Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.

Este documento presenta la investigación para la construcción de un modelo de diagnóstico y pronostico del rendimiento académico del proyecto curricular de Ingeniería Catastral utilizando las herramientas series de tiempo y Machine Learning. Se documenta un análisis de los resultados obtenidos en la...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/30365
Acceso en línea:
http://hdl.handle.net/11349/30365
Palabra clave:
Python
Montecarlo
Rendimiento académico
Series de tiempo
Maestría en Ingeniería Industrial - Tesis y disertaciones académicas
Rendimiento académico - Procesamiento de datos
Análisis de series de tiempo
Aprendizaje automático (Inteligencia artificial)
Python (Lenguaje de programación de computadores)
Python
Montecarlo
Time Series
Big data
Machine learning
Academic performance
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_038d986d13a2340de35f15b3e2d7a977
oai_identifier_str oai:repository.udistrital.edu.co:11349/30365
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
dc.title.titleenglish.spa.fl_str_mv Construction of a model to diagnose and forecast the academic performance of the students of the cadastral engineering curricular project of the Francisco José de Caldas District University, using time series and machine learning.
title Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
spellingShingle Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
Python
Montecarlo
Rendimiento académico
Series de tiempo
Maestría en Ingeniería Industrial - Tesis y disertaciones académicas
Rendimiento académico - Procesamiento de datos
Análisis de series de tiempo
Aprendizaje automático (Inteligencia artificial)
Python (Lenguaje de programación de computadores)
Python
Montecarlo
Time Series
Big data
Machine learning
Academic performance
title_short Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
title_full Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
title_fullStr Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
title_full_unstemmed Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
title_sort Construcción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.
dc.contributor.advisor.none.fl_str_mv Fuentes López, Héctor Javier
dc.subject.spa.fl_str_mv Python
Montecarlo
Rendimiento académico
Series de tiempo
topic Python
Montecarlo
Rendimiento académico
Series de tiempo
Maestría en Ingeniería Industrial - Tesis y disertaciones académicas
Rendimiento académico - Procesamiento de datos
Análisis de series de tiempo
Aprendizaje automático (Inteligencia artificial)
Python (Lenguaje de programación de computadores)
Python
Montecarlo
Time Series
Big data
Machine learning
Academic performance
dc.subject.lemb.spa.fl_str_mv Maestría en Ingeniería Industrial - Tesis y disertaciones académicas
Rendimiento académico - Procesamiento de datos
Análisis de series de tiempo
Aprendizaje automático (Inteligencia artificial)
Python (Lenguaje de programación de computadores)
dc.subject.keyword.spa.fl_str_mv Python
Montecarlo
Time Series
Big data
Machine learning
Academic performance
description Este documento presenta la investigación para la construcción de un modelo de diagnóstico y pronostico del rendimiento académico del proyecto curricular de Ingeniería Catastral utilizando las herramientas series de tiempo y Machine Learning. Se documenta un análisis de los resultados obtenidos en las investigaciones preliminares. La finalidad es conocer las características generales del alumno y las motivaciones para el abandono de la carrera de Ingeniería, de esta forma poder pronosticar qué procesos o actividades se pueden mejorar con el paso del tiempo para mejorar el rendimiento académico del estudiante. Consecuentemente, se evaluará y determinará el aporte de las series de tiempo y el aprendizaje automático para llegar a resultados estadísticos de datos con resultados fiables y efectivos para la toma de decisiones.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-24T20:55:48Z
dc.date.available.none.fl_str_mv 2022-10-24T20:55:48Z
dc.date.created.none.fl_str_mv 2022-06-24
dc.type.spa.fl_str_mv masterThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.degree.spa.fl_str_mv Monografía
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/30365
url http://hdl.handle.net/11349/30365
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/30365/5/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/30365/6/license.txt
http://repository.udistrital.edu.co/bitstream/11349/30365/1/Tesis%20final%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf
http://repository.udistrital.edu.co/bitstream/11349/30365/2/Anexos%20Tesis%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf
http://repository.udistrital.edu.co/bitstream/11349/30365/4/Licencia%20de%20uso%20y%20publicacion%20Tesis%20JFG.pdf
http://repository.udistrital.edu.co/bitstream/11349/30365/7/Tesis%20final%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/30365/8/Anexos%20Tesis%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/30365/9/Licencia%20de%20uso%20y%20publicacion%20Tesis%20JFG.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
997daf6c648c962d566d7b082dac908d
2b878551d207a716f41a24a76aa453de
e5bfd5796a77cb50f1ea8aa83c0c32df
b83f444dd312c0e88067a6c1e2a00184
54d3cd438ddf2f93bee51c4667a4e65c
941945ef8e226534301d7c771a4c6dff
054857063e80acb36857ff9c47031ca2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1803712712927084544
spelling Fuentes López, Héctor JavierGalvis Berrio, John Felipe2022-10-24T20:55:48Z2022-10-24T20:55:48Z2022-06-24http://hdl.handle.net/11349/30365Este documento presenta la investigación para la construcción de un modelo de diagnóstico y pronostico del rendimiento académico del proyecto curricular de Ingeniería Catastral utilizando las herramientas series de tiempo y Machine Learning. Se documenta un análisis de los resultados obtenidos en las investigaciones preliminares. La finalidad es conocer las características generales del alumno y las motivaciones para el abandono de la carrera de Ingeniería, de esta forma poder pronosticar qué procesos o actividades se pueden mejorar con el paso del tiempo para mejorar el rendimiento académico del estudiante. Consecuentemente, se evaluará y determinará el aporte de las series de tiempo y el aprendizaje automático para llegar a resultados estadísticos de datos con resultados fiables y efectivos para la toma de decisiones.This document presents the research for the construction of a diagnostic and prognostic model of the academic performance of the Cadastral Engineering curricular project using the tools of time series and Machine Learning. An analysis of the results obtained in the preliminary investigations is documented. The purpose is to know the general characteristics of the student and the motivations for abandoning the Engineering career, in this way to be able to predict which processes or activities can be improved over time to improve the student's academic performance. Consequently, the contribution of time series and machine learning will be evaluated and determined to arrive at statistical data results with reliable and effective results for decision making.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2PythonMontecarloRendimiento académicoSeries de tiempoMaestría en Ingeniería Industrial - Tesis y disertaciones académicasRendimiento académico - Procesamiento de datosAnálisis de series de tiempoAprendizaje automático (Inteligencia artificial)Python (Lenguaje de programación de computadores)PythonMontecarloTime SeriesBig dataMachine learningAcademic performanceConstrucción de un modelo para diagnosticar y pronosticar el rendimiento académico de los estudiantes del proyecto curricular de ingeniería catastral de la Universidad Distrital Francisco José de Caldas, utilizando series de tiempo y machine learning.Construction of a model to diagnose and forecast the academic performance of the students of the cadastral engineering curricular project of the Francisco José de Caldas District University, using time series and machine learning.masterThesisMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repository.udistrital.edu.co/bitstream/11349/30365/5/license_rdf4460e5956bc1d1639be9ae6146a50347MD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/30365/6/license.txt997daf6c648c962d566d7b082dac908dMD56open accessORIGINALTesis final Maestría en Ing Ind JFG.pdfTesis final Maestría en Ing Ind JFG.pdfGalvisBerrioJohnFelipe2022.pdfapplication/pdf4550990http://repository.udistrital.edu.co/bitstream/11349/30365/1/Tesis%20final%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf2b878551d207a716f41a24a76aa453deMD51open accessAnexos Tesis Maestría en Ing Ind JFG.pdfAnexos Tesis Maestría en Ing Ind JFG.pdfAnexosapplication/pdf14842207http://repository.udistrital.edu.co/bitstream/11349/30365/2/Anexos%20Tesis%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdfe5bfd5796a77cb50f1ea8aa83c0c32dfMD52open accessLicencia de uso y publicacion Tesis JFG.pdfLicencia de uso y publicacion Tesis JFG.pdfLicencia de uso y publicaciónapplication/pdf612737http://repository.udistrital.edu.co/bitstream/11349/30365/4/Licencia%20de%20uso%20y%20publicacion%20Tesis%20JFG.pdfb83f444dd312c0e88067a6c1e2a00184MD54metadata only accessTHUMBNAILTesis final Maestría en Ing Ind JFG.pdf.jpgTesis final Maestría en Ing Ind JFG.pdf.jpgIM Thumbnailimage/jpeg8412http://repository.udistrital.edu.co/bitstream/11349/30365/7/Tesis%20final%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf.jpg54d3cd438ddf2f93bee51c4667a4e65cMD57open accessAnexos Tesis Maestría en Ing Ind JFG.pdf.jpgAnexos Tesis Maestría en Ing Ind JFG.pdf.jpgIM Thumbnailimage/jpeg8351http://repository.udistrital.edu.co/bitstream/11349/30365/8/Anexos%20Tesis%20Maestr%c3%ada%20en%20Ing%20Ind%20JFG.pdf.jpg941945ef8e226534301d7c771a4c6dffMD58open accessLicencia de uso y publicacion Tesis JFG.pdf.jpgLicencia de uso y publicacion Tesis JFG.pdf.jpgIM Thumbnailimage/jpeg13145http://repository.udistrital.edu.co/bitstream/11349/30365/9/Licencia%20de%20uso%20y%20publicacion%20Tesis%20JFG.pdf.jpg054857063e80acb36857ff9c47031ca2MD59open access11349/30365oai:repository.udistrital.edu.co:11349/303652023-06-09 14:44:02.297open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK