On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo ev...
- Autores:
-
Arias Londoño, Julián David
Vargas Bonilla, Jesús Francisco
Orozco Arroyave, Juan Rafael
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/5917
- Acceso en línea:
- http://hdl.handle.net/10495/5917
- Palabra clave:
- Proceso de verificación
Firma electrónica
Distribución Gaussiana
Estrategia de aprendizaje
Estimación bayesiana
Máquinas de soporte vectorial
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id |
UDEA2_e55fce7d2c15bad2c524262a152ef3ae |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/5917 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
dc.title.alternative.spa.fl_str_mv |
Verificación de firmas en línea usando modelos de mezcla Gaussianas y estrategias de aprendizaje para conjuntos pequeños de muestras |
title |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
spellingShingle |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies Proceso de verificación Firma electrónica Distribución Gaussiana Estrategia de aprendizaje Estimación bayesiana Máquinas de soporte vectorial |
title_short |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
title_full |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
title_fullStr |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
title_full_unstemmed |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
title_sort |
On-line signature verification using Gaussian Mixture Models and small-sample learning strategies |
dc.creator.fl_str_mv |
Arias Londoño, Julián David Vargas Bonilla, Jesús Francisco Orozco Arroyave, Juan Rafael |
dc.contributor.author.none.fl_str_mv |
Arias Londoño, Julián David Vargas Bonilla, Jesús Francisco Orozco Arroyave, Juan Rafael |
dc.subject.none.fl_str_mv |
Proceso de verificación Firma electrónica Distribución Gaussiana Estrategia de aprendizaje Estimación bayesiana Máquinas de soporte vectorial |
topic |
Proceso de verificación Firma electrónica Distribución Gaussiana Estrategia de aprendizaje Estimación bayesiana Máquinas de soporte vectorial |
description |
RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo evalúa nueve diferentes estrategias de clasificación basadas en modelos de mezclas de Gaussianas (GMM por sus siglas en inglés) y la estrategia conocida como modelo histórico universal (UBM por sus siglas en inglés), la cual está diseñada con el objetivo de trabajar bajo condiciones de menor número de muestras. Las estrategias de aprendizaje de los GMM incluyen el algoritmo convencional de Esperanza y Maximización, y una aproximación Bayesiana basada en aprendizaje variacional. Las firmas son caracterizadas principalmente en términos de velocidades y aceleraciones de los patrones de escritura a mano de los usuarios. Los resultados muestran que cuando se evalúa el sistema en una configuración genuino vs. impostor, el método GMM-UBM es capaz de mantener una precisión por encima del 93%, incluso en casos en los que únicamente se usa para entrenamiento el 20% de las muestras disponibles (equivalente a 5 firmas), mientras que la combinación de un modelo Bayesiano UBM con una Máquina de Soporte Vectorial (SVM por sus siglas en inglés), modelo conocido como GMM-Supervector, logra un 99% de acierto cuando las muestras de entrenamiento exceden las 20. Por otro lado, cuando se simula un ambiente real en el que no están disponibles muestras impostoras y se usa únicamente el 20% de las muestras para el entrenamiento, una vez más la combinación del modelo UBM Bayesiano y una SVM alcanza más del 77% de acierto, manteniendo una tasa de falsa aceptación inferior al 3%. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-01-08T23:19:42Z |
dc.date.available.none.fl_str_mv |
2017-01-08T23:19:42Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a86 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016. |
dc.identifier.issn.none.fl_str_mv |
0120-6230 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/5917 |
dc.identifier.doi.none.fl_str_mv |
10.17533/udea.redin.n79a09 |
dc.identifier.eissn.none.fl_str_mv |
2422-2844 |
identifier_str_mv |
G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016. 0120-6230 10.17533/udea.redin.n79a09 2422-2844 |
url |
http://hdl.handle.net/10495/5917 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Fac. Ing. Univ. Antioquia |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) https://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Antioquia, Facultad de Ingeniería |
dc.publisher.group.spa.fl_str_mv |
Ingeniería y Software Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/1/ZapataGabriel_2016_On-lineSignatureVerification.pdf http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/2/license_url http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/3/license_text http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/4/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/5/license.txt |
bitstream.checksum.fl_str_mv |
90d1de9660654d3e4696532205a375e8 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173198532280320 |
spelling |
Arias Londoño, Julián DavidVargas Bonilla, Jesús FranciscoOrozco Arroyave, Juan Rafael2017-01-08T23:19:42Z2017-01-08T23:19:42Z2016G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016.0120-6230http://hdl.handle.net/10495/591710.17533/udea.redin.n79a092422-2844RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo evalúa nueve diferentes estrategias de clasificación basadas en modelos de mezclas de Gaussianas (GMM por sus siglas en inglés) y la estrategia conocida como modelo histórico universal (UBM por sus siglas en inglés), la cual está diseñada con el objetivo de trabajar bajo condiciones de menor número de muestras. Las estrategias de aprendizaje de los GMM incluyen el algoritmo convencional de Esperanza y Maximización, y una aproximación Bayesiana basada en aprendizaje variacional. Las firmas son caracterizadas principalmente en términos de velocidades y aceleraciones de los patrones de escritura a mano de los usuarios. Los resultados muestran que cuando se evalúa el sistema en una configuración genuino vs. impostor, el método GMM-UBM es capaz de mantener una precisión por encima del 93%, incluso en casos en los que únicamente se usa para entrenamiento el 20% de las muestras disponibles (equivalente a 5 firmas), mientras que la combinación de un modelo Bayesiano UBM con una Máquina de Soporte Vectorial (SVM por sus siglas en inglés), modelo conocido como GMM-Supervector, logra un 99% de acierto cuando las muestras de entrenamiento exceden las 20. Por otro lado, cuando se simula un ambiente real en el que no están disponibles muestras impostoras y se usa únicamente el 20% de las muestras para el entrenamiento, una vez más la combinación del modelo UBM Bayesiano y una SVM alcanza más del 77% de acierto, manteniendo una tasa de falsa aceptación inferior al 3%.ABSTRACT: This paper addresses the problem of training on-line signature verification systems when the number of training samples is small, facing the real-world scenario when the number of available signatures per user is limited. The paper evaluates nine different classification strategies based on Gaussian Mixture Models (GMM), and the Universal Background Model (UBM) strategy, which are designed to work under small-sample size conditions. The GMM’s learning strategies include the conventional Expectation-Maximisation algorithm and also a Bayesian approach based on variational learning. The signatures are characterised mainly in terms of velocities and accelerations of the users’ handwriting patterns. The results show that for a genuine vs. impostor test, the GMM-UBM method is able to keep the accuracy above 93%, even when only 20% of samples are used for training (5 signatures). Moreover, the combination of a full Bayesian UBM and a Support Vector Machine (SVM) (known as GMM-Supervector) is able to achieve 99% of accuracy when the training samples exceed 20. On the other hand, when simulating a real environment where there are not available impostor signatures, once again the combination of a full Bayesian UBM and a SVM, achieve more than 77% of accuracy and a false acceptance rate lower than 3%, using only 20% of the samples for training.13application/pdfengUniversidad de Antioquia, Facultad de IngenieríaIngeniería y SoftwareGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)Medellín, Colombiainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a86Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Proceso de verificaciónFirma electrónicaDistribución GaussianaEstrategia de aprendizajeEstimación bayesianaMáquinas de soporte vectorialOn-line signature verification using Gaussian Mixture Models and small-sample learning strategiesVerificación de firmas en línea usando modelos de mezcla Gaussianas y estrategias de aprendizaje para conjuntos pequeños de muestrasRev. Fac. Ing. Univ. AntioquiaRevista Facultad de Ingeniería Universidad de Antioquia849779ORIGINALZapataGabriel_2016_On-lineSignatureVerification.pdfZapataGabriel_2016_On-lineSignatureVerification.pdfArtículo de investigaciónapplication/pdf2175123http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/1/ZapataGabriel_2016_On-lineSignatureVerification.pdf90d1de9660654d3e4696532205a375e8MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/5917oai:bibliotecadigital.udea.edu.co:10495/59172021-05-04 17:28:31.409Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |