Predicción de propiedades termofísicas provenientes de datos ppt de sistemas binarios alcano-cloroalcano, usando un método de contribución de grupos
El diseño de procesos químicos es de gran importancia en la industria y se beneficia, en gran medida, de la estimación de propiedades termofísicas con alto grado de precisión. Entre los compuestos químicos altamente usados en la industria química, farmacéutica y petrolera se encuentran los alcanos,...
- Autores:
-
Quintero Monroy, Maria Alejandra
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2018
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/39005
- Palabra clave:
- Propiedades Termofísicas
Alcanos
Cloroalcanos
Sistemas Alcano-Cloroalcano
Python
Aprendizaje Automático
Contribución De Grupos.
Thermophysical Properties
Alkanes
Chloroalkanes
Alkane-Chloroalkane Systems
Python
Machine Learning
Group Contributions.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | El diseño de procesos químicos es de gran importancia en la industria y se beneficia, en gran medida, de la estimación de propiedades termofísicas con alto grado de precisión. Entre los compuestos químicos altamente usados en la industria química, farmacéutica y petrolera se encuentran los alcanos, cloroalcanos y sus mezclas binarias. Por tal razón, es deseable el proponer un modelo que estime dichas propiedades de manera sencilla. Se realizó el modelamiento de densidades para alcanos, cloroalcanos y sus mezclas binarias en Python, mediante aprendizaje automático por 2012. Los modelos propuestos son regresiones lineales multivariables entrenados con tan solo el 5% de los datos experimentales disponibles y con desviación relativa cuadrática media (DRCM) menor al 0,34. Además de ser modelos sencillos, se evidencia su versatilidad al poder utilizarlos para estimar las densidades de compuestos y mezclas no incluidos y a condiciones fuera del rango de temperaturas y presiones estudiados por Guerrero Amaya. Los modelos superan la ecuación de estado de Peng-Robinson y, en algunos casos, las predicciones obtenidas con correlaciones avanzadas para densidades líquidas (ej. Modelo COSTALD). Los modelos obtenidos también permiten estimar propiedades termofísicas como la expansibilidad isobárica, compresibilidad isotérmica y presión interna, tanto de sustancias puras como de mezclas. Dichas propiedades se obtienen mediante expresiones explícitas sencillas en función de los coeficientes de los modelos y las condiciones de operación. |
---|