Modelización del covid-19 en Santander mediante series temporales
En los últimos años la pandemia del COVID-19 cambio mucho la vida como la conocíamos, conocer como esta pandemia se propagaba y lograr conocer los posibles contagiados es muy importante para tomar decisiones de salud publica para evitar el colapso del sistema de salud. Este trabajo consiste en prese...
- Autores:
-
Diaz Garces, Cristian Julian
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/14839
- Palabra clave:
- Serie de tiempo
modelizacion
covid-19
prediccion
ARIMA
GARCH
teoria de probabilidad
estadistica
Time series
modeling
covid-19
prediction
multiplicative
ARIMA
GARCH
probability
statistics
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_b28f27cbee306d8f2caadbe9a7d50e6a |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/14839 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Modelización del covid-19 en Santander mediante series temporales |
dc.title.english.none.fl_str_mv |
Modeling of covid-19 in Santander through time series |
title |
Modelización del covid-19 en Santander mediante series temporales |
spellingShingle |
Modelización del covid-19 en Santander mediante series temporales Serie de tiempo modelizacion covid-19 prediccion ARIMA GARCH teoria de probabilidad estadistica Time series modeling covid-19 prediction multiplicative ARIMA GARCH probability statistics |
title_short |
Modelización del covid-19 en Santander mediante series temporales |
title_full |
Modelización del covid-19 en Santander mediante series temporales |
title_fullStr |
Modelización del covid-19 en Santander mediante series temporales |
title_full_unstemmed |
Modelización del covid-19 en Santander mediante series temporales |
title_sort |
Modelización del covid-19 en Santander mediante series temporales |
dc.creator.fl_str_mv |
Diaz Garces, Cristian Julian |
dc.contributor.advisor.none.fl_str_mv |
Rios Gutierrez, Andres Sebastian |
dc.contributor.author.none.fl_str_mv |
Diaz Garces, Cristian Julian |
dc.contributor.evaluator.none.fl_str_mv |
Rivera Florez, Tulia Esther Abril Luna, Julian Armando |
dc.subject.none.fl_str_mv |
Serie de tiempo modelizacion covid-19 prediccion ARIMA GARCH teoria de probabilidad estadistica |
topic |
Serie de tiempo modelizacion covid-19 prediccion ARIMA GARCH teoria de probabilidad estadistica Time series modeling covid-19 prediction multiplicative ARIMA GARCH probability statistics |
dc.subject.keyword.none.fl_str_mv |
Time series modeling covid-19 prediction multiplicative ARIMA GARCH probability statistics |
description |
En los últimos años la pandemia del COVID-19 cambio mucho la vida como la conocíamos, conocer como esta pandemia se propagaba y lograr conocer los posibles contagiados es muy importante para tomar decisiones de salud publica para evitar el colapso del sistema de salud. Este trabajo consiste en presentar un modelo ARIMA para la predicción del número de casos y de ser necesario un modelo GARCH si los errores del modelo ARIMA no se comportan de buena manera (Homocedasticidad). En el primer capítulo, recordaremos algunos conceptos importantes de teoría de series de tiempo ARIMA, y todo lo relacionado a su modelización. En el capítulo siguiente presentaremos algunas definiciones de los modelos GARCH, como se realiza su estimación. En el ultimo capitulo veremos una simulación para confirmar nuestra metodología planteada y el análisis de los datos de COVID-19. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-14T21:39:20Z |
dc.date.available.none.fl_str_mv |
2023-08-14T21:39:20Z |
dc.date.created.none.fl_str_mv |
2023-08-10 |
dc.date.issued.none.fl_str_mv |
2023-08-10 |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/14839 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/14839 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.school.none.fl_str_mv |
Escuela de Matemáticas |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/4ca52556-8d73-408f-84c8-61e67cae67e1/download https://noesis.uis.edu.co/bitstreams/d076c54e-2159-4537-929f-1d9be1aabf57/download https://noesis.uis.edu.co/bitstreams/ae9b2fbe-8c3f-4c46-9fc8-ebc2656044cd/download https://noesis.uis.edu.co/bitstreams/62e23b65-e7bb-4944-8226-914568942d58/download |
bitstream.checksum.fl_str_mv |
d6298274a8378d319ac744759540b71b 301f564a3602e60a2556f592f65ab1ee f358a2581fadc77f3de95d721ae2058a 55709a9acc4a724e83f046fbc75ad1ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095195618148352 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Rios Gutierrez, Andres SebastianDiaz Garces, Cristian JulianRivera Florez, Tulia EstherAbril Luna, Julian Armando2023-08-14T21:39:20Z2023-08-14T21:39:20Z2023-08-102023-08-10https://noesis.uis.edu.co/handle/20.500.14071/14839Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEn los últimos años la pandemia del COVID-19 cambio mucho la vida como la conocíamos, conocer como esta pandemia se propagaba y lograr conocer los posibles contagiados es muy importante para tomar decisiones de salud publica para evitar el colapso del sistema de salud. Este trabajo consiste en presentar un modelo ARIMA para la predicción del número de casos y de ser necesario un modelo GARCH si los errores del modelo ARIMA no se comportan de buena manera (Homocedasticidad). En el primer capítulo, recordaremos algunos conceptos importantes de teoría de series de tiempo ARIMA, y todo lo relacionado a su modelización. En el capítulo siguiente presentaremos algunas definiciones de los modelos GARCH, como se realiza su estimación. En el ultimo capitulo veremos una simulación para confirmar nuestra metodología planteada y el análisis de los datos de COVID-19.PregradoMatemáticoIn recent years, the COVID-19 pandemic has changed life as we knew it a lot. Knowing how this pandemic spread and getting to know the possible infected people is very important to make public health decisions to avoid the collapse of the health system. This work consists of presenting an ARIMA model for the prediction of the number of cases and, if necessary, a GARCH model if the errors of the ARIMA model do not behave well (Homoscedasticity). In the first chapter, we will recall some important concepts of ARIMA time series theory, and everything related to its modeling. In the next chapter we will present some definitions of the GARCH models, how their estimation is carried out. In the last chapter we will see a simulation to confirm our proposed methodology and the analysis of the COVID-19 data.application/pdfspaUniversidad Industrial de SantanderFacultad de CienciasMatemáticasEscuela de MatemáticasSerie de tiempomodelizacioncovid-19prediccionARIMAGARCHteoria de probabilidadestadisticaTime seriesmodelingcovid-19predictionmultiplicativeARIMAGARCHprobabilitystatisticsModelización del covid-19 en Santander mediante series temporalesModeling of covid-19 in Santander through time seriesTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-82237https://noesis.uis.edu.co/bitstreams/4ca52556-8d73-408f-84c8-61e67cae67e1/downloadd6298274a8378d319ac744759540b71bMD53ORIGINALDocumento.pdfDocumento.pdfapplication/pdf754126https://noesis.uis.edu.co/bitstreams/d076c54e-2159-4537-929f-1d9be1aabf57/download301f564a3602e60a2556f592f65ab1eeMD54Carta de autorización.pdfCarta de autorización.pdfapplication/pdf383783https://noesis.uis.edu.co/bitstreams/ae9b2fbe-8c3f-4c46-9fc8-ebc2656044cd/downloadf358a2581fadc77f3de95d721ae2058aMD55Nota de proyecto.pdfNota de proyecto.pdfapplication/pdf472410https://noesis.uis.edu.co/bitstreams/62e23b65-e7bb-4944-8226-914568942d58/download55709a9acc4a724e83f046fbc75ad1edMD5620.500.14071/14839oai:noesis.uis.edu.co:20.500.14071/148392023-08-14 16:39:23.97http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.coRWwgc3VzY3JpdG8gQVVUT1Ig4oCTIEVTVFVESUFOVEUsIGlkZW50aWZpY2FkbyBjb21vIGFwYXJlY2UgYWwgcGllIGRlIG1pIGZpcm1hLCBhY3R1YW5kbyBlbiBub21icmUgcHJvcGlvLCB5IGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgZ3JhZG8sIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvIGRlIGxhIHRlc2lzIGRlbm9taW5hZGEgY29tbyBzZSBlc3BlY2lmaWNhIGVuIGVsIGNhbXBvIOKAmFTDrXR1bG/igJksIHBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIGF1dG9yaXpvIGEgbGEgVU5JVkVSU0lEQUQgSU5EVVNUUklBTCBERSBTQU5UQU5ERVIsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBsYSBMZXkgNDQgZGUgMTk5MywgZWwgRGVjcmV0byA0NjAgZGUgMTk5NSwgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciwgcmVhbGljZSBsYSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCBlZGljacOzbiwgZGlzdHJpYnVjacOzbiBiYWpvIGxhIG1vZGFsaWRhZCBkZSBhbHF1aWxlciwgcHLDqXN0YW1vIHDDumJsaWNvIG8gaW1wb3J0YWNpw7NuIGVuIGZvcm1hdG8gaW1wcmVzbyB5IGRpZ2l0YWwsIGxhIHRyYW5zZm9ybWFjacOzbiwgbGEgcHVibGljYWNpw7NuIGNvbW8gb2JyYSBsaXRlcmFyaWEsIGxpYnJvIGVsZWN0csOzbmljbyAoZS1Cb29rKSBvIHJldmlzdGEgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGxhIHBvc2liaWxpZGFkIGRlIGRpc3RyaWJ1aXJsYSBwb3IgbWVkaW9zIHRyYWRpY2lvbmFsZXMgbyBwb3IgSW50ZXJuZXQgYSBjdWFscXVpZXIgdMOtdHVsbyAgcG9yIGxhIFVuaXZlcnNpZGFkIHkgY29uIHF1aWVuIHRlbmdhIGNvbnZlbmlvIHBhcmEgZWxsbywgaW5jbHV5ZW5kbyBsYSBwb3NpYmlsaWRhZCBkZSBoYWNlciBhZGFwdGFjaW9uZXMsIGFjdHVhbGl6YWNpb25lcyB5IHRyYWR1Y2Npb25lcyBlbiB0b2RvcyBsb3MgaWRpb21hczsgbGEgaW5jb3Jwb3JhY2nDs24gYSB1bmEgY29sZWNjacOzbiBvIGNvbXBpbGFjacOzbiwgbGEgdHJhZHVjY2nDs24sIGZpamFjacOzbiBlbiBmb25vZ3JhbWEsIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBmb3JtYXRvIGFuw6Fsb2dvLCBkaWdpdGFsLCBhdWRpb3Zpc3VhbCwgbWFnbsOpdGljbywgeSwgZW4gZ2VuZXJhbCwgbG9zIGZvcm1hdG9zIGVuICBxdWUgc2UgcHVlZGEgcmVwcm9kdWNpciB5IGNvbXVuaWNhciAgZGUgbWFuZXJhIHRvdGFsIHkgcGFyY2lhbCBtaSB0cmFiYWpvIGRlIGdyYWRvIG8gdGVzaXMuIAoKTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgYW7DoWxvZ28sIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCDDs3B0aWNvLCB1c28gZW4gcmVkLCBJbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBlbnRyZSBvdHJvcyBmb3JtYXRvcyB5IG1lZGlvcy4KCkVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIElORFVTVFJJQUwgREUgU0FOVEFOREVSIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmU7IGVuIGNvbnNlY3VlbmNpYSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLgo= |