On-line signature verification using Gaussian Mixture Models and small-sample learning strategies

RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo ev...

Full description

Autores:
Arias Londoño, Julián David
Vargas Bonilla, Jesús Francisco
Orozco Arroyave, Juan Rafael
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/5917
Acceso en línea:
http://hdl.handle.net/10495/5917
Palabra clave:
Proceso de verificación
Firma electrónica
Distribución Gaussiana
Estrategia de aprendizaje
Estimación bayesiana
Máquinas de soporte vectorial
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_e55fce7d2c15bad2c524262a152ef3ae
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/5917
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
dc.title.alternative.spa.fl_str_mv Verificación de firmas en línea usando modelos de mezcla Gaussianas y estrategias de aprendizaje para conjuntos pequeños de muestras
title On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
spellingShingle On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
Proceso de verificación
Firma electrónica
Distribución Gaussiana
Estrategia de aprendizaje
Estimación bayesiana
Máquinas de soporte vectorial
title_short On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
title_full On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
title_fullStr On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
title_full_unstemmed On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
title_sort On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
dc.creator.fl_str_mv Arias Londoño, Julián David
Vargas Bonilla, Jesús Francisco
Orozco Arroyave, Juan Rafael
dc.contributor.author.none.fl_str_mv Arias Londoño, Julián David
Vargas Bonilla, Jesús Francisco
Orozco Arroyave, Juan Rafael
dc.subject.none.fl_str_mv Proceso de verificación
Firma electrónica
Distribución Gaussiana
Estrategia de aprendizaje
Estimación bayesiana
Máquinas de soporte vectorial
topic Proceso de verificación
Firma electrónica
Distribución Gaussiana
Estrategia de aprendizaje
Estimación bayesiana
Máquinas de soporte vectorial
description RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo evalúa nueve diferentes estrategias de clasificación basadas en modelos de mezclas de Gaussianas (GMM por sus siglas en inglés) y la estrategia conocida como modelo histórico universal (UBM por sus siglas en inglés), la cual está diseñada con el objetivo de trabajar bajo condiciones de menor número de muestras. Las estrategias de aprendizaje de los GMM incluyen el algoritmo convencional de Esperanza y Maximización, y una aproximación Bayesiana basada en aprendizaje variacional. Las firmas son caracterizadas principalmente en términos de velocidades y aceleraciones de los patrones de escritura a mano de los usuarios. Los resultados muestran que cuando se evalúa el sistema en una configuración genuino vs. impostor, el método GMM-UBM es capaz de mantener una precisión por encima del 93%, incluso en casos en los que únicamente se usa para entrenamiento el 20% de las muestras disponibles (equivalente a 5 firmas), mientras que la combinación de un modelo Bayesiano UBM con una Máquina de Soporte Vectorial (SVM por sus siglas en inglés), modelo conocido como GMM-Supervector, logra un 99% de acierto cuando las muestras de entrenamiento exceden las 20. Por otro lado, cuando se simula un ambiente real en el que no están disponibles muestras impostoras y se usa únicamente el 20% de las muestras para el entrenamiento, una vez más la combinación del modelo UBM Bayesiano y una SVM alcanza más del 77% de acierto, manteniendo una tasa de falsa aceptación inferior al 3%.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-01-08T23:19:42Z
dc.date.available.none.fl_str_mv 2017-01-08T23:19:42Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a86
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016.
dc.identifier.issn.none.fl_str_mv 0120-6230
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/5917
dc.identifier.doi.none.fl_str_mv 10.17533/udea.redin.n79a09
dc.identifier.eissn.none.fl_str_mv 2422-2844
identifier_str_mv G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016.
0120-6230
10.17533/udea.redin.n79a09
2422-2844
url http://hdl.handle.net/10495/5917
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Fac. Ing. Univ. Antioquia
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia, Facultad de Ingeniería
dc.publisher.group.spa.fl_str_mv Ingeniería y Software
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/1/ZapataGabriel_2016_On-lineSignatureVerification.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/2/license_url
http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/3/license_text
http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/4/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/5/license.txt
bitstream.checksum.fl_str_mv 90d1de9660654d3e4696532205a375e8
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173198532280320
spelling Arias Londoño, Julián DavidVargas Bonilla, Jesús FranciscoOrozco Arroyave, Juan Rafael2017-01-08T23:19:42Z2017-01-08T23:19:42Z2016G. J. Zapata, J. D. Arias, J. F. Vargas and J. R. Orozco, "On-line signature verification using Gaussian Mixture Models and small-sample learning strategies", Rev. Fac. Ing. Univ. Antioquia, no. 79, pp. 84-97, 2016.0120-6230http://hdl.handle.net/10495/591710.17533/udea.redin.n79a092422-2844RESUMEN: El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo evalúa nueve diferentes estrategias de clasificación basadas en modelos de mezclas de Gaussianas (GMM por sus siglas en inglés) y la estrategia conocida como modelo histórico universal (UBM por sus siglas en inglés), la cual está diseñada con el objetivo de trabajar bajo condiciones de menor número de muestras. Las estrategias de aprendizaje de los GMM incluyen el algoritmo convencional de Esperanza y Maximización, y una aproximación Bayesiana basada en aprendizaje variacional. Las firmas son caracterizadas principalmente en términos de velocidades y aceleraciones de los patrones de escritura a mano de los usuarios. Los resultados muestran que cuando se evalúa el sistema en una configuración genuino vs. impostor, el método GMM-UBM es capaz de mantener una precisión por encima del 93%, incluso en casos en los que únicamente se usa para entrenamiento el 20% de las muestras disponibles (equivalente a 5 firmas), mientras que la combinación de un modelo Bayesiano UBM con una Máquina de Soporte Vectorial (SVM por sus siglas en inglés), modelo conocido como GMM-Supervector, logra un 99% de acierto cuando las muestras de entrenamiento exceden las 20. Por otro lado, cuando se simula un ambiente real en el que no están disponibles muestras impostoras y se usa únicamente el 20% de las muestras para el entrenamiento, una vez más la combinación del modelo UBM Bayesiano y una SVM alcanza más del 77% de acierto, manteniendo una tasa de falsa aceptación inferior al 3%.ABSTRACT: This paper addresses the problem of training on-line signature verification systems when the number of training samples is small, facing the real-world scenario when the number of available signatures per user is limited. The paper evaluates nine different classification strategies based on Gaussian Mixture Models (GMM), and the Universal Background Model (UBM) strategy, which are designed to work under small-sample size conditions. The GMM’s learning strategies include the conventional Expectation-Maximisation algorithm and also a Bayesian approach based on variational learning. The signatures are characterised mainly in terms of velocities and accelerations of the users’ handwriting patterns. The results show that for a genuine vs. impostor test, the GMM-UBM method is able to keep the accuracy above 93%, even when only 20% of samples are used for training (5 signatures). Moreover, the combination of a full Bayesian UBM and a Support Vector Machine (SVM) (known as GMM-Supervector) is able to achieve 99% of accuracy when the training samples exceed 20. On the other hand, when simulating a real environment where there are not available impostor signatures, once again the combination of a full Bayesian UBM and a SVM, achieve more than 77% of accuracy and a false acceptance rate lower than 3%, using only 20% of the samples for training.13application/pdfengUniversidad de Antioquia, Facultad de IngenieríaIngeniería y SoftwareGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)Medellín, Colombiainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a86Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Proceso de verificaciónFirma electrónicaDistribución GaussianaEstrategia de aprendizajeEstimación bayesianaMáquinas de soporte vectorialOn-line signature verification using Gaussian Mixture Models and small-sample learning strategiesVerificación de firmas en línea usando modelos de mezcla Gaussianas y estrategias de aprendizaje para conjuntos pequeños de muestrasRev. Fac. Ing. Univ. AntioquiaRevista Facultad de Ingeniería Universidad de Antioquia849779ORIGINALZapataGabriel_2016_On-lineSignatureVerification.pdfZapataGabriel_2016_On-lineSignatureVerification.pdfArtículo de investigaciónapplication/pdf2175123http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/1/ZapataGabriel_2016_On-lineSignatureVerification.pdf90d1de9660654d3e4696532205a375e8MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/5917/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/5917oai:bibliotecadigital.udea.edu.co:10495/59172021-05-04 17:28:31.409Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=