Semigrupos inversos y acciones parciales
Dado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para...
- Autores:
-
Gonzalez Barbosa, Ana Maria
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/35524
- Palabra clave:
- Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_d0545fecc6990f598b01f63f200fc0ec |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/35524 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Semigrupos inversos y acciones parciales |
dc.title.english.none.fl_str_mv |
Inverse Semigroups, Exel’S Semigroup, Partial Actions Of Groups, Actions Of Inverse Semigroups. |
title |
Semigrupos inversos y acciones parciales |
spellingShingle |
Semigrupos inversos y acciones parciales Semigrupos Inversos Semigrupo De Exel Acciones Parciales De Grupos Acciones De Semigrupos Inversos. Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions also know as preactions appeared as tools to solve certain types of differential equations and were soon introduced in various areas of mathematics such as differential geometry logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences presentations free semigroups and inverse semigroups; in the latter we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X. |
title_short |
Semigrupos inversos y acciones parciales |
title_full |
Semigrupos inversos y acciones parciales |
title_fullStr |
Semigrupos inversos y acciones parciales |
title_full_unstemmed |
Semigrupos inversos y acciones parciales |
title_sort |
Semigrupos inversos y acciones parciales |
dc.creator.fl_str_mv |
Gonzalez Barbosa, Ana Maria |
dc.contributor.advisor.none.fl_str_mv |
Pineda Tapia, Hector Edonis |
dc.contributor.author.none.fl_str_mv |
Gonzalez Barbosa, Ana Maria |
dc.subject.none.fl_str_mv |
Semigrupos Inversos Semigrupo De Exel Acciones Parciales De Grupos Acciones De Semigrupos Inversos. |
topic |
Semigrupos Inversos Semigrupo De Exel Acciones Parciales De Grupos Acciones De Semigrupos Inversos. Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions also know as preactions appeared as tools to solve certain types of differential equations and were soon introduced in various areas of mathematics such as differential geometry logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences presentations free semigroups and inverse semigroups; in the latter we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X. |
dc.subject.keyword.none.fl_str_mv |
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions also know as preactions appeared as tools to solve certain types of differential equations and were soon introduced in various areas of mathematics such as differential geometry logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences presentations free semigroups and inverse semigroups; in the latter we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X. |
description |
Dado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para solucionar ciertos tipos de ecuaciones diferenciales, y pronto se introdujeron en diversas áreas de la matemática como la geometría diferencial, lógica y combinatoria. Este trabajo consiste en estudiar algunos conceptos y definiciones sobre semigrupos inversos y las acciones parciales de grupos. En el primer capítulo se abordarán algunas definiciones de la teoría de semigrupos como las congruencias, presentaciones, semigrupos libres y semigrupos inversos; en estos íltimos, se estudiarán El semigrupo simétrico I(X) y La expansión de Birget-Rhodes, los cuales son base para el desarrollo de los siguientes capítulos. En el segundo capítulo se definirá el semigrupo de Exel construido a partir de un grupo G, sus propiedades y se probará que este es un semigrupo inverso. En el tercer capítulo se introduce las acciones de grupos y las acciones parciales de grupos en un conjunto X, además de algunos ejemplos; veremos su correspondencia con las acciones del semigrupo inverso S(G) en este mismo conjunto X. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:50:21Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:50:21Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/35524 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/35524 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.school.none.fl_str_mv |
Escuela de Matemáticas |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/d4f6b210-4346-4ac8-8fe5-cc33e07a90d9/download https://noesis.uis.edu.co/bitstreams/9445c833-5711-45fd-8f5a-200743e2b122/download https://noesis.uis.edu.co/bitstreams/9f620bf5-af27-4a1c-b1ab-6963b5a09e7e/download |
bitstream.checksum.fl_str_mv |
cbe9e4ee20fd1ef3f04df216781283da 52ae64f0a6942f9650fe1feb2bbf9f98 9ff8d60e11e297a5f662991ac5180cd9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095243097669632 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pineda Tapia, Hector EdonisGonzalez Barbosa, Ana Maria2024-03-03T22:50:21Z20162024-03-03T22:50:21Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35524Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coDado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para solucionar ciertos tipos de ecuaciones diferenciales, y pronto se introdujeron en diversas áreas de la matemática como la geometría diferencial, lógica y combinatoria. Este trabajo consiste en estudiar algunos conceptos y definiciones sobre semigrupos inversos y las acciones parciales de grupos. En el primer capítulo se abordarán algunas definiciones de la teoría de semigrupos como las congruencias, presentaciones, semigrupos libres y semigrupos inversos; en estos íltimos, se estudiarán El semigrupo simétrico I(X) y La expansión de Birget-Rhodes, los cuales son base para el desarrollo de los siguientes capítulos. En el segundo capítulo se definirá el semigrupo de Exel construido a partir de un grupo G, sus propiedades y se probará que este es un semigrupo inverso. En el tercer capítulo se introduce las acciones de grupos y las acciones parciales de grupos en un conjunto X, además de algunos ejemplos; veremos su correspondencia con las acciones del semigrupo inverso S(G) en este mismo conjunto X.PregradoMatemáticoInverse semigroups and partial actions.application/pdfspaUniversidad Industrial de SantanderFacultad de CienciasMatemáticasEscuela de MatemáticasSemigrupos InversosSemigrupo De ExelAcciones Parciales De GruposAcciones De Semigrupos Inversos.Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actionsalso know as preactionsappeared as tools to solve certain types of differential equationsand were soon introduced in various areas of mathematics such as differential geometrylogic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruencespresentationsfree semigroups and inverse semigroups; in the latterwe study the symmetrical semigroup I(X) and the Birget-Rhodes expansionthe which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is definedtheir properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introducedplus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.Semigrupos inversos y acciones parcialesInverse Semigroups, Exel’S Semigroup, Partial Actions Of Groups, Actions Of Inverse Semigroups.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf1319453https://noesis.uis.edu.co/bitstreams/d4f6b210-4346-4ac8-8fe5-cc33e07a90d9/downloadcbe9e4ee20fd1ef3f04df216781283daMD51Documento.pdfapplication/pdf1957359https://noesis.uis.edu.co/bitstreams/9445c833-5711-45fd-8f5a-200743e2b122/download52ae64f0a6942f9650fe1feb2bbf9f98MD52Nota de proyecto.pdfapplication/pdf344991https://noesis.uis.edu.co/bitstreams/9f620bf5-af27-4a1c-b1ab-6963b5a09e7e/download9ff8d60e11e297a5f662991ac5180cd9MD5320.500.14071/35524oai:noesis.uis.edu.co:20.500.14071/355242024-03-03 17:50:21.84http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |