Proyección del comportamiento de enlaces en redes inalámbricas lln mediante series temporales no estacionarias aplicando algoritmos de aprendizaje automático
Las series temporales son idóneas para representar, a través del tiempo, la calidad de los enlaces en redes IEEE 802.15.4. Por ende, es considerable proyectar o predecir las métricas de la calidad de enlace como RSSI y LQI para optimizar el rendimiento en este tipo de redes. Este proyecto se sustent...
- Autores:
-
Mantilla López, Juan David
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2021
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/41559
- Palabra clave:
- IEEE 802.15.4
Series de tiempo no estacionaria
LSTM
Random Forest
Support Vector Regressor
ARIMA
predicciones series de tiempo.
IEEE 802.15.4
Nonstationary time series
LSTM
Random Forest
Support Vector Machine
ARIMA
time series forecasting.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)