Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales
Este estudio aborda una asimetría significativa en la educación de los profesionales médicos responsables de la detección del cáncer de mama por imágenes en comparación con el creciente número de nuevos casos en Colombia. La desproporcionada carga de trabajo resultante para estos médicos restringe e...
- Autores:
-
Argumero Contreras, Daniel Felipe
Moreno Rojas , Carlos Alfredo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/93370
- Acceso en línea:
- http://hdl.handle.net/11349/93370
- Palabra clave:
- Cancer de mama
Convolución
Inteligencia artificial
Python
Clasificación de imagenes
Tecnología en Sistematización de Datos -- Tesis y disertaciones académicas
Imágenes diagnósticas
Cáncer de mama -- Diagnóstico
Mejoramiento de procesos
Breast cancer
Convolution
Python
Images clasification
Artificial intelligence
- Rights
- License
- Abierto (Texto Completo)
id |
UDISTRITA2_ab46a3995358aab915ec8743580cafc4 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/93370 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
dc.title.titleenglish.none.fl_str_mv |
Classification of diagnostic images of breast cancer using convolutional neural networks |
title |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
spellingShingle |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales Cancer de mama Convolución Inteligencia artificial Python Clasificación de imagenes Tecnología en Sistematización de Datos -- Tesis y disertaciones académicas Imágenes diagnósticas Cáncer de mama -- Diagnóstico Mejoramiento de procesos Breast cancer Convolution Python Images clasification Artificial intelligence |
title_short |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
title_full |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
title_fullStr |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
title_full_unstemmed |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
title_sort |
Clasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionales |
dc.creator.fl_str_mv |
Argumero Contreras, Daniel Felipe Moreno Rojas , Carlos Alfredo |
dc.contributor.advisor.none.fl_str_mv |
Becerra Correa, Nelson Reynaldo |
dc.contributor.author.none.fl_str_mv |
Argumero Contreras, Daniel Felipe Moreno Rojas , Carlos Alfredo |
dc.subject.none.fl_str_mv |
Cancer de mama Convolución Inteligencia artificial Python Clasificación de imagenes |
topic |
Cancer de mama Convolución Inteligencia artificial Python Clasificación de imagenes Tecnología en Sistematización de Datos -- Tesis y disertaciones académicas Imágenes diagnósticas Cáncer de mama -- Diagnóstico Mejoramiento de procesos Breast cancer Convolution Python Images clasification Artificial intelligence |
dc.subject.lemb.none.fl_str_mv |
Tecnología en Sistematización de Datos -- Tesis y disertaciones académicas Imágenes diagnósticas Cáncer de mama -- Diagnóstico Mejoramiento de procesos |
dc.subject.keyword.none.fl_str_mv |
Breast cancer Convolution Python Images clasification Artificial intelligence |
description |
Este estudio aborda una asimetría significativa en la educación de los profesionales médicos responsables de la detección del cáncer de mama por imágenes en comparación con el creciente número de nuevos casos en Colombia. La desproporcionada carga de trabajo resultante para estos médicos restringe el acceso a diagnósticos oportunos, llevando a la pérdida de beneficios cruciales asociados con la detección temprana. Haciendo hincapié en la importancia de mejorar el proceso de diagnóstico, esta investigación pretende clasificar a los individuos como sanos o enfermos, lo que permitiría tomar las medidas adecuadas en función de los estadios del cáncer. Sin embargo, la lentitud de la formación de médicos expertos en la clasificación de pacientes plantea dificultades para seguir el ritmo de la creciente población que requiere evaluación. La implantación de un sistema de diagnóstico capaz puede ampliar el acceso a las ventajas de la detección precoz del cáncer. La aplicación propuesta ofrece a los médicos una herramienta para delegar tareas en personal médico menos especializado, lo que aumenta la cobertura. No obstante, no sustituye el trabajo de los médicos, dadas las tasas de error desconocidas. El proyecto también pretende concienciar sobre el potencial de la IA en la educación y la sanidad en Colombia. El próximo prototipo consiste en construir una red neuronal desde cero utilizando Python, incluyendo una relación entre modelos para entrenar y probar la clasificación de imágenes. |
publishDate |
2024 |
dc.date.created.none.fl_str_mv |
2024-10-08 |
dc.date.accessioned.none.fl_str_mv |
2025-03-06T22:16:40Z |
dc.date.available.none.fl_str_mv |
2025-03-06T22:16:40Z |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.degree.none.fl_str_mv |
Producción Académica |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/93370 |
url |
http://hdl.handle.net/11349/93370 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
ABELIUK, Andrés y GUTIÉRREZ, Claudio. Historia y evolución de la inteligencia artificial. En: Inteligencia Artificial. 2021. vol. 23, no. 5, p. 14-21. ACHING, Jorge. Algoritmo para el reconocimiento de imágenes de huellas dactilares. En: Electrónica - unmsm. 2012. vol. 21, no. 6, p. 11-20. ACEVEDO, Eder; SERNA, Alexei y SERNA, Edgar. Principios y características de las redes neuronales artificiales. En: Desarrollo e Innovación en Ingeniería. 2017. vol. 2, p. 173-182. AMAZON WEB SERVICES. Big data e inteligencia artificial - machine learning y deep learning en AWS [spanish] [video]. YouTube. (4, octubre, 2017). [Consultado el 25, junio, 2022]. 41:11 min.Disponible en Internet: < https://www.youtube.com/watch?v=ijxySOpkGWk>. AMAZON WEB SERVICES. Big data e inteligencia artificial - machine learning y deep learning en AWS [spanish] [video]. YouTube. (4, octubre, 2017). [Consultado el 25, junio, 2022]. 41:11 min.Disponible en Internet: < https://www.youtube.com/watch?v=ijxySOpkGWk>. GUERRERO, Sara. Machine learning, el futuro de la inteligencia artificial. NIC México [página web]. GOODFELLOW, Ian. Deep learning. Massachussets: MIT press, 2016. 252 p. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
pdf |
dc.publisher.none.fl_str_mv |
Universidad Distrital Francisco José de Caldas |
publisher.none.fl_str_mv |
Universidad Distrital Francisco José de Caldas |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/80bf67c7-dfbc-4fba-8317-68840d151c19/download https://repository.udistrital.edu.co/bitstreams/459bc2a3-c4c3-4d7f-a74f-f9171ae51ff1/download https://repository.udistrital.edu.co/bitstreams/689d7b50-3c9e-4fe4-ae9f-8f8665a01698/download https://repository.udistrital.edu.co/bitstreams/cf0e602a-0614-4423-90c0-23148f58b1a5/download https://repository.udistrital.edu.co/bitstreams/91b0cc16-5a4e-4409-8687-06ea25c856a0/download |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 12969401d359cfe7ea576e09cb85cbf1 61471566167aa4ed63a492705d639871 6f24c1be4c04fccc6c0c741798f7c19b 4ad145398a5cdb0dbe85e2f3e9d2ac40 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1828164863260622848 |
spelling |
Becerra Correa, Nelson ReynaldoArgumero Contreras, Daniel FelipeMoreno Rojas , Carlos Alfredo2025-03-06T22:16:40Z2025-03-06T22:16:40Z2024-10-08http://hdl.handle.net/11349/93370Este estudio aborda una asimetría significativa en la educación de los profesionales médicos responsables de la detección del cáncer de mama por imágenes en comparación con el creciente número de nuevos casos en Colombia. La desproporcionada carga de trabajo resultante para estos médicos restringe el acceso a diagnósticos oportunos, llevando a la pérdida de beneficios cruciales asociados con la detección temprana. Haciendo hincapié en la importancia de mejorar el proceso de diagnóstico, esta investigación pretende clasificar a los individuos como sanos o enfermos, lo que permitiría tomar las medidas adecuadas en función de los estadios del cáncer. Sin embargo, la lentitud de la formación de médicos expertos en la clasificación de pacientes plantea dificultades para seguir el ritmo de la creciente población que requiere evaluación. La implantación de un sistema de diagnóstico capaz puede ampliar el acceso a las ventajas de la detección precoz del cáncer. La aplicación propuesta ofrece a los médicos una herramienta para delegar tareas en personal médico menos especializado, lo que aumenta la cobertura. No obstante, no sustituye el trabajo de los médicos, dadas las tasas de error desconocidas. El proyecto también pretende concienciar sobre el potencial de la IA en la educación y la sanidad en Colombia. El próximo prototipo consiste en construir una red neuronal desde cero utilizando Python, incluyendo una relación entre modelos para entrenar y probar la clasificación de imágenes.This study addresses a significant asymmetry in the education of medical professionals responsible for detecting breast cancer through imaging compared to the increasing number of new cases in Colombia. The resulting disproportionate workload for these doctors restricts access to timely diagnoses, leading to the loss of crucial benefits associated with early detection. Emphasizing the importance of improving the diagnostic process, this research aims to classify individuals as healthy or sick, enabling appropriate measures based on cancer stages. However, the slow pace of educating expert doctors in patient classification poses challenges in keeping up with the growing population requiring evaluation. Implementing a capable diagnostic system may extend access to early cancer detection benefits. The proposed application offers a tool for doctors to delegate tasks to less specialized medical personnel, increasing coverage. Nonetheless, it does not replace doctors' work, given unknown error rates. The project also aims to raise awareness of AI's potential in education and healthcare in Colombia. The upcoming prototype involves building a neural network from scratch using Python, including a relationship between models to train and test image classification.pdfspaUniversidad Distrital Francisco José de CaldasCancer de mamaConvoluciónInteligencia artificialPythonClasificación de imagenesTecnología en Sistematización de Datos -- Tesis y disertaciones académicasImágenes diagnósticasCáncer de mama -- DiagnósticoMejoramiento de procesosBreast cancerConvolutionPythonImages clasificationArtificial intelligenceClasificación de imágenes diagnósticas del cáncer de mama por medio de redes neuronales convolucionalesClassification of diagnostic images of breast cancer using convolutional neural networksbachelorThesisProducción Académicainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2ABELIUK, Andrés y GUTIÉRREZ, Claudio. Historia y evolución de la inteligencia artificial. En: Inteligencia Artificial. 2021. vol. 23, no. 5, p. 14-21.ACHING, Jorge. Algoritmo para el reconocimiento de imágenes de huellas dactilares. En: Electrónica - unmsm. 2012. vol. 21, no. 6, p. 11-20.ACEVEDO, Eder; SERNA, Alexei y SERNA, Edgar. Principios y características de las redes neuronales artificiales. En: Desarrollo e Innovación en Ingeniería. 2017. vol. 2, p. 173-182.AMAZON WEB SERVICES. Big data e inteligencia artificial - machine learning y deep learning en AWS [spanish] [video]. YouTube. (4, octubre, 2017). [Consultado el 25, junio, 2022]. 41:11 min.Disponible en Internet: < https://www.youtube.com/watch?v=ijxySOpkGWk>.AMAZON WEB SERVICES. Big data e inteligencia artificial - machine learning y deep learning en AWS [spanish] [video]. YouTube. (4, octubre, 2017). [Consultado el 25, junio, 2022]. 41:11 min.Disponible en Internet: < https://www.youtube.com/watch?v=ijxySOpkGWk>.GUERRERO, Sara. Machine learning, el futuro de la inteligencia artificial. NIC México [página web].GOODFELLOW, Ian. Deep learning. Massachussets: MIT press, 2016. 252 p.LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/80bf67c7-dfbc-4fba-8317-68840d151c19/download997daf6c648c962d566d7b082dac908dMD51ORIGINALArgumeroContrerasDanielFelipe2024.PDFArgumeroContrerasDanielFelipe2024.PDFTrabajo de Gradoapplication/pdf1926108https://repository.udistrital.edu.co/bitstreams/459bc2a3-c4c3-4d7f-a74f-f9171ae51ff1/download12969401d359cfe7ea576e09cb85cbf1MD53Licencia de uso y publicación.pdfLicencia de uso y publicación.pdfapplication/pdf366475https://repository.udistrital.edu.co/bitstreams/689d7b50-3c9e-4fe4-ae9f-8f8665a01698/download61471566167aa4ed63a492705d639871MD52THUMBNAILArgumeroContrerasDanielFelipe2024.PDF.jpgArgumeroContrerasDanielFelipe2024.PDF.jpgIM Thumbnailimage/jpeg3656https://repository.udistrital.edu.co/bitstreams/cf0e602a-0614-4423-90c0-23148f58b1a5/download6f24c1be4c04fccc6c0c741798f7c19bMD55Licencia de uso y publicación.pdf.jpgLicencia de uso y publicación.pdf.jpgIM Thumbnailimage/jpeg9660https://repository.udistrital.edu.co/bitstreams/91b0cc16-5a4e-4409-8687-06ea25c856a0/download4ad145398a5cdb0dbe85e2f3e9d2ac40MD5411349/93370oai:repository.udistrital.edu.co:11349/933702025-03-10 10:49:46.951open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |