Reconocimiento automático de llamados de murciélagos en estado libre usando técnicas de machine learning

RESUMEN: En este trabajo se desarrolló una herramienta que extrae y procesa características acústicas de archivos de extensión zero-crossing o wav. La herramienta hace uso de metodologías de machine learning y permite el reconocimiento automático de los géneros de murciélagos molosus (Sonotipo 1) y...

Full description

Autores:
Zapata Estrada, Kelly Johanna
Orozco Gallo, Frank Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/18382
Acceso en línea:
http://hdl.handle.net/10495/18382
Palabra clave:
Algoritmo
Algorithms
Grabación sonora
Sound recordings
Procesamiento de datos
Data processing
Acústica
Acoustics
Chiroptera
Chiroptera
Aprendizaje automático
Murciélagos - Clasificación
Sonidos animales
http://aims.fao.org/aos/agrovoc/c_49911
http://aims.fao.org/aos/agrovoc/c_1560
http://vocabularies.unesco.org/thesaurus/concept2024
http://vocabularies.unesco.org/thesaurus/concept9812
http://vocabularies.unesco.org/thesaurus/concept522
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia
Description
Summary:RESUMEN: En este trabajo se desarrolló una herramienta que extrae y procesa características acústicas de archivos de extensión zero-crossing o wav. La herramienta hace uso de metodologías de machine learning y permite el reconocimiento automático de los géneros de murciélagos molosus (Sonotipo 1) y myotis (Sonotipo 2) disminuyendo así el tiempo de procesamiento de datos al automatizar el proceso. La herramienta desarrollada para el análisis de los 2 tipos de archivos se materializa en 2 funciones desarrolladas en el software R. Estas funciones realizan el análisis de las características extraídas de los audios mediante el uso de redes neuronales con el algoritmo de back propagation. Estas funciones se generaron de forma que tomen todos los audios de un tipo (wav o zc) en un directorio y se le realice el análisis completo a todos los audios. El resultado generado es un archivo csv con la descripción de las características halladas y en que tiempos del audio se detectaron los sonotipos.