Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación

En comunicaciones móviles, la estimación de canal es uno de los principales procesos para optimizar la comunicación entre el transmisor y el receptor. Conocer la respuesta del canal es un desafío porque existen múltiples fenómenos como atenuación, pérdidas multi-trayecto, ruido y retardos que afecta...

Full description

Autores:
Chacón Alonso , Andrés Felipe
Fuentes Ramírez, Miguel Angél
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/42367
Acceso en línea:
http://hdl.handle.net/11349/42367
Palabra clave:
5G
Señales piloto
Comunicaciones móviles
Estimación de canal
Aprendizaje profundo
Ingeniería Electrónica -- Tesis y disertaciones académicas
Estimación de canal en comunicaciones móviles
Aprendizaje profundo en sistemas 5G
Optimización de señales en presencia de efecto Doppler
Simulación de modelos de canal con TDL
5G
Pilot signals
Mobile communications
Channel estimation
Deep learning
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_511ef285a7622c1164c3ec4b89b89428
oai_identifier_str oai:repository.udistrital.edu.co:11349/42367
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
dc.title.titleenglish.none.fl_str_mv Deep Learning techniques focused on adaptative channel estimation in fifth generation networks
title Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
spellingShingle Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
5G
Señales piloto
Comunicaciones móviles
Estimación de canal
Aprendizaje profundo
Ingeniería Electrónica -- Tesis y disertaciones académicas
Estimación de canal en comunicaciones móviles
Aprendizaje profundo en sistemas 5G
Optimización de señales en presencia de efecto Doppler
Simulación de modelos de canal con TDL
5G
Pilot signals
Mobile communications
Channel estimation
Deep learning
title_short Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
title_full Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
title_fullStr Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
title_full_unstemmed Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
title_sort Técnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generación
dc.creator.fl_str_mv Chacón Alonso , Andrés Felipe
Fuentes Ramírez, Miguel Angél
dc.contributor.advisor.none.fl_str_mv Suárez Fajardo , Carlos Arturo
dc.contributor.author.none.fl_str_mv Chacón Alonso , Andrés Felipe
Fuentes Ramírez, Miguel Angél
dc.contributor.orcid.none.fl_str_mv Suárez Fajardo, Carlos Arturo [0000-0002-1460-5831]
dc.subject.spa.fl_str_mv 5G
Señales piloto
Comunicaciones móviles
Estimación de canal
Aprendizaje profundo
topic 5G
Señales piloto
Comunicaciones móviles
Estimación de canal
Aprendizaje profundo
Ingeniería Electrónica -- Tesis y disertaciones académicas
Estimación de canal en comunicaciones móviles
Aprendizaje profundo en sistemas 5G
Optimización de señales en presencia de efecto Doppler
Simulación de modelos de canal con TDL
5G
Pilot signals
Mobile communications
Channel estimation
Deep learning
dc.subject.lemb.none.fl_str_mv Ingeniería Electrónica -- Tesis y disertaciones académicas
Estimación de canal en comunicaciones móviles
Aprendizaje profundo en sistemas 5G
Optimización de señales en presencia de efecto Doppler
Simulación de modelos de canal con TDL
dc.subject.keyword.spa.fl_str_mv 5G
Pilot signals
Mobile communications
Channel estimation
Deep learning
description En comunicaciones móviles, la estimación de canal es uno de los principales procesos para optimizar la comunicación entre el transmisor y el receptor. Conocer la respuesta del canal es un desafío porque existen múltiples fenómenos como atenuación, pérdidas multi-trayecto, ruido y retardos que afectan a las señales transmitidas. Métodos basados en la inserción de pilotos como Mínimos Cuadrados (LS) y Mínimo Error Cuadrático Medio (MMSE) son comúnmente usados para estimar el canal. Sin embargo, tienen inconvenientes relacionados con su desempeño y complejidad en escenarios variables. En este documento, se propone que diferentes modelos de Aprendizaje Profundo (DL) asistan a la estimación de canales con ayuda de señales piloto para un sistema de comunicaciones 5G que es afectado por el efecto Doppler debido al nivel de movilidad. A través del modelado en simulación, incluyendo condiciones Con Línea de Vista Directa (LoS) y Sín Línea de Vista Directa (NLoS) en un modelo Línea de Retardo en Pulsación (TDL), se mide el desempeño de los modelos con las métricas de Tasa de Error de Bit (BER), Magnitud del Vector Error (EVM), tiempo de estimación y Error Cuadrático Medio (MSE). Los resultados demuestran que los modelos DL superan a los estimadores de interpolación lineal y práctico con una Relación Señal a Ruido (SNR) entre 0 dB y 20 dB. Además, las técnicas propuestas de estimación tienen adaptabilidad ante las diferentes condiciones del canal.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-28T20:58:27Z
dc.date.available.none.fl_str_mv 2024-10-28T20:58:27Z
dc.date.created.none.fl_str_mv 2024-05-21
dc.type.spa.fl_str_mv bachelorThesis
dc.type.degree.spa.fl_str_mv Monografía
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/42367
url http://hdl.handle.net/11349/42367
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/70453d03-6df2-4782-aa0b-60ffeafadc36/download
https://repository.udistrital.edu.co/bitstreams/f56d5c09-a958-48fc-9997-385077c24c9a/download
https://repository.udistrital.edu.co/bitstreams/877616d6-cd56-496a-b893-80cab9223a32/download
https://repository.udistrital.edu.co/bitstreams/9ab2487d-6025-44d9-b5f4-d30cb8b0d53c/download
https://repository.udistrital.edu.co/bitstreams/b55db300-8148-44bf-87c0-e253ff441bf4/download
https://repository.udistrital.edu.co/bitstreams/4aa123cb-6a80-4406-b5af-8484bf343957/download
bitstream.checksum.fl_str_mv 997daf6c648c962d566d7b082dac908d
3779fa4abeac41dcca89cf3ac118b241
f090b75896dfeb886ef12f15a198d91f
4460e5956bc1d1639be9ae6146a50347
288eb6c0a021b692de20f98e56c5893e
395cad45b033327823240aa586484627
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1828165204662288384
spelling Suárez Fajardo , Carlos ArturoChacón Alonso , Andrés FelipeFuentes Ramírez, Miguel AngélSuárez Fajardo, Carlos Arturo [0000-0002-1460-5831]2024-10-28T20:58:27Z2024-10-28T20:58:27Z2024-05-21http://hdl.handle.net/11349/42367En comunicaciones móviles, la estimación de canal es uno de los principales procesos para optimizar la comunicación entre el transmisor y el receptor. Conocer la respuesta del canal es un desafío porque existen múltiples fenómenos como atenuación, pérdidas multi-trayecto, ruido y retardos que afectan a las señales transmitidas. Métodos basados en la inserción de pilotos como Mínimos Cuadrados (LS) y Mínimo Error Cuadrático Medio (MMSE) son comúnmente usados para estimar el canal. Sin embargo, tienen inconvenientes relacionados con su desempeño y complejidad en escenarios variables. En este documento, se propone que diferentes modelos de Aprendizaje Profundo (DL) asistan a la estimación de canales con ayuda de señales piloto para un sistema de comunicaciones 5G que es afectado por el efecto Doppler debido al nivel de movilidad. A través del modelado en simulación, incluyendo condiciones Con Línea de Vista Directa (LoS) y Sín Línea de Vista Directa (NLoS) en un modelo Línea de Retardo en Pulsación (TDL), se mide el desempeño de los modelos con las métricas de Tasa de Error de Bit (BER), Magnitud del Vector Error (EVM), tiempo de estimación y Error Cuadrático Medio (MSE). Los resultados demuestran que los modelos DL superan a los estimadores de interpolación lineal y práctico con una Relación Señal a Ruido (SNR) entre 0 dB y 20 dB. Además, las técnicas propuestas de estimación tienen adaptabilidad ante las diferentes condiciones del canal.In mobile communications, the channel estimation process is one of the main keys to optimize the communication between the transmitter and the receiver. Knowing the channel response is a challenge because there are multiple phenomena like attenuation, multi-path loss, noise, and delays that affect the transmitted signals. Methods based on pilot insertion such as Least Squares (LS) and Minimal Mean Squared Error (MMSE) are commonly used to estimate the channel. Nevertheless, they have issues related with their performance and complexity in varying scenarios. In this document, it is proposed that different Deep Learning (DL) techniques assist a pilot-based channel estimation for a 5G communication system affected by Doppler shift due to the level of mobility. Through simulation modeling including Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) environments in a Tapped Delay Line (TDL) model, it is measured the performance based on the Bit Error Rate (BER), Error Vector Magnitude (EVM), estimation time, and Mean Squared Error (MSE). The results prove that the DL models outperform linear interpolation and practical estimators in a Signal-to-Noise Ratio between 0 dB and 20 dB. Furthermore, the proposed estimation techniques have adaptability to different channel conditions.pdfspaUniversidad Distrital Francisco José de CaldasAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf25GSeñales pilotoComunicaciones móvilesEstimación de canalAprendizaje profundoIngeniería Electrónica -- Tesis y disertaciones académicasEstimación de canal en comunicaciones móvilesAprendizaje profundo en sistemas 5GOptimización de señales en presencia de efecto DopplerSimulación de modelos de canal con TDL5GPilot signalsMobile communicationsChannel estimationDeep learningTécnicas de Deep Learning enfocadas a la estimación adaptativa de canales en redes de quinta generaciónDeep Learning techniques focused on adaptative channel estimation in fifth generation networksbachelorThesisMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/70453d03-6df2-4782-aa0b-60ffeafadc36/download997daf6c648c962d566d7b082dac908dMD54ORIGINALTrabajo de gradoTrabajo de gradoapplication/pdf42323708https://repository.udistrital.edu.co/bitstreams/f56d5c09-a958-48fc-9997-385077c24c9a/download3779fa4abeac41dcca89cf3ac118b241MD51Licencia de uso y autorizaciónLicencia de uso y autorizaciónapplication/pdf596333https://repository.udistrital.edu.co/bitstreams/877616d6-cd56-496a-b893-80cab9223a32/downloadf090b75896dfeb886ef12f15a198d91fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/9ab2487d-6025-44d9-b5f4-d30cb8b0d53c/download4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILTrabajo de grado.jpgTrabajo de grado.jpgIM Thumbnailimage/jpeg17318https://repository.udistrital.edu.co/bitstreams/b55db300-8148-44bf-87c0-e253ff441bf4/download288eb6c0a021b692de20f98e56c5893eMD55Licencia de uso y autorización.jpgLicencia de uso y autorización.jpgIM Thumbnailimage/jpeg12282https://repository.udistrital.edu.co/bitstreams/4aa123cb-6a80-4406-b5af-8484bf343957/download395cad45b033327823240aa586484627MD5611349/42367oai:repository.udistrital.edu.co:11349/423672024-11-19 01:05:16.445http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK