Técnicas de regularización en el marco del aprendizaje de máquina: regresiones ridge y lasso
La regresión lineal es uno de los métodos de aprendizaje de maquina más utilizados en la actualidad. Sin embargo, en el método estándar de mínimos cuadrados ordinarios se hacen varias suposiciones sobre los datos que a menudo no son ciertas en los conjuntos de datos de la vida real. Esto puede causa...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/28658
- Acceso en línea:
- http://hdl.handle.net/11349/28658
- Palabra clave:
- Aprendizaje de máquina
Regresión ridge
Regresión lasso
Regularización
Matemáticas - Tesis y disertaciones académicas
Aprendizaje automático (Inteligencia artificial)
Análisis de regresión
Matemáticas
Machine learning
Ridge regression
Lasso regression
Regularization
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | La regresión lineal es uno de los métodos de aprendizaje de maquina más utilizados en la actualidad. Sin embargo, en el método estándar de mínimos cuadrados ordinarios se hacen varias suposiciones sobre los datos que a menudo no son ciertas en los conjuntos de datos de la vida real. Esto puede causar numerosos problemas cuando el modelo se ajusta mediante mínimos cuadrados. Uno de los problemas más comunes es que el modelo se ajuste demasiado a los datos, esto sucede cuando el estimador es insesgado, pero tiene alta variabilidad. Las regresiones Ridge y Lasso son dos técnicas de regularización utilizadas para crear un modelo mejor y más preciso. En este trabajo se explica cómo se produce la alta variabilidad en el estimador de mínimos cuadrados. Se incluye un ejemplo con un conjunto de datos de la vida real y se comparan estos métodos con el estimador de mínimos cuadrados para inferir los beneficios e inconvenientes de cada método. |
---|