Computational architecture for the inference of a quantized convolutional neuronal network for the detection of atrial fibrillation
Las arritmias cardíacas son una de las enfermedades cardíacas más comunes en todo el mundo, que se caracterizan por un ritmo cardíaco anormal que puede poner en peligro la vida. Recientemente, se han propuesto varias redes neuronales convolucionales para detectar diferentes arritmias cardíacas. Prop...
- Autores:
-
Jaramillo Rueda, Andrés Felipe
Vargas Pacheco, Laura Yuritza
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2020
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/40073
- Palabra clave:
- Fibrilación Auricular
Detección Automática
Implementación Fpga
Red Neural Convolucional Cuantizada.
Atrial Fibrillation
Automatic Detection
Fpga Implementation
Quantized Convolutional Neural Network.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | Las arritmias cardíacas son una de las enfermedades cardíacas más comunes en todo el mundo, que se caracterizan por un ritmo cardíaco anormal que puede poner en peligro la vida. Recientemente, se han propuesto varias redes neuronales convolucionales para detectar diferentes arritmias cardíacas. Proponemos una arquitectura computacional para la inferencia de una red neuronal convolucional cuantificada (Q-CNN) que permite la detección de una arritmia cardíaca llamada fibrilación auricular (FA). La arquitectura computacional se implementó y probó en un FPGA Xilinx Artix-7. El diseño se basa en un procesador de matriz sistólica, que está optimizado para realizar tanto las capas convolucionales como las completamente conectadas. Los resultados experimentales se presentan con respecto al proceso de cuantización en diferentes números de bits, cantidad de hardware y precisión. Finalmente, se seleccionó un Q-CNN de 22 bits, que logra un 94% de precisión. Este trabajo pretende ser la base para la implementación futura de un dispositivo portátil, de bajo costo y alta confiabilidad para el diagnóstico de la FA. |
---|