Identificación de un modelo ARIMA cuando existen observaciones faltantes

RESUMEN: Un supuesto común en el análisis de series de tiempo es que las series que van a ser estudiadas disponen de información para cada momento de tiempo en el periodo que se va analizar. Sin embargo, con frecuencia ocurre que faltan datos en la serie, o que algunos de ellos son erróneos. En la l...

Full description

Autores:
Castaño Vélez, Elkin Argemiro
Tipo de recurso:
Article of investigation
Fecha de publicación:
1997
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/3846
Acceso en línea:
http://hdl.handle.net/10495/3846
Palabra clave:
Series de tiempo
Modelos econométricos
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_e34cd5eed7a94ff12c9887e6733f2b90
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/3846
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Identificación de un modelo ARIMA cuando existen observaciones faltantes
title Identificación de un modelo ARIMA cuando existen observaciones faltantes
spellingShingle Identificación de un modelo ARIMA cuando existen observaciones faltantes
Series de tiempo
Modelos econométricos
title_short Identificación de un modelo ARIMA cuando existen observaciones faltantes
title_full Identificación de un modelo ARIMA cuando existen observaciones faltantes
title_fullStr Identificación de un modelo ARIMA cuando existen observaciones faltantes
title_full_unstemmed Identificación de un modelo ARIMA cuando existen observaciones faltantes
title_sort Identificación de un modelo ARIMA cuando existen observaciones faltantes
dc.creator.fl_str_mv Castaño Vélez, Elkin Argemiro
dc.contributor.author.none.fl_str_mv Castaño Vélez, Elkin Argemiro
dc.subject.none.fl_str_mv Series de tiempo
Modelos econométricos
topic Series de tiempo
Modelos econométricos
description RESUMEN: Un supuesto común en el análisis de series de tiempo es que las series que van a ser estudiadas disponen de información para cada momento de tiempo en el periodo que se va analizar. Sin embargo, con frecuencia ocurre que faltan datos en la serie, o que algunos de ellos son erróneos. En la literatura de Análisis Series de Tiempo, en particular en la de los procesos ARIMA (Box y Jenkins, 1976), se han propuesto diferentes métodos para estimar estas observaciones, pero la mayoría de ellos supone que el modelo es conocido o que las observaciones son tales que han permitido identificarlo. Este documento presenta una metodología relativamente simple que permite estimar las observaciones faltantes y simultáneamente identificar el modelo ARIMA que generó una serie de tiempo.
publishDate 1997
dc.date.issued.none.fl_str_mv 1997
dc.date.accessioned.none.fl_str_mv 2016-07-25T16:25:23Z
dc.date.available.none.fl_str_mv 2016-07-25T16:25:23Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Castaño Vélez, E. (1997). Identificación de un modelo ARIMA cuando existen observaciones faltantes. Lecturas de Economía, (47), 25-45.
dc.identifier.issn.none.fl_str_mv 0120-2596
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/3846
dc.identifier.eissn.none.fl_str_mv 2323-0622
identifier_str_mv Castaño Vélez, E. (1997). Identificación de un modelo ARIMA cuando existen observaciones faltantes. Lecturas de Economía, (47), 25-45.
0120-2596
2323-0622
url http://hdl.handle.net/10495/3846
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Lect. Econ.
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/1/CastanoE_1997_IdentificacionModeloArima.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/2/license_url
https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/3/license_text
https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/4/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/5/license.txt
bitstream.checksum.fl_str_mv bb0c79cd92b77f2388d8e4b411a611c0
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173290762928128
spelling Castaño Vélez, Elkin Argemiro2016-07-25T16:25:23Z2016-07-25T16:25:23Z1997Castaño Vélez, E. (1997). Identificación de un modelo ARIMA cuando existen observaciones faltantes. Lecturas de Economía, (47), 25-45.0120-2596http://hdl.handle.net/10495/38462323-0622RESUMEN: Un supuesto común en el análisis de series de tiempo es que las series que van a ser estudiadas disponen de información para cada momento de tiempo en el periodo que se va analizar. Sin embargo, con frecuencia ocurre que faltan datos en la serie, o que algunos de ellos son erróneos. En la literatura de Análisis Series de Tiempo, en particular en la de los procesos ARIMA (Box y Jenkins, 1976), se han propuesto diferentes métodos para estimar estas observaciones, pero la mayoría de ellos supone que el modelo es conocido o que las observaciones son tales que han permitido identificarlo. Este documento presenta una metodología relativamente simple que permite estimar las observaciones faltantes y simultáneamente identificar el modelo ARIMA que generó una serie de tiempo.20application/pdfspaUniversidad de AntioquiaMedellín, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Series de tiempoModelos econométricosIdentificación de un modelo ARIMA cuando existen observaciones faltantesLect. Econ.Lecturas de Economía254547ORIGINALCastanoE_1997_IdentificacionModeloArima.pdfCastanoE_1997_IdentificacionModeloArima.pdfArtículo de investigaciónapplication/pdf8088737https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/1/CastanoE_1997_IdentificacionModeloArima.pdfbb0c79cd92b77f2388d8e4b411a611c0MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/3846/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/3846oai:bibliotecadigital.udea.edu.co:10495/38462021-05-21 19:48:16.115Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=