Articulación y cambios de sentido en situaciones de tratamiento de representaciones simbólicas de objetos matemáticos
En el proceso de enseñanza y aprendizaje de las matemáticas se hace fundamental el uso de representaciones de los objetos en una variedad de sistemas semióticos de representación, más específicamente en diversidad de registros semióticos (Duval, 1999), pero en especial se hace necesario apropiarse d...
- Autores:
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2012
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/16315
- Acceso en línea:
- http://hdl.handle.net/11349/16315
- Palabra clave:
- Representaciones simbólicas
Objetos matemáticos
Aprendizaje
Matemáticas
Doctorado Interinstitucional en Educación con Énfasis en Educación Matemática - Tesis y Disertaciones Académicas
Matemáticas - Estudio y enseñanza
Lógica simbólica y matemática
Objeto matemático
Symbolic representations
Mathematical objects
Learning
Maths
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | En el proceso de enseñanza y aprendizaje de las matemáticas se hace fundamental el uso de representaciones de los objetos en una variedad de sistemas semióticos de representación, más específicamente en diversidad de registros semióticos (Duval, 1999), pero en especial se hace necesario apropiarse de posibilidades para transformar una representación semiótica de un objeto matemático en otra. Tales transformaciones entre representaciones semióticas se dan tanto al interior de un mismo registro de representación semiótica como entre registros diferenciados, transformaciones que Duval denomina tratamientos y conversiones, respectivamente. Duval reconoce la conversión como una de las operaciones cognitivas fundamentales para el acceso del sujeto a una verdadera comprensión, y centra la mirada en las dificultades de aprendizaje de las matemáticas en dicho proceso. No obstante, en matemáticas, las transformaciones de tratamiento entre representaciones semióticas –al interior de la variedad de registros utilizados–, no sólo resultan fundamentales sino que podrían ser fuente de dificultades en los procesos de comprensión de las matemáticas por parte de los estudiantes. Usualmente se afirma que los problemas cognitivos están relacionados con la conversión, mientras que lo relacionado con el tratamiento no suele considerarse como un problema relevante para la construcción del objeto matemático. Es decir, este autor destaca explícitamente la complejidad que conlleva el reconocimiento de un mismo objeto a través de representaciones completamente diferentes, en tanto producidas en sistemas semióticos heterogéneos (Conversión), pero no destaca la complejidad asociada a transformaciones realizadas al interior de un mismo sistema semiótico de representación (tratamiento). La presente investigación está orientada a documentar el fenómeno relacionado con las dificultades que encuentran algunos estudiantes para articular los sentidos asignados a representaciones semióticas de un mismo objeto matemático, obtenidas mediante tratamiento. Se realiza una descripción y un análisis de los procesos de asignación de sentidos de nueve estudiantes, seis de grado 9º y tres de grado 11º, con base en el trabajo realizado por ellos en tres pequeños grupos en relación con tareas específicas, en las que se indaga por el sentido asignado a ciertas representaciones semióticas y se requiere realizar transformaciones de tratamiento. Se asume un enfoque de investigación cualitativo, realizando un análisis de tipo descriptivo-interpretativo, desde diferentes perspectivas teóricas, tomando como referencia trabajos de Bruno D’Amore, Raymond Duval, Juan D. Godino y Luis Radford. Así, este trabajo se sitúa en un contexto semiótico, y estudia de manera general la relación semiosis-noesis en la construcción de conocimiento matemático por parte de estudiantes de grados 9º y 11º de la educación básica y media, respectivamente; estudio que, sin ser exhaustivo, incluye aspectos sobre la actividad matemática, la comunicación sobre objetos matemáticos emergentes y la construcción cognitiva de los objetos matemáticos. |
---|