Semigrupos inversos y acciones parciales

Dado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para...

Full description

Autores:
Gonzalez Barbosa, Ana Maria
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35524
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35524
https://noesis.uis.edu.co
Palabra clave:
Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_d0545fecc6990f598b01f63f200fc0ec
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/35524
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Semigrupos inversos y acciones parciales
dc.title.english.none.fl_str_mv Inverse Semigroups, Exel’S Semigroup, Partial Actions Of Groups, Actions Of Inverse Semigroups.
title Semigrupos inversos y acciones parciales
spellingShingle Semigrupos inversos y acciones parciales
Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
title_short Semigrupos inversos y acciones parciales
title_full Semigrupos inversos y acciones parciales
title_fullStr Semigrupos inversos y acciones parciales
title_full_unstemmed Semigrupos inversos y acciones parciales
title_sort Semigrupos inversos y acciones parciales
dc.creator.fl_str_mv Gonzalez Barbosa, Ana Maria
dc.contributor.advisor.none.fl_str_mv Pineda Tapia, Hector Edonis
dc.contributor.author.none.fl_str_mv Gonzalez Barbosa, Ana Maria
dc.subject.none.fl_str_mv Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
topic Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
dc.subject.keyword.none.fl_str_mv Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
description Dado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para solucionar ciertos tipos de ecuaciones diferenciales, y pronto se introdujeron en diversas áreas de la matemática como la geometría diferencial, lógica y combinatoria. Este trabajo consiste en estudiar algunos conceptos y definiciones sobre semigrupos inversos y las acciones parciales de grupos. En el primer capítulo se abordarán algunas definiciones de la teoría de semigrupos como las congruencias, presentaciones, semigrupos libres y semigrupos inversos; en estos íltimos, se estudiarán El semigrupo simétrico I(X) y La expansión de Birget-Rhodes, los cuales son base para el desarrollo de los siguientes capítulos. En el segundo capítulo se definirá el semigrupo de Exel construido a partir de un grupo G, sus propiedades y se probará que este es un semigrupo inverso. En el tercer capítulo se introduce las acciones de grupos y las acciones parciales de grupos en un conjunto X, además de algunos ejemplos; veremos su correspondencia con las acciones del semigrupo inverso S(G) en este mismo conjunto X.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:50:21Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:50:21Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/35524
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/35524
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.school.none.fl_str_mv Escuela de Matemáticas
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/d4f6b210-4346-4ac8-8fe5-cc33e07a90d9/download
https://noesis.uis.edu.co/bitstreams/9445c833-5711-45fd-8f5a-200743e2b122/download
https://noesis.uis.edu.co/bitstreams/9f620bf5-af27-4a1c-b1ab-6963b5a09e7e/download
bitstream.checksum.fl_str_mv cbe9e4ee20fd1ef3f04df216781283da
52ae64f0a6942f9650fe1feb2bbf9f98
9ff8d60e11e297a5f662991ac5180cd9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095243097669632
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pineda Tapia, Hector EdonisGonzalez Barbosa, Ana Maria2024-03-03T22:50:21Z20162024-03-03T22:50:21Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35524Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coDado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para solucionar ciertos tipos de ecuaciones diferenciales, y pronto se introdujeron en diversas áreas de la matemática como la geometría diferencial, lógica y combinatoria. Este trabajo consiste en estudiar algunos conceptos y definiciones sobre semigrupos inversos y las acciones parciales de grupos. En el primer capítulo se abordarán algunas definiciones de la teoría de semigrupos como las congruencias, presentaciones, semigrupos libres y semigrupos inversos; en estos íltimos, se estudiarán El semigrupo simétrico I(X) y La expansión de Birget-Rhodes, los cuales son base para el desarrollo de los siguientes capítulos. En el segundo capítulo se definirá el semigrupo de Exel construido a partir de un grupo G, sus propiedades y se probará que este es un semigrupo inverso. En el tercer capítulo se introduce las acciones de grupos y las acciones parciales de grupos en un conjunto X, además de algunos ejemplos; veremos su correspondencia con las acciones del semigrupo inverso S(G) en este mismo conjunto X.PregradoMatemáticoInverse semigroups and partial actions.application/pdfspaUniversidad Industrial de SantanderFacultad de CienciasMatemáticasEscuela de MatemáticasSemigrupos InversosSemigrupo De ExelAcciones Parciales De GruposAcciones De Semigrupos Inversos.Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actionsalso know as preactionsappeared as tools to solve certain types of differential equationsand were soon introduced in various areas of mathematics such as differential geometrylogic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruencespresentationsfree semigroups and inverse semigroups; in the latterwe study the symmetrical semigroup I(X) and the Birget-Rhodes expansionthe which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is definedtheir properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introducedplus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.Semigrupos inversos y acciones parcialesInverse Semigroups, Exel’S Semigroup, Partial Actions Of Groups, Actions Of Inverse Semigroups.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf1319453https://noesis.uis.edu.co/bitstreams/d4f6b210-4346-4ac8-8fe5-cc33e07a90d9/downloadcbe9e4ee20fd1ef3f04df216781283daMD51Documento.pdfapplication/pdf1957359https://noesis.uis.edu.co/bitstreams/9445c833-5711-45fd-8f5a-200743e2b122/download52ae64f0a6942f9650fe1feb2bbf9f98MD52Nota de proyecto.pdfapplication/pdf344991https://noesis.uis.edu.co/bitstreams/9f620bf5-af27-4a1c-b1ab-6963b5a09e7e/download9ff8d60e11e297a5f662991ac5180cd9MD5320.500.14071/35524oai:noesis.uis.edu.co:20.500.14071/355242024-03-03 17:50:21.84http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co