalthaea: an evolving multi-agent information fi ltering and discovery system for the WWW. Autonomous Agents and Multi-agent Systems, 1(1) 1998, pp 59-88.
Nasraoui, O., and Pavuluri, M. Accurate Web Recommendations Based on Profi le-Specifi c URL-Predictor Neural Networks. In Proceedings of the International World Wide Web Conference, New York, NY, May. 2004
Nichols, D. M. Implicit Rating and Filtering. In Proceedings of the Fifth DELOS Workshop on Filtering and Collaborative Filtering, Nov. 1997, ERCIM: pp.31-36
Salton, G., and McGill, M.J. Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983
Sarwar, B., Karypis, G., Konstan, J. and J. Riedl. Analysis of recommendation algorithms for e-commerce. In Proceedings of ACM E-Commerce, 2000
Sebastiani, F. Machine Learning in Automated Text Categorisation. Technical Report IEIB4-31-1999, Consiglio Nazionale delle Ricerche, Pisa, Italy, 1999
Sheth, B., Maes, P. Evolving agents for personalized information fi ltering. In Proc on Artifi cial Intelligence for Applications 1993. US, 345-352
Ujjin, S. and Bentley, P. J. Learning User Preferences Using Evolution. In Proceedings of the 4th Asia-Pacifi c Conference on Simulated Evolution And Learning (SEAL’02) 2002. Singapore.
Ungar, l., Foster, D. Clustering Methods for Collaborative Filtering (1998). Proceedings of the Workshop on Recommendation Systems
dc.rights.none.fl_str_mv Derechos de autor 2006 Revista Colombiana de Computación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv Derechos de autor 2006 Revista Colombiana de Computación
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.none.fl_str_mv Facultad Ingeniería
dc.publisher.program.none.fl_str_mv Pregrado Ingeniería de Sistemas
publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.source.none.fl_str_mv Revista Colombiana de Computación; Vol. 7 Núm. 2 (2006): Revista Colombiana de Computación; 7-23
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/9004/1/2006_Aproximando%20a%20los%20sistemas%20recomendadores.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/9004/2/2006_Aproximando%20a%20los%20sistemas%20recomendadores.pdf.jpg
bitstream.checksum.fl_str_mv 94884c84819470ea18f99c64d170e3c3
bb642993c006807b362466ad53fde039
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277403927642112
spelling Vélez Langs, Oswaldo82ffea73-1f8d-4c08-b8c1-f15f01a60c8f-1Santos, Carlos38c2eab2-3e6e-4cc5-8808-3b7b8d3a4041-1Vélez Langs, Oswaldo [0000282073]2020-10-27T00:21:02Z2020-10-27T00:21:02Z2006-12-012539-21151657-2831http://hdl.handle.net/20.500.12749/9004instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.coEl presente trabajo abarca un enfoque alternativo, desde los algoritmos evolutivos, a la manera tradicional en que se abordan los sistemas recomendadores (SR de aquí en adelante). Se examinan las posibilidades de los algoritmos genéticos para brindar características adaptativas a estos sistemas. Nuestro objetivo, además de proporcionar una panorámica informativa general sobre las posibilidades y potencialidades de los SR, es proveer mecanismos para que los SR sean capaces de aprender características personales desde los usuarios, con miras a mejorar la efectividad a la hora de encontrar recomendaciones y sugerencias apropiadas para un individuo en particular.This work presents an alternative approach (Evolutionary Algorithms approach) to traditional treatment of Recommender Systems (RSs). The work examines genetic algorithms possibilities to offer adaptive characteristics to this systems trough learning. The main goal, in addition to give a general view about RSs capabilities and possibilities, it is to provide an example mechanism for to extend RSs learning capabilities (from users ́s personal chracteristics), with the purpose to improve the effectiveness in the moment of to fi nd recommendations and appropriate suggestions for particular individuals.application/pdfspaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería de Sistemashttps://revistas.unab.edu.co/index.php/rcc/article/view/1047/1020https://revistas.unab.edu.co/index.php/rcc/article/view/1047http://hdl.handle.net/20.500.12749/20387Aggarwal, Ch. C., Wolf, J. L., Wu, K-L., and Yu, P. S. Horting hatches an egg: A new graph-theoretic approach to collaborative fi ltering. In Knowledge Discovery and Data Mining, 1999. pp. 201-212Belew, R. K. Adaptive information retrieval. In Proceedings of the Twelfth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, , June 1989, Cambridge, MA,. pp 11-20Breese, J.S., Heckerman, D. and Kadie, C. Empirical analysis of predictive algorithms for collaborative fi ltering. In Proceedings of the 14th Conference on Uncertainty in Artifi cial Intelligence 1998. pp. 43-52Christakou, C., Stafylopatis, A. A hybrid movie recommender system based on neural networks. In Proceedings 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA ‘05., Sept. 2005, pp 500 – 505Cleverdon, C., Mills, J., Keen, M. Factors Determining the Performance of Indexing Systems , Vol. 2--Test Results. ASLIB Cranfi eld Res. Proj., Cranfi eld, Bedford, England, 1966.Geyer-Schulz, A., Hahsler, M., Jahn, M. myVU: A Next Generation Recommender System Based on Observed Consumer Behavior and Interactive Evolutionary Algorithms. In: W. Gaul, O. Opitz, M. Schader (Eds.): Data Analysis – Scientifi c Modeling and Practical Applications, Studies in Classifi cation, Data Analysis, and Knowledge Organization, Vol. 18, 2000. Springer, Heidelberg, 447-457Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., Kadie, C. Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization. Journal of Machine Learn-ing Research. 1:49-75, 2000Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J.. An Algorithmic Framework for Per-forming Collaborative Filtering. In SIGIR ’99: proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 230-237, 1999.Kwok, K. L A neural network for probablistic information retrieval. In Proceedings of the Twelfth Annual nternational ACM/SIGIR Conference on Research and Development in Informa-tion Retrieval, , June 1989, Cambridge, MA,. pp 21-30Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A. and Cohen, M.D. Intelligent information sharing systems, -Communications of the ACM, 30(5) 1987, 390-402.Min Tjoa, A., Höfferer, M., Ehrentraut, G., Untersmayr, P. Applying Evolutionary Algorithms to the Problem of Information Filtering. DEXA Workshop 1997: 450-458Moukas, A., Maes., P. Amalthaea: an evolving multi-agent information fi ltering and discovery system for the WWW. Autonomous Agents and Multi-agent Systems, 1(1) 1998, pp 59-88.Nasraoui, O., and Pavuluri, M. Accurate Web Recommendations Based on Profi le-Specifi c URL-Predictor Neural Networks. In Proceedings of the International World Wide Web Conference, New York, NY, May. 2004Nichols, D. M. Implicit Rating and Filtering. In Proceedings of the Fifth DELOS Workshop on Filtering and Collaborative Filtering, Nov. 1997, ERCIM: pp.31-36Salton, G., and McGill, M.J. Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983Sarwar, B., Karypis, G., Konstan, J. and J. Riedl. Analysis of recommendation algorithms for e-commerce. In Proceedings of ACM E-Commerce, 2000Sebastiani, F. Machine Learning in Automated Text Categorisation. Technical Report IEIB4-31-1999, Consiglio Nazionale delle Ricerche, Pisa, Italy, 1999Sheth, B., Maes, P. Evolving agents for personalized information fi ltering. In Proc on Artifi cial Intelligence for Applications 1993. US, 345-352Ujjin, S. and Bentley, P. J. Learning User Preferences Using Evolution. In Proceedings of the 4th Asia-Pacifi c Conference on Simulated Evolution And Learning (SEAL’02) 2002. Singapore.Ungar, l., Foster, D. Clustering Methods for Collaborative Filtering (1998). Proceedings of the Workshop on Recommendation SystemsDerechos de autor 2006 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 7 Núm. 2 (2006): Revista Colombiana de Computación; 7-23Ciencia de los computadoresIngeniería de sistemasInvestigacionesTecnologías de la información y las comunicacionesTIC´sTechnological innovationsComputer scienceTechnology developmentSystems engineeringInvestigationsInformation and communication technologiesICT'sCollaborative information filteringMachine learningEvolutionary algorithmsAdaptive user interfacesInnovaciones tecnológicasDesarrollo de tecnologíaFiltrado colaborativo de la InformaciónAprendizaje automáticoAlgoritmos evolutivosInterfaces de usuario adaptivasAproximando a los sistemas recomendadores desde los algoritmos genéticosApproaching recommender systems from genetic algorithmsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2006_Aproximando a los sistemas recomendadores.pdf2006_Aproximando a los sistemas recomendadores.pdfArticuloapplication/pdf539957https://repository.unab.edu.co/bitstream/20.500.12749/9004/1/2006_Aproximando%20a%20los%20sistemas%20recomendadores.pdf94884c84819470ea18f99c64d170e3c3MD51open accessTHUMBNAIL2006_Aproximando a los sistemas recomendadores.pdf.jpg2006_Aproximando a los sistemas recomendadores.pdf.jpgIM Thumbnailimage/jpeg12308https://repository.unab.edu.co/bitstream/20.500.12749/9004/2/2006_Aproximando%20a%20los%20sistemas%20recomendadores.pdf.jpgbb642993c006807b362466ad53fde039MD52open access20.500.12749/9004oai:repository.unab.edu.co:20.500.12749/90042023-07-04 10:36:33.704open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co