Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática

Introducción: La evaluación del riesgo de sesgo de ensayos clínicos es una actividad crítica en el desarrollo de revisiones sistemáticas. El aprendizaje de máquinas podría disminuir la variabilidad y subjetividad inherente a este proceso. Objetivo: Determinar la validez y concordancia del aprendizaj...

Full description

Autores:
Bautista Mier, Heider Alexis
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/17464
Acceso en línea:
http://hdl.handle.net/20.500.12749/17464
Palabra clave:
Medical sciences
Health sciences
Clinical trials
Validity and consistency
Systematic review
Databases
Bibliographic searches
Machine learning
Artificial intelligence
Ciencias médicas
Bases de datos
Búsquedas bibliográficas
Aprendizaje automático
Inteligencia artificial
Ciencias de la salud
Ensayos clínicos
Validez y concordancia
Revisión sistemática
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_298776c91be568bb7e853d90c2a2b605
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/17464
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
dc.title.translated.spa.fl_str_mv Validity and consistency of machine learning in the assessment of risk of bias in randomized clinical trials. Systematic review
title Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
spellingShingle Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
Medical sciences
Health sciences
Clinical trials
Validity and consistency
Systematic review
Databases
Bibliographic searches
Machine learning
Artificial intelligence
Ciencias médicas
Bases de datos
Búsquedas bibliográficas
Aprendizaje automático
Inteligencia artificial
Ciencias de la salud
Ensayos clínicos
Validez y concordancia
Revisión sistemática
title_short Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
title_full Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
title_fullStr Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
title_full_unstemmed Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
title_sort Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemática
dc.creator.fl_str_mv Bautista Mier, Heider Alexis
dc.contributor.advisor.none.fl_str_mv Vásquez Hernández, Skarlet Marcell
Barreto Montenegro, Alexis Eduardo
Moreno, Karen Julieth
dc.contributor.author.none.fl_str_mv Bautista Mier, Heider Alexis
dc.contributor.cvlac.spa.fl_str_mv Vásquez Hernández, Skarlet Marcell [0001349039]
Barreto Montenegro, Alexis Eduardo [0000108751]
dc.contributor.googlescholar.spa.fl_str_mv Vásquez Hernández, Skarlet Marcell [IyVfYugAAAAJ]
Barreto Montenegro, Alexis Eduardo [oIh_fLEAAAAJ&hl]
dc.contributor.orcid.spa.fl_str_mv Vásquez Hernández, Skarlet Marcell [0000-0003-2552-9819]
Barreto Montenegro, Alexis Eduardo [0000-0001-7905-7023]
dc.contributor.scopus.spa.fl_str_mv Vásquez Hernández, Skarlet Marcell [56057064900]
dc.contributor.researchgate.spa.fl_str_mv Vásquez Hernández, Skarlet Marcell [Skarlet_Vasquez]
Barreto Montenegro, Alexis Eduardo [Alexis-Eduardo-Barreto-Montenegro-2183697377]
dc.contributor.linkedin.none.fl_str_mv Barreto Montenegro, Alexis Eduardo [alexis-eduardo-barreto-montenegro-704a7a27]
dc.subject.keywords.spa.fl_str_mv Medical sciences
Health sciences
Clinical trials
Validity and consistency
Systematic review
Databases
Bibliographic searches
Machine learning
Artificial intelligence
topic Medical sciences
Health sciences
Clinical trials
Validity and consistency
Systematic review
Databases
Bibliographic searches
Machine learning
Artificial intelligence
Ciencias médicas
Bases de datos
Búsquedas bibliográficas
Aprendizaje automático
Inteligencia artificial
Ciencias de la salud
Ensayos clínicos
Validez y concordancia
Revisión sistemática
dc.subject.lemb.spa.fl_str_mv Ciencias médicas
Bases de datos
Búsquedas bibliográficas
Aprendizaje automático
Inteligencia artificial
dc.subject.proposal.spa.fl_str_mv Ciencias de la salud
Ensayos clínicos
Validez y concordancia
Revisión sistemática
description Introducción: La evaluación del riesgo de sesgo de ensayos clínicos es una actividad crítica en el desarrollo de revisiones sistemáticas. El aprendizaje de máquinas podría disminuir la variabilidad y subjetividad inherente a este proceso. Objetivo: Determinar la validez y concordancia del aprendizaje de máquinas en la automatización de la evaluación de riesgos de sesgos de estudios clínicos primarios incluidos en revisión sistemática. Metodología: Se realizó una revisión sistemática que incluyó estudios que evaluaron la validez y/o concordancia de la evaluación del riesgo de sesgos de ensayos clínicos a través de herramientas de aprendizaje de máquinas en comparación con la evaluación convencional realizada por humanos. La búsqueda fue realizada en Medline, SCOPUS, LILACS, Springer Link, scienceDirect y Google scholar. La selección y evaluación del riesgo de sesgo de los estudios fue realizado por dos investigadores de manera independiente, los desacuerdos fueron resueltos mediante consenso. Los resultados se presentaron mediante una síntesis cualitativa. La síntesis cuantitativa de la información se realizó como ejercicio académico en el software Metadisc 2, se estimaron sensibilidad y especificidad como medidas resumen.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T18:58:19Z
dc.date.available.none.fl_str_mv 2022-08-24T18:58:19Z
dc.date.issued.none.fl_str_mv 2022
dc.type.eng.fl_str_mv Thesis
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/17464
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/17464
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. NIH. National Library of Medicine. [Internet]. Pubmed.gov. [citado 15 de abril de 2022]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/
2. Chalmers I. Addressing uncertainties about the effects of treatments offered to NHS patients: whose responsibility? J R Soc Med. 1 de octubre de 2007;100(10):440-1.
3. Djulbegovic B, Guyatt GH. Progress in evidence-based medicine: a quarter century on. The Lancet. julio de 2017;390(10092):415-23
4. Manterola C, Astudillo P, Arias E, Claros N. Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas. Cir Esp. marzo de 2013;91(3):149-55.
5. Smith V, Devane D, Begley CM, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med Res Methodol. diciembre de 2011;11(1):15
6. Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. enero de 2020;35(1):49-60.
7. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Living systematic review: 1. Introduction—the why, what, when, and how. J Clin Epidemiol. noviembre de 2017;91:23-30
8. Thomas J, Noel-Storr A, Marshall I, Wallace B, McDonald S, Mavergames C, et al. Living systematic reviews: 2. Combining human and machine effort. J Clin Epidemiol. noviembre de 2017;91:31-7.
9. Adam NR, Wieder R, Ghosh D. Data science, learning, and applications to biomedical and health sciences: Data science, learning, and applications to biomedical and health sciences. Ann N Y Acad Sci. enero de 2017;1387(1):5-11.
10. Ristevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinforma [Internet]. 25 de septiembre de 2018 [citado 15 de abril de 2022];15(3). Disponible en: https://www.degruyter.com/document/doi/10.1515/jib-2017-0030/html
11. Altman R. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin Pharmacol Ther. mayo de 2017;101(5):585-6.
12. Cheadle C, Cao H, Kalinin A, Hodgkinson J. Advanced literature analysis in a Big Data world: Advanced literature analysis. Ann N Y Acad Sci. enero de 2017;1387(1):25-33.
13. Massalha S, Clarkin O, Thornhill R, Wells G, Chow BJW. Decision Support Tools, Systems, and Artificial Intelligence in Cardiac Imaging. Can J Cardiol. julio de 2018;34(7):827-38
14. Alami H, Lehoux P, Auclair Y, de Guise M, Gagnon MP, Shaw J, et al. Artificial Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. J Med Internet Res. 7 de julio de 2020;22(7):e17707
15. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. enero de 2019;25(1):44-56.
16. van Dinter R, Tekinerdogan B, Catal C. Automation of systematic literature reviews: A systematic literature review. Inf Softw Technol. agosto de 2021;136:106589
17. Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci. agosto de 2019;40(8):577-91
18. Qin X, Liu J, Wang Y, Liu Y, Deng K, Ma Y, et al. Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews. J Clin Epidemiol. mayo de 2021;133:121-9.
19. Ambalavanan AK, Devarakonda MV. Using the contextual language model BERT for multi-criteria classification of scientific articles. J Biomed Inform. diciembre de 2020;112:103578
20. Lerner I, Créquit P, Ravaud P, Atal I. Automatic screening using word embeddings achieved high sensitivity and workload reduction for updating living network meta- 39 analyses. J Clin Epidemiol. abril de 2019;108:86-94
21. Paynter RA, Featherstone R, Stoeger E, Fiordalisi C, Voisin C, Adam GP. A prospective comparison of evidence synthesis search strategies developed with and without text-mining tools. J Clin Epidemiol. noviembre de 2021;139:350-60.
22. Thomas J, McNaught J, Ananiadou S. Applications of text mining within systematic reviews. Res Synth Methods. marzo de 2011;2(1):1-14.
23. Paynter R, Bañez LL, Erinoff E, Lege-Matsuura J, Potter S. Commentary on EPC methods: an exploration of the use of text-mining software in systematic reviews. J Clin Epidemiol. abril de 2017;84:33-6.
24. Rathbone J, Hoffmann T, Glasziou P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst Rev. diciembre de 2015;4(1):80
25. On behalf of the founding members of the ICASR group, Beller E, Clark J, Tsafnat G, Adams C, Diehl H, et al. Making progress with the automation of systematic reviews: principles of the International Collaboration for the Automation of Systematic Reviews (ICASR). Syst Rev. diciembre de 2018;7(1):77.
26. Tsou AY, Treadwell JR, Erinoff E, Schoelles K. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-Reviewer. Syst Rev. diciembre de 2020;9(1):73.
27. Popoff E, Besada M, Jansen JP, Cope S, Kanters S. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews. Syst Rev. diciembre de 2020;9(1):293.
28. Chai KEK, Lines RLJ, Gucciardi DF, Ng L. Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews. Syst Rev. diciembre de 2021;10(1):93
29. Pradhan R, Hoaglin DC, Cornell M, Liu W, Wang V, Yu H. Automatic extraction of quantitative data from ClinicalTrials.gov to conduct meta-analyses. J Clin Epidemiol. enero de 2019;105:92-100
30. Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. diciembre de 2019;8(1):163, s13643-019-1074-9.
31. Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. J Am Med Inform Assoc. 1 de enero de 2016;23(1):193-201
32. Millard LA, Flach PA, Higgins JP. Machine learning to assist risk-of-bias assessments in systematic reviews. Int J Epidemiol. febrero de 2016;45(1):266-77.
33. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 18 de octubre de 2011;343(oct18 2):d5928-d5928
34. Savović J, Weeks L, Sterne JA, Turner L, Altman DG, Moher D, et al. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. Syst Rev. diciembre de 2014;3(1):37.
35. Puljak L, Ramic I, Arriola Naharro C, Brezova J, Lin YC, Surdila AA, et al. Cochrane risk of bias tool was used inadequately in the majority of non-Cochrane systematic reviews. J Clin Epidemiol. julio de 2020;123:114-9
36. Kotz D, West R. Key concepts in clinical epidemiology: addressing and reporting sources of bias in randomized controlled trials. J Clin Epidemiol. septiembre de 2021;S0895435621003152
37. Reveiz L, Chapman E, Asial S, Munoz S, Bonfill X, Alonso-Coello P. Risk of bias of randomized trials over time. J Clin Epidemiol. septiembre de 2015;68(9):1036-45
38. Hartling L, Hamm MP, Milne A, Vandermeer B, Santaguida PL, Ansari M, et al. Testing the Risk of Bias tool showed low reliability between individual reviewers and across consensus assessments of reviewer pairs. J Clin Epidemiol. septiembre de 2013;66(9):973-81
39. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 28 de agosto de 2019;l4898.
40. Higgins J, Savović J, Page M, Elbers R, Sterne J. Chapter 8: Assessing risk of bias in a randomized trial. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. 2022. Disponible en: www.training.cochrane.org/handbook
41. Zabor EC, Kaizer AM, Hobbs BP. Randomized Controlled Trials. Chest. julio de 2020;158(1):S79-87.
42. Siepmann T, Spieth PM, Kubasch AS, Penzlin AI, Illigens BMW, Barlinn K. Randomized controlled trials – a matter of design. Neuropsychiatr Dis Treat. junio de 2016;1341.
43. Backmann M. What’s in a gold standard? In defence of randomised controlled trials. Med Health Care Philos. diciembre de 2017;20(4):513-23
44. Boutron I, Page MJ, Higgins J, Altman DG, Lundh A, Hróbjartsson A. Chapter 7: Considering bias and conflicts of interest among the included studies. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. Cochrane; 2022. Disponible en: www.training.cochrane.org/handbook
45. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 15 de marzo de 2008;336(7644):601-5
46. Tripepi G, Jager KJ, Dekker FW, Wanner C, Zoccali C. Bias in clinical research. Kidney Int. enero de 2008;73(2):148-53
47. Tripepi G, Jager KJ, Dekker FW, Zoccali C. Selection Bias and Information Bias in Clinical Research. Nephron Clin Pract. 2010;115(2):c94-9.
48. Rivas-Ruiz F, Pérez-Vicente S, González-Ramírez AR. Bias in clinical epidemiological study designs. Allergol Immunopathol (Madr). enero de 2013;41(1):54-9.
49. Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association Between Risk-of-Bias Assessments and Results of Randomized Trials in Cochrane Reviews: The ROBES Meta-Epidemiologic Study. Am J Epidemiol. 1 de mayo de 2018;187(5):1113-22.
50. Tovey D. Making sense of a systematic review. InnovAiT Educ Inspir Gen Pract. enero de 2021;14(1):45-51.
51. Delgado-Rodríguez M, Sillero-Arenas M. Systematic review and meta-analysis. Med Intensiva. octubre de 2018;42(7):444-53.
52. Pollock A, Berge E. How to do a systematic review. Int J Stroke. febrero de 2018;13(2):138-56.
53. Chandler J, Cumpston M, Thomas J, Higgins J, Deeks J, Clarke M. Chapter I: Introduction. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. Cochrane; 2022. Disponible en: www.training.cochrane.org/handbook
54. Hamilton AJ, Strauss AT, Martinez DA, Hinson JS, Levin S, Lin G, et al. Machine learning and artificial intelligence: applications in healthcare epidemiology. Antimicrob Steward Healthc Epidemiol. 2021;1(1):e28
55. Bi Q, Goodman KE, Kaminsky J, Lessler J. What is Machine Learning? A Primer for the Epidemiologist. Am J Epidemiol. 21 de octubre de 2019;kwz189
56. Alanazi A. Using machine learning for healthcare challenges and opportunities. Inform Med Unlocked. 2022;30:100924.
57. Khalil H, Ameen D, Zarnegar A. Tools to support the automation of systematic reviews: a scoping review. J Clin Epidemiol. abril de 2022;144:22-42.
58. Tsafnat G, Glasziou P, Choong MK, Dunn A, Galgani F, Coiera E. Systematic review automation technologies. Syst Rev. diciembre de 2014;3(1):74
59. Cowie K, Rahmatullah A, Hardy N, Holub K, Kallmes K. Web-Based Software Tools for Systematic Literature Review in Medicine: Systematic Search and Feature Analysis. JMIR Med Inform. 2 de mayo de 2022;10(5):e33219.
60. Scott AM, Forbes C, Clark J, Carter M, Glasziou P, Munn Z. Systematic review automation tools improve efficiency but lack of knowledge impedes their adoption: a survey. J Clin Epidemiol. octubre de 2021;138:80-94
61. Clark J, Glasziou P, Del Mar C, Bannach-Brown A, Stehlik P, Scott AM. A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol. mayo de 2020;121:81-90.
62. Hirt J, Meichlinger J, Schumacher P, Mueller G. Agreement in Risk of Bias Assessment Between RobotReviewer and Human Reviewers: An Evaluation Study on Randomised Controlled Trials in Nursing‐Related Cochrane Reviews. J Nurs Scholarsh. marzo de 2021;53(2):246-54
63. Gates A, Vandermeer B, Hartling L. Technology-assisted risk of bias assessment in systematic reviews: a prospective cross-sectional evaluation of the RobotReviewer machine learning tool. J Clin Epidemiol. abril de 2018;96:54-62.
64. Marshall IJ, Kuiper J, Wallace BC. Automating Risk of Bias Assessment for Clinical Trials. IEEE J Biomed Health Inform. julio de 2015;19(4):1406-12
65. Armijo‐Olivo S, Craig R, Campbell S. Comparing machine and human reviewers to evaluate the risk of bias in randomized controlled trials. Res Synth Methods. mayo de 2020;11(3):484-93
66. Viswanathan M, Patnode CD, Berkman ND, Bass EB, Chang S, Hartling L, et al. Recommendations for assessing the risk of bias in systematic reviews of health-care interventions. J Clin Epidemiol. mayo de 2018;97:26-34
67. Flemyng E, Dwan K, Moore TH, Page MJ, Higgins JP. Risk of Bias 2 in Cochrane Reviews: a phased approach for the introduction of new methodology. Cochrane Editorial Unit, editor. Cochrane Database Syst Rev [Internet]. 19 de noviembre de 2020 [citado 16 de abril de 2022]; Disponible en: http://doi.wiley.com/10.1002/14651858.ED000148
68. Bertizzolo L, Bossuyt P, Atal I, Ravaud P, Dechartres A. Disagreements in risk of bias assessment for randomised controlled trials included in more than one Cochrane systematic reviews: a research on research study using cross-sectional design. BMJ Open. abril de 2019;9(4):e028382.
69. Li J-Y, Zhang Y-F, Smith GS, Xue C-J, Luo Y-N, Chen W-H, et al. Quality of Reporting of Randomized Clinical Trials in Tai Chi Interventions—A Systematic Review. Evidence-Based Complementary and Alternative Medicine [Internet]. 2011 [cited 2019 Dec 14];2011:1–10. Available from: https://www.hindawi.com/journals/ecam/2011/383245/
70. Du J, Zhang Y, Dong Y, Duan J, Bai H, Wang J, et al. Reporting quality of randomized, controlled trials evaluating immunotherapy in lung cancer. Thoracic Cancer. 2021 Aug 25;12(20):2732–9.
71. McGrath M, Chen C, Braga LH, Farrokhyar F. Quality of reporting for pilot randomized controlled trials in the pediatric urology literature–A systematic review. Journal of Pediatric Urology. 2021 Sep;
72. Soboczenski F, Trikalinos TA, Kuiper J, Bias RG, Wallace BC, Marshall IJ. Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study. BMC Med Inform Decis Mak. diciembre de 2019;19(1):96.
73. Goldkuhle M, Dimaki M, Gartlehner G, Monsef I, Dahm P, Glossmann JP, et al. Nivolumab for adults with Hodgkin’s lymphoma (a rapid review using the software RobotReviewer). Cochrane Haematological Malignancies Group, editor. Cochrane Database Syst Rev [Internet]. 12 de julio de 2018 [citado 24 de mayo de 2022];2018(7). Disponible en: https://doi.wiley.com/10.1002/14651858.CD012556.pub2
74. Bilal J, Riaz IB, Kamal MU, Elyan M, Sudano D, Khan MA. A Systematic Review and Meta-analysis of Efficacy and Safety of Novel Interleukin Inhibitors in the Management of Psoriatic Arthritis: JCR J Clin Rheumatol. enero de 2018;24(1):6-13.
75. Aali G, Drummond A, das Nair R, Shokraneh F. Post-stroke fatigue: a scoping review. F1000Research. 25 de agosto de 2020;9:242
76. Minozzi S, Cinquini M, Gianola S, Gonzalez-Lorenzo M, Banzi R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J Clin Epidemiol. octubre de 2020;126:37-44.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Maestría en Métodos para la Producción y Aplicación de Conocimiento Científico en Salud
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/17464/1/2022_Tesis_Heider_Alexis_Bautista.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/17464/2/2022_Licencia_Heider_Alexis_Bautista.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/17464/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/17464/4/2022_Tesis_Heider_Alexis_Bautista.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/17464/5/2022_Licencia_Heider_Alexis_Bautista.pdf.jpg
bitstream.checksum.fl_str_mv 37c87b7056e391bd8d353222ad63eab3
280c745677a584452bfcffa64eab582b
3755c0cfdb77e29f2b9125d7a45dd316
dc78ff700014b30ebb323471e9178253
c65efee3443cf317e8df3aecad819128
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278046942756864
spelling Vásquez Hernández, Skarlet Marcell8b710a40-acd2-4858-9c46-b5c7dc2c38ddBarreto Montenegro, Alexis Eduardo4291d8b5-35ab-4f36-bbe8-24e4f94e9ca0Moreno, Karen Julieth1b66d0ad-0558-4dd4-bb8a-c6e84344e862Bautista Mier, Heider Alexis74a18645-5941-498f-8a93-2f0295125b9bVásquez Hernández, Skarlet Marcell [0001349039]Barreto Montenegro, Alexis Eduardo [0000108751]Vásquez Hernández, Skarlet Marcell [IyVfYugAAAAJ]Barreto Montenegro, Alexis Eduardo [oIh_fLEAAAAJ&hl]Vásquez Hernández, Skarlet Marcell [0000-0003-2552-9819]Barreto Montenegro, Alexis Eduardo [0000-0001-7905-7023]Vásquez Hernández, Skarlet Marcell [56057064900]Vásquez Hernández, Skarlet Marcell [Skarlet_Vasquez]Barreto Montenegro, Alexis Eduardo [Alexis-Eduardo-Barreto-Montenegro-2183697377]Barreto Montenegro, Alexis Eduardo [alexis-eduardo-barreto-montenegro-704a7a27]ColombiaUNAB Campus Bucaramanga2022-08-24T18:58:19Z2022-08-24T18:58:19Z2022http://hdl.handle.net/20.500.12749/17464instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coIntroducción: La evaluación del riesgo de sesgo de ensayos clínicos es una actividad crítica en el desarrollo de revisiones sistemáticas. El aprendizaje de máquinas podría disminuir la variabilidad y subjetividad inherente a este proceso. Objetivo: Determinar la validez y concordancia del aprendizaje de máquinas en la automatización de la evaluación de riesgos de sesgos de estudios clínicos primarios incluidos en revisión sistemática. Metodología: Se realizó una revisión sistemática que incluyó estudios que evaluaron la validez y/o concordancia de la evaluación del riesgo de sesgos de ensayos clínicos a través de herramientas de aprendizaje de máquinas en comparación con la evaluación convencional realizada por humanos. La búsqueda fue realizada en Medline, SCOPUS, LILACS, Springer Link, scienceDirect y Google scholar. La selección y evaluación del riesgo de sesgo de los estudios fue realizado por dos investigadores de manera independiente, los desacuerdos fueron resueltos mediante consenso. Los resultados se presentaron mediante una síntesis cualitativa. La síntesis cuantitativa de la información se realizó como ejercicio académico en el software Metadisc 2, se estimaron sensibilidad y especificidad como medidas resumen.1. TÍTULO DEL PROYECTO 5 2. RESUMEN DEL PROYECTO 5 3. DESCRIPCIÓN DEL PROYECTO 7 4. MARCO TEÓRICO 10 5. ESTADO DEL ARTE 13 6. OBJETIVOS 13 7. METODOLOGÍA 15 8. RESULTADOS 18 9. DISCUSIÓN 35 10. CONCLUSIONES 37 11. REFERENCIAS 38MaestríaIntroduction: The evaluation of the risk of bias in clinical trials is a critical activity in the development of systematic reviews. Machine learning could reduce the variability and subjectivity inherent in this process. Objective: To determine the validity and consistency of machine learning in the automation of bias risk assessment of primary clinical studies included in a systematic review. Methodology: A systematic review was carried out that included studies that evaluated the validity and/or concordance of the assessment of the risk of bias of clinical trials through machine learning tools in comparison with the conventional evaluation carried out by humans. The search was carried out in Medline, SCOPUS, LILACS, Springer Link, scienceDirect and Google scholar. The selection and evaluation of the risk of bias of the studies was carried out by two researchers independently, disagreements were resolved by consensus. The results were presented through a qualitative synthesis. The quantitative synthesis of the information was carried out as an academic exercise in the Metadisc 2 software, sensitivity and specificity were estimated as summary measures.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Validez y concordancia del aprendizaje de máquinas en la evaluación de riesgo de sesgos de ensayos clínicos aleatorizados. Revisión sistemáticaValidity and consistency of machine learning in the assessment of risk of bias in randomized clinical trials. Systematic reviewThesisinfo:eu-repo/semantics/masterThesisTesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMMagíster en Métodos para la Producción y Aplicación de Conocimiento Científico en SaludUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludMaestría en Métodos para la Producción y Aplicación de Conocimiento Científico en SaludMedical sciencesHealth sciencesClinical trialsValidity and consistencySystematic reviewDatabasesBibliographic searchesMachine learningArtificial intelligenceCiencias médicasBases de datosBúsquedas bibliográficasAprendizaje automáticoInteligencia artificialCiencias de la saludEnsayos clínicosValidez y concordanciaRevisión sistemática1. NIH. National Library of Medicine. [Internet]. Pubmed.gov. [citado 15 de abril de 2022]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2. Chalmers I. Addressing uncertainties about the effects of treatments offered to NHS patients: whose responsibility? J R Soc Med. 1 de octubre de 2007;100(10):440-1.3. Djulbegovic B, Guyatt GH. Progress in evidence-based medicine: a quarter century on. The Lancet. julio de 2017;390(10092):415-234. Manterola C, Astudillo P, Arias E, Claros N. Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas. Cir Esp. marzo de 2013;91(3):149-55.5. Smith V, Devane D, Begley CM, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med Res Methodol. diciembre de 2011;11(1):156. Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. enero de 2020;35(1):49-60.7. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Living systematic review: 1. Introduction—the why, what, when, and how. J Clin Epidemiol. noviembre de 2017;91:23-308. Thomas J, Noel-Storr A, Marshall I, Wallace B, McDonald S, Mavergames C, et al. Living systematic reviews: 2. Combining human and machine effort. J Clin Epidemiol. noviembre de 2017;91:31-7.9. Adam NR, Wieder R, Ghosh D. Data science, learning, and applications to biomedical and health sciences: Data science, learning, and applications to biomedical and health sciences. Ann N Y Acad Sci. enero de 2017;1387(1):5-11.10. Ristevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinforma [Internet]. 25 de septiembre de 2018 [citado 15 de abril de 2022];15(3). Disponible en: https://www.degruyter.com/document/doi/10.1515/jib-2017-0030/html11. Altman R. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin Pharmacol Ther. mayo de 2017;101(5):585-6.12. Cheadle C, Cao H, Kalinin A, Hodgkinson J. Advanced literature analysis in a Big Data world: Advanced literature analysis. Ann N Y Acad Sci. enero de 2017;1387(1):25-33.13. Massalha S, Clarkin O, Thornhill R, Wells G, Chow BJW. Decision Support Tools, Systems, and Artificial Intelligence in Cardiac Imaging. Can J Cardiol. julio de 2018;34(7):827-3814. Alami H, Lehoux P, Auclair Y, de Guise M, Gagnon MP, Shaw J, et al. Artificial Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. J Med Internet Res. 7 de julio de 2020;22(7):e1770715. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. enero de 2019;25(1):44-56.16. van Dinter R, Tekinerdogan B, Catal C. Automation of systematic literature reviews: A systematic literature review. Inf Softw Technol. agosto de 2021;136:10658917. Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci. agosto de 2019;40(8):577-9118. Qin X, Liu J, Wang Y, Liu Y, Deng K, Ma Y, et al. Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews. J Clin Epidemiol. mayo de 2021;133:121-9.19. Ambalavanan AK, Devarakonda MV. Using the contextual language model BERT for multi-criteria classification of scientific articles. J Biomed Inform. diciembre de 2020;112:10357820. Lerner I, Créquit P, Ravaud P, Atal I. Automatic screening using word embeddings achieved high sensitivity and workload reduction for updating living network meta- 39 analyses. J Clin Epidemiol. abril de 2019;108:86-9421. Paynter RA, Featherstone R, Stoeger E, Fiordalisi C, Voisin C, Adam GP. A prospective comparison of evidence synthesis search strategies developed with and without text-mining tools. J Clin Epidemiol. noviembre de 2021;139:350-60.22. Thomas J, McNaught J, Ananiadou S. Applications of text mining within systematic reviews. Res Synth Methods. marzo de 2011;2(1):1-14.23. Paynter R, Bañez LL, Erinoff E, Lege-Matsuura J, Potter S. Commentary on EPC methods: an exploration of the use of text-mining software in systematic reviews. J Clin Epidemiol. abril de 2017;84:33-6.24. Rathbone J, Hoffmann T, Glasziou P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst Rev. diciembre de 2015;4(1):8025. On behalf of the founding members of the ICASR group, Beller E, Clark J, Tsafnat G, Adams C, Diehl H, et al. Making progress with the automation of systematic reviews: principles of the International Collaboration for the Automation of Systematic Reviews (ICASR). Syst Rev. diciembre de 2018;7(1):77.26. Tsou AY, Treadwell JR, Erinoff E, Schoelles K. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-Reviewer. Syst Rev. diciembre de 2020;9(1):73.27. Popoff E, Besada M, Jansen JP, Cope S, Kanters S. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews. Syst Rev. diciembre de 2020;9(1):293.28. Chai KEK, Lines RLJ, Gucciardi DF, Ng L. Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews. Syst Rev. diciembre de 2021;10(1):9329. Pradhan R, Hoaglin DC, Cornell M, Liu W, Wang V, Yu H. Automatic extraction of quantitative data from ClinicalTrials.gov to conduct meta-analyses. J Clin Epidemiol. enero de 2019;105:92-10030. Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. diciembre de 2019;8(1):163, s13643-019-1074-9.31. Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. J Am Med Inform Assoc. 1 de enero de 2016;23(1):193-20132. Millard LA, Flach PA, Higgins JP. Machine learning to assist risk-of-bias assessments in systematic reviews. Int J Epidemiol. febrero de 2016;45(1):266-77.33. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 18 de octubre de 2011;343(oct18 2):d5928-d592834. Savović J, Weeks L, Sterne JA, Turner L, Altman DG, Moher D, et al. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. Syst Rev. diciembre de 2014;3(1):37.35. Puljak L, Ramic I, Arriola Naharro C, Brezova J, Lin YC, Surdila AA, et al. Cochrane risk of bias tool was used inadequately in the majority of non-Cochrane systematic reviews. J Clin Epidemiol. julio de 2020;123:114-936. Kotz D, West R. Key concepts in clinical epidemiology: addressing and reporting sources of bias in randomized controlled trials. J Clin Epidemiol. septiembre de 2021;S089543562100315237. Reveiz L, Chapman E, Asial S, Munoz S, Bonfill X, Alonso-Coello P. Risk of bias of randomized trials over time. J Clin Epidemiol. septiembre de 2015;68(9):1036-4538. Hartling L, Hamm MP, Milne A, Vandermeer B, Santaguida PL, Ansari M, et al. Testing the Risk of Bias tool showed low reliability between individual reviewers and across consensus assessments of reviewer pairs. J Clin Epidemiol. septiembre de 2013;66(9):973-8139. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 28 de agosto de 2019;l4898.40. Higgins J, Savović J, Page M, Elbers R, Sterne J. Chapter 8: Assessing risk of bias in a randomized trial. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. 2022. Disponible en: www.training.cochrane.org/handbook41. Zabor EC, Kaizer AM, Hobbs BP. Randomized Controlled Trials. Chest. julio de 2020;158(1):S79-87.42. Siepmann T, Spieth PM, Kubasch AS, Penzlin AI, Illigens BMW, Barlinn K. Randomized controlled trials – a matter of design. Neuropsychiatr Dis Treat. junio de 2016;1341.43. Backmann M. What’s in a gold standard? In defence of randomised controlled trials. Med Health Care Philos. diciembre de 2017;20(4):513-2344. Boutron I, Page MJ, Higgins J, Altman DG, Lundh A, Hróbjartsson A. Chapter 7: Considering bias and conflicts of interest among the included studies. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. Cochrane; 2022. Disponible en: www.training.cochrane.org/handbook45. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 15 de marzo de 2008;336(7644):601-546. Tripepi G, Jager KJ, Dekker FW, Wanner C, Zoccali C. Bias in clinical research. Kidney Int. enero de 2008;73(2):148-5347. Tripepi G, Jager KJ, Dekker FW, Zoccali C. Selection Bias and Information Bias in Clinical Research. Nephron Clin Pract. 2010;115(2):c94-9.48. Rivas-Ruiz F, Pérez-Vicente S, González-Ramírez AR. Bias in clinical epidemiological study designs. Allergol Immunopathol (Madr). enero de 2013;41(1):54-9.49. Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association Between Risk-of-Bias Assessments and Results of Randomized Trials in Cochrane Reviews: The ROBES Meta-Epidemiologic Study. Am J Epidemiol. 1 de mayo de 2018;187(5):1113-22.50. Tovey D. Making sense of a systematic review. InnovAiT Educ Inspir Gen Pract. enero de 2021;14(1):45-51.51. Delgado-Rodríguez M, Sillero-Arenas M. Systematic review and meta-analysis. Med Intensiva. octubre de 2018;42(7):444-53.52. Pollock A, Berge E. How to do a systematic review. Int J Stroke. febrero de 2018;13(2):138-56.53. Chandler J, Cumpston M, Thomas J, Higgins J, Deeks J, Clarke M. Chapter I: Introduction. En: Cochrane Handbook for Systematic Reviews of Interventions version 63 [Internet]. Cochrane; 2022. Disponible en: www.training.cochrane.org/handbook54. Hamilton AJ, Strauss AT, Martinez DA, Hinson JS, Levin S, Lin G, et al. Machine learning and artificial intelligence: applications in healthcare epidemiology. Antimicrob Steward Healthc Epidemiol. 2021;1(1):e2855. Bi Q, Goodman KE, Kaminsky J, Lessler J. What is Machine Learning? A Primer for the Epidemiologist. Am J Epidemiol. 21 de octubre de 2019;kwz18956. Alanazi A. Using machine learning for healthcare challenges and opportunities. Inform Med Unlocked. 2022;30:100924.57. Khalil H, Ameen D, Zarnegar A. Tools to support the automation of systematic reviews: a scoping review. J Clin Epidemiol. abril de 2022;144:22-42.58. Tsafnat G, Glasziou P, Choong MK, Dunn A, Galgani F, Coiera E. Systematic review automation technologies. Syst Rev. diciembre de 2014;3(1):7459. Cowie K, Rahmatullah A, Hardy N, Holub K, Kallmes K. Web-Based Software Tools for Systematic Literature Review in Medicine: Systematic Search and Feature Analysis. JMIR Med Inform. 2 de mayo de 2022;10(5):e33219.60. Scott AM, Forbes C, Clark J, Carter M, Glasziou P, Munn Z. Systematic review automation tools improve efficiency but lack of knowledge impedes their adoption: a survey. J Clin Epidemiol. octubre de 2021;138:80-9461. Clark J, Glasziou P, Del Mar C, Bannach-Brown A, Stehlik P, Scott AM. A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol. mayo de 2020;121:81-90.62. Hirt J, Meichlinger J, Schumacher P, Mueller G. Agreement in Risk of Bias Assessment Between RobotReviewer and Human Reviewers: An Evaluation Study on Randomised Controlled Trials in Nursing‐Related Cochrane Reviews. J Nurs Scholarsh. marzo de 2021;53(2):246-5463. Gates A, Vandermeer B, Hartling L. Technology-assisted risk of bias assessment in systematic reviews: a prospective cross-sectional evaluation of the RobotReviewer machine learning tool. J Clin Epidemiol. abril de 2018;96:54-62.64. Marshall IJ, Kuiper J, Wallace BC. Automating Risk of Bias Assessment for Clinical Trials. IEEE J Biomed Health Inform. julio de 2015;19(4):1406-1265. Armijo‐Olivo S, Craig R, Campbell S. Comparing machine and human reviewers to evaluate the risk of bias in randomized controlled trials. Res Synth Methods. mayo de 2020;11(3):484-9366. Viswanathan M, Patnode CD, Berkman ND, Bass EB, Chang S, Hartling L, et al. Recommendations for assessing the risk of bias in systematic reviews of health-care interventions. J Clin Epidemiol. mayo de 2018;97:26-3467. Flemyng E, Dwan K, Moore TH, Page MJ, Higgins JP. Risk of Bias 2 in Cochrane Reviews: a phased approach for the introduction of new methodology. Cochrane Editorial Unit, editor. Cochrane Database Syst Rev [Internet]. 19 de noviembre de 2020 [citado 16 de abril de 2022]; Disponible en: http://doi.wiley.com/10.1002/14651858.ED00014868. Bertizzolo L, Bossuyt P, Atal I, Ravaud P, Dechartres A. Disagreements in risk of bias assessment for randomised controlled trials included in more than one Cochrane systematic reviews: a research on research study using cross-sectional design. BMJ Open. abril de 2019;9(4):e028382.69. Li J-Y, Zhang Y-F, Smith GS, Xue C-J, Luo Y-N, Chen W-H, et al. Quality of Reporting of Randomized Clinical Trials in Tai Chi Interventions—A Systematic Review. Evidence-Based Complementary and Alternative Medicine [Internet]. 2011 [cited 2019 Dec 14];2011:1–10. Available from: https://www.hindawi.com/journals/ecam/2011/383245/70. Du J, Zhang Y, Dong Y, Duan J, Bai H, Wang J, et al. Reporting quality of randomized, controlled trials evaluating immunotherapy in lung cancer. Thoracic Cancer. 2021 Aug 25;12(20):2732–9.71. McGrath M, Chen C, Braga LH, Farrokhyar F. Quality of reporting for pilot randomized controlled trials in the pediatric urology literature–A systematic review. Journal of Pediatric Urology. 2021 Sep;72. Soboczenski F, Trikalinos TA, Kuiper J, Bias RG, Wallace BC, Marshall IJ. Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study. BMC Med Inform Decis Mak. diciembre de 2019;19(1):96.73. Goldkuhle M, Dimaki M, Gartlehner G, Monsef I, Dahm P, Glossmann JP, et al. Nivolumab for adults with Hodgkin’s lymphoma (a rapid review using the software RobotReviewer). Cochrane Haematological Malignancies Group, editor. Cochrane Database Syst Rev [Internet]. 12 de julio de 2018 [citado 24 de mayo de 2022];2018(7). Disponible en: https://doi.wiley.com/10.1002/14651858.CD012556.pub274. Bilal J, Riaz IB, Kamal MU, Elyan M, Sudano D, Khan MA. A Systematic Review and Meta-analysis of Efficacy and Safety of Novel Interleukin Inhibitors in the Management of Psoriatic Arthritis: JCR J Clin Rheumatol. enero de 2018;24(1):6-13.75. Aali G, Drummond A, das Nair R, Shokraneh F. Post-stroke fatigue: a scoping review. F1000Research. 25 de agosto de 2020;9:24276. Minozzi S, Cinquini M, Gianola S, Gonzalez-Lorenzo M, Banzi R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J Clin Epidemiol. octubre de 2020;126:37-44.ORIGINAL2022_Tesis_Heider_Alexis_Bautista.pdf2022_Tesis_Heider_Alexis_Bautista.pdfTesisapplication/pdf2022094https://repository.unab.edu.co/bitstream/20.500.12749/17464/1/2022_Tesis_Heider_Alexis_Bautista.pdf37c87b7056e391bd8d353222ad63eab3MD51open access2022_Licencia_Heider_Alexis_Bautista.pdf2022_Licencia_Heider_Alexis_Bautista.pdfLicenciaapplication/pdf494790https://repository.unab.edu.co/bitstream/20.500.12749/17464/2/2022_Licencia_Heider_Alexis_Bautista.pdf280c745677a584452bfcffa64eab582bMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/17464/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Heider_Alexis_Bautista.pdf.jpg2022_Tesis_Heider_Alexis_Bautista.pdf.jpgIM Thumbnailimage/jpeg4417https://repository.unab.edu.co/bitstream/20.500.12749/17464/4/2022_Tesis_Heider_Alexis_Bautista.pdf.jpgdc78ff700014b30ebb323471e9178253MD54open access2022_Licencia_Heider_Alexis_Bautista.pdf.jpg2022_Licencia_Heider_Alexis_Bautista.pdf.jpgIM Thumbnailimage/jpeg12357https://repository.unab.edu.co/bitstream/20.500.12749/17464/5/2022_Licencia_Heider_Alexis_Bautista.pdf.jpgc65efee3443cf317e8df3aecad819128MD55metadata only access20.500.12749/17464oai:repository.unab.edu.co:20.500.12749/174642023-11-21 21:54:38.85open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==