Medida de Haar

Una de las más útiles propiedades de la medida de la integral de Lebesgue es su invarianza bajo traslaciones y rotaciones. Por ejemplo, si a ∈ R n , r ∈ R n×n y f es una función integrable Lebesgue en R n , entonces Z Rn f(x)dx = Z Rn f(rx + a)dx. La noción de la medida de Haar es una generalización...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/3078
Acceso en línea:
http://hdl.handle.net/11349/3078
Palabra clave:
Medida
Integral
Grupo
Compacto
Localmente compacto
Invariante
Separable
Conjunto
Matemáticas - Tesis y disertaciones académicas
Medida de Haar
Volúmenes invariantes
Measure
Integral
Set
Compact
Locally compact
Group
Invariant
Separable
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional