Predicción de series financieras con redes neuronales recurrentes
Las series de tiempo tienen cabida en múltiples áreas, tales como las comunicaciones, la salud y las finanzas. Las RNN son un subconjunto de redes neuronales las cuales se inspiran en el funcionamiento neuronal humano, esto debido a que sus unidades LSTM tienen la capacidad de recordar característic...
- Autores:
-
Rueda Rojas, Edwin Jahir
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2018
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/38574
- Palabra clave:
- Machine Learning
Deep Learning
Analítica De Datos
Redes Neuronales Recurrentes
Series De Tiempo
Bid
Ask
Spread
Lstm
Forex
Divisas
Trading
Brokers.
Machine Learning
Deep Learning
Data Analytics
Recurrent Neural Networks
Time Series
Bid
Ask
Spread
Lstm
Forex
Foreing Exchange
Trading
Brokers.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | Las series de tiempo tienen cabida en múltiples áreas, tales como las comunicaciones, la salud y las finanzas. Las RNN son un subconjunto de redes neuronales las cuales se inspiran en el funcionamiento neuronal humano, esto debido a que sus unidades LSTM tienen la capacidad de recordar características a lo largo del tiempo. En esta investigación se aborda la predicción en el mercado de divisas. Para ello hay que decir que el problema fundamental es la variación tan rápida que presentan dichos pares de divisas, siendo así difícil obtener una buena predicción, causando así, pérdidas de dinero. Este trabajo de investigación usando datos de Quandl y TrueFX implementa un tamaño de ventana fijo y unas características adicionales las cuales tienden a aumentar la precisión de los modelos construidos, siendo el OHLC y las multiseñales unas de las características significantes, así mismo, se implementaron técnicas clásicas de machine learning en las cuales la mejor predicción vino dada por un modelo GaussianNB el cual arrojó una precisión del 26.12% la cual involucra una pérdida diaria en base a la estrategia de trading planteada de 0.0013 USD, equivalente a 3.70 COP, lo que nos indica una mejora respecto a plantear una aleatoriedad como estrategia de trading, lo que nos indica que los modelos tratan de aprender cosas de la señal pero no lo suficiente para producir resultados favorables, por ello se recurre a las arquitecturas de redes neuronales, las cuales arrojan un resultado más favorable, ya que con la misma estrategia de trading propuesta, estas interactúan más con el mercado y pierden menos, alrededor de 0.00005566 USD diarios, el equivalente a 0.15 COP, lo que nos permite intuir que a mayor complejidad de RNN y un mayor descriptor de la señal, se podrían producir mejores resultados. 1 |
---|