Semigrupos inversos y acciones parciales

Dado un grupo G, el matemático brasilero Ruy Exel construyó en 1998 un semigrupo inverso denotado S(G) con el cual existe una correspondencia biunívoca entre acciones parciales de G y las acciones de S(G). Las acciones parciales,también conocidas como preacciones, aparecieron como herramientas para...

Full description

Autores:
Gonzalez Barbosa, Ana Maria
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35524
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35524
https://noesis.uis.edu.co
Palabra clave:
Semigrupos Inversos
Semigrupo De Exel
Acciones Parciales De Grupos
Acciones De Semigrupos Inversos.
Given a group G; ; the brazilian mathematician Ruy Exel in 1998 built an inverse semigroup denoted S(G) for which there is a one to one correspondence between partial actions of G and actions of S(G). Partial actions
also know as preactions
appeared as tools to solve certain types of differential equations
and were soon introduced in various areas of mathematics such as differential geometry
logic and combinatorial. This work is related to study some concepts and definitions about inverse semigroups and partial actions of groups. In the first chapter we study some definitions of the theory of semigroups and congruences
presentations
free semigroups and inverse semigroups; in the latter
we study the symmetrical semigroup I(X) and the Birget-Rhodes expansion
the which are the basis for the development of the following chapters. In the second chapter the Exel’s semigroup built from a group G is defined
their properties are presented in order to prove that it is an inverse semigroup. In the third chapter actions of groups and partial actions of groups on a set X are introduced
plus some examples; we study its correspondence with the actions of the inverse semigroup S(G) in this same set X.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)